首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intraspecific variation in a resting metabolic rate (RMR) is likely to be an important determinant of energetic-resource use and may influence the resources subsequently available for allocation to traits not directly associated with somatic maintenance. The influence of RMR on resource availability could be especially important for condition-dependent sexual traits, such as cricket calls, that are themselves energetically costly to produce. RMR may also be associated with longevity, either negatively because individuals with a high RMR burn resources faster and die young, or positively as individuals with high RMR are more able to accrue resources to fuel survival. Additionally, the associations between RMR and other characters may vary across populations if differential selection or drift shapes these traits. Here we tested for differences in RMR, body mass, calling effort, and longevity in two populations of cricket Gryllodes sigillatus and then evaluated the potential influence of RMR on calling and longevity. We find that RMR, calling effort, and longevity varied across populations, but mass did not. Controlling for population and mass, RMR was not significantly associated with calling effort, but was negatively associated with longevity. These findings suggest that male crickets that live fast die young.  相似文献   

2.
We extended zero-cost optimization model for population of domestic animals. Also the model of hiring of labor in cattle-breeding farm is constructed and investigated.  相似文献   

3.
With research into the ecological effects of climatic change intensifying over the past decade, there has been an effort to increase the scale of experiments from a focus on individual organisms to incorporate the effects of the structure and functioning of entire ecosystems. As the scale of investigation becomes increasingly broad, however, the number of seemingly contradictory outcomes also increases. In reality, however, change or persistence of ecological patterns represents interplay of processes across diverse scales of space and time. At one extreme, non-climatic influences can dominate local and short-term processes that protect systems against change or accelerate change. Here, we draw on case studies that demonstrate such contrasting situations, presenting examples where local conditions can either ameliorate or exacerbate the predicted effects of climate change. By incorporating examples of stressors that originate and manifest at different spatial scales, we also attempt to refine some of the efforts surrounding research into the effects of climate change.  相似文献   

4.
天津地区各季植被NDVI年际动态及其对气候因子的响应   总被引:4,自引:0,他引:4  
探索植被覆盖与气候变化相互关系是全球变化研究的重要内容之一.研究特定地区植被时间动态及其对气候因子的响应,对植被重建和生态环境恢复具有重要作用.利用1982-2003年8 km×8 km的NASA/GIMMS半月合成的归一化植被指数(NDVI)和气候数据,研究了天津地区各季NDVI年际变化特征及其对气候因子的响应.结果表明:近20年来天津市春季、夏季及冬季平均气温呈显著的升高趋势(P<0.05),而秋季变化不明显;春季和夏季降水呈降低趋势,而秋、冬两季呈微弱增加趋势,但均没有达到显著性水平(P>0.05).从四季NDVI年际变化趋势来看,春、秋两季呈微弱上升趋势,而夏季显著降低(P<0.01),冬季变化不明显.近20年四季NDVI与同期平均气温及降水的回归分析表明,除冬季外,NDVI与温度及降水均有显著的正相关关系,其中春、秋两季NDVI与温度及降水的关系均达到极显著水平(P<0.001).本研究结果证实天津地区各季NDVI的年际变化特征存在明显差异,而且气温和降水共同决定了植被NDVI的变化.  相似文献   

5.
A central challenge in ecology is to understand the interplay of internal and external controls on the growth of populations. We examined the effects of temporal variation in weather and spatial variation in vegetation on the strength of density dependence in populations of large herbivores. We fit three subsets of the model ln(Nt) = a + (1 + b) x ln(N(t-1)) + c x ln(N(t-2)) to five time series of estimates (Nt) of abundance of ungulates in the Rocky Mountains, USA. The strength of density dependence was estimated by the magnitude of the coefficient b. We regressed the estimates of b on indices of temporal heterogeneity in weather and spatial heterogeneity in resources. The 95% posterior intervals of the slopes of these regressions showed that temporal heterogeneity strengthened density-dependent feedbacks to population growth, whereas spatial heterogeneity weakened them. This finding offers the first empirical evidence that density dependence responds in different ways to spatial heterogeneity and temporal heterogeneity.  相似文献   

6.
Goswami VR  Getz LL  Hostetler JA  Ozgul A  Oli MK 《Ecology》2011,92(8):1680-1690
Although ecologists have long recognized that certain mammalian species exhibit high-amplitude, often multiannual, fluctuations in abundance, their causes have remained poorly understood and the subject of intense debate. A key contention has been the relative role of density-dependent and density-independent processes in governing population dynamics. We applied capture-mark-recapture analysis to 25 years of monthly trapping data from a fluctuating prairie vole Microtus ochrogaster population in Illinois, USA, to estimate realized population growth rates and associated vital rates (survival and recruitment) and modeled them as a function of vole density and density-independent climatic variation. We also tested for phase dependence and seasonality in the effects of the above processes. Variation in the realized population growth rate was best explained by phase-specific changes in vole density lagged by one month and mean monthly temperatures with no time lags. The underlying vital rates, survival and recruitment, were influenced by the additive and interactive effects of phase, vole density, and mean monthly temperatures. Our results are consistent with the observation that large-scale population fluctuations are characterized by phase-specific changes in demographic and physiological characteristics. Our findings also support the growing realization that the interaction between climatic variables and density-dependent factors may be a widespread phenomenon, and they suggest that the direction and magnitude of such interactive effects may be phase specific. We conclude that density-dependent and density-independent climatic variables work in tandem during each phase of density fluctuations to drive the dynamics of fluctuating populations.  相似文献   

7.
The possibility of a bimodal log-likelihood function arises with certain data when the combined removal and signs-of-activities estimator is used. Bimodal log-likelihoods may, in turn, yield disjoint confidence intervals for certain confidence levels. The hypothesis that bimodality is caused by the violation of the equal catchability assumption of the removal model, leading to the combination of contradictory data/models in the combined estimator is set forth. Simulations exploring the effect of the violation of removal model assumptions on estimation and inference showed that the assumption of unequal capture probability influenced the frequency of bimodal likelihoods; similarly, extreme parameter values for probability of capture influenced the number of excessively large confidence intervals produced. A sex-specific combined estimator is developed as a remedial model tailored to the problem. The simulations suggest that both the signs-of-activities estimator and the sex-specific estimator perform equally well over the range of simulations presented, though the signs-of-activities estimator is easier to implement.  相似文献   

8.
Despite the likely importance of inter-year dynamics of plant production and consumer biota for driving community- and ecosystem-level processes, very few studies have explored how and why these dynamics vary across contrasting ecosystems. We utilized a well-characterized system of 30 lake islands in the boreal forest zone of northern Sweden across which soil fertility and productivity vary considerably, with larger islands being more fertile and productive than smaller ones. In this system we assessed the inter-year dynamics of several measures of plant production and the soil microbial community (primary consumers in the decomposer food web) for each of nine years, and soil microfaunal groups (secondary and tertiary consumers) for each of six of those years. We found that, for measures of plant production and each of the three consumer trophic levels, inter-year dynamics were strongly affected by island size. Further, many variables were strongly affected by island size (and thus bottom-up regulation by soil fertility and resources) in some years, but not in other years, most likely due to inter-year variation in climatic conditions. For each of the plant and microbial variables for which we had nine years of data, we also determined the inter-year coefficient of variation (CV), an inverse measure of stability. We found that CVs of some measures of plant productivity were greater on large islands, whereas those of other measures were greater on smaller islands; CVs of microbial variables were unresponsive to island size. We also found that the effects of island size on the temporal dynamics of some variables were related to inter-year variability of macroclimatic variables. As such, our results show that the inter-year dynamics of both plant productivity and decomposer biota across each of three trophic levels, as well as the inter-year stability of plant productivity, differ greatly across contrasting ecosystems, with potentially important but largely overlooked implications for community and ecosystem processes.  相似文献   

9.
Allocation of resources to growth and defense against herbivores crucially affects plant competitiveness and survival, resulting in a specific distribution of assimilates and defense compounds within plant individuals. Additionally, plants rarely experience stable environmental conditions, and adaptations to abiotic and biotic stresses may involve shifts in resistance to herbivores. We studied the allocation of phytochemicals in Brassica oleracea (Brussels sprouts) due to leaf age, drought stress and herbivore damage and assessed effects on two lepidopteran herbivores differing in diet breadth: the generalist Spodoptera littoralis and the specialist Pieris brassicae. Glucosinolates as secondary defense compounds and total nitrogen and carbon were quantified and linked to plant palatability, i.e., herbivore feeding preference. Herbivore responses were highly species-specific and partially related to changes in phytochemicals. Spodoptera littoralis preferred middle-aged leaves with intermediate levels of glucosinolates and nitrogen over young, glucosinolate and nitrogen rich leaves, as well as over old leaves, poor in glucosinolates and nitrogen. In contrast, P. brassicae preferred young leaves. Both species preferred severely drought-stressed plants to the well-watered control, although analyzed glucosinolate concentrations did not differ. Both S. littoralis and P. brassicae feeding induced an increase of indole glucosinolate levels, which may explain a reduced consumption of damaged plants detected for S. littoralis but not for P. brassicae. By revealing distinct, sometimes contrasting responses of two insect herbivores to within-plant and stress-mediated intraspecific variation in phytochemistry of B. oleracea, this study emphasizes the need to consider specific herbivore responses to understand and predict the interactions between herbivores and variable plants.  相似文献   

10.
There is increasing interestin broad-scale analysis, modeling, and prediction of the distribution and composition of plant species assemblages under climatic, environmental, and biotic change, particularly for conservation purposes. We devised a method to reliably predict the impact of climate change on large assemblages of plant communities, while also considering competing biotic and environmental factors. To this purpose, we first used multilabel algorithms in order to convert the task of explaining a large assemblage of plant communities into a classification framework able to capture with high cross-validated accuracy the pattern of species distributions under a composite set of biotic and abiotic factors. We applied our model to a large set of plant communities in the Swiss Alps. Our model explained presences and absences of 175 plant species in 608 plots with >87% cross-validated accuracy, predicted decreases in α, β, and γ diversity by 2040 under both moderate and extreme climate scenarios, and identified likely advantaged and disadvantaged plant species under climate change. Multilabel variable selection revealed the overriding importance of topography, soils, and temperature extremes (rather than averages) in determining the distribution of plant species in the study area and their response to climate change. Our method addressed a number of challenging research problems, such as scaling to large numbers of species, considering species relationships and rarity, and addressing an overwhelming proportion of absences in presence–absence matrices. By handling hundreds to thousands of plants and plots simultaneously over large areas, our method can inform broad-scale conservation of plant species under climate change because it allows species that require urgent conservation action (assisted migration, seed conservation, and ex situ conservation) to be detected and prioritized. Our method also increases the practicality of assisted colonization of plant species by helping to prevent ill-advised introduction of plant species with limited future survival probability.  相似文献   

11.
ABSTRACT

Climatic variability and its effects have been experienced in the high-altitude regions of Nepal for some considerable time. Most of the studies on local people’s perception available so far in Nepal on climate include with respect to weather changes, and almost none have been verified with satellite imagery. This study thus attempts to combine meteorological and satellite imagery for comparing local people’s perception so that a more robust validation can be established. Both qualitative (transect walk, key informant interview, focus group discussion and institutional visit) and quantitative (meteorological and satellite image) data and techniques were employed. Local people from Rara and Langtang in Nepal shared their observations and perceptions on the changing climate for the last three decades and the effects on them and their local microclimate. Apart from temperature, rainfall and snowfall anomalies, locals observed changes in the water sources and increasing drought along with alteration in the phenology of tree and agricultural crops as well as vegetation range migration. Satellite image analysis also confirms a change in snow cover as notified by the local people. This study shows that local people’s knowledge could be considered as a complement to the observed scientific evidences of climate change science and their perceptions can be used reliably where scientific data are lacking. Finally, perceived climatic risks, current gaps and future opportunities are discussed and some recommendations are suggested.  相似文献   

12.
Latitudinally separate populations of the sea anemone Metridium senile (L.) are very similar genetically by electrophoretic criteria, yet respond differently to temperature. Anemones from southern and northern California (USA) have different oxygen consumption patterns in response to acclimatory and acute changes in temperature. Northern anemones show a pronounced increase in Q10 at temperatures just above the normal environmental range, but southern anemones do not. The two populations also differed in the extent of metabolic compensation to temperature following several weeks of acclimation. This acclimation regime resulted in changes in the activities of several enzymes of intermediary metabolism, yet the extent and direction of these changes did not display a consistent trend with regard to acclimation temperature or population. The biochemical concomitants of acclimatory and acute temperature effects were studied further by measuring the concentrations of adenylates (ATP, ADP, and AMP) in anemones from the two populations exposed to different temperature regimes. During cold acclimation for several weeks, total adenylate concentrations (AT) increased in both the southern and northern populations, possibly due to metabolic rate compensation, since AT is positively correlated with tissue metabolic rate in many species. Moreover, the extremely low weight-specific oxygen consumption rates of M. senile are probably related to its very low AT values. Acute temperature decreases had no effect on adenylate concentrations and adenylate energy charge (AEC); in contrast, acute temperature increases led to large changes in adenylate concentrations. The effects of starvation on adenylate concentrations are pronounced, and the effect is temperature-dependent. In starved individuals held at 20°C, AEC values fell to 50% of normal values after 8 d, while those held at 10°C maintained normal AEC values.  相似文献   

13.
Halophila stipulacea (Forssk.) Ascher. is a dioecious seagrass that colonized the Mediterranean basin probably following the opening of the Suez Canal (1869). Natural meadows have been reported since the end of the last century on the eastern side of the basin and only recently along the northern coast of Sicily. In the present study we examined the morphological and genetic variability of two natural meadows located along the Sicilian coast (Vulcano Island and Oliveri-Tindari coastal lakes). In order to determine morphological and genetic polymorphism, samples were collected at different depths (5, 15 and 25 m depth at the Vulcano site) and positions (edge vs mid-bed) within the meadows. Statistically significant differences in phenotypic features were found between the factors “depth” and “position” within the same meadow and between the two localities. Genetic diversity was assessed using randomly amplified polymorphic DNA and found to be high. Deep and shallow stands of the Vulcano Island meadow clustered in different positions in the UPGMA tree. The shallow Vulcano stand was found to be closer to the shallow Oliveri-Tindari meadow than to the deeper stand from Vulcano. Mantel's test did not allow rejection of the null hypothesis of independence of morphological and molecular distance matrices. We conclude that (i) H. stipulacea shows high morphological and genetic polymorphism, (ii) environmental and/or ecological barriers exist between different depths, and (iii) trends of morphological and genetic variability may be influenced by different environmental and/or ecological factors. Received: 15 November 1998 / Accepted: 21 May 1999  相似文献   

14.
Ecological theory suggests that environmental variability can promote coexistence, provided that species occupy differential niches. In this study, we focus on two questions: (1) Do allocation trade-offs provide a sufficient basis for niche differentiation in succulent plant communities? (2) What is the relative importance of different forms of environmental variability on species diversity and community composition? We approach these questions with a generic, individual-based simulation model. In our model, plants compete for water in a spatially explicit environment. Species differ in their size at maturity and in the allocation of carbon to roots, leaves and storage tissue. The model was fully specified with independent literature data. Model output was compared to characteristics of a species-rich community in the semi-arid Richtersveld (South Africa). The model reproduced the coexistence of plants with different sizes at maturity, the dominance of succulent shrubs, and the level of vegetation cover. We analyzed the effects of three forms of environmental variability: (a) temporal fluctuations in precipitation (rain and fog), (b) spatial heterogeneity of water supply due to run-on and run-off processes and (c) ‘rock pockets’ that limit root competition in space. The three types of variability had differential effects on diversity: diversity exhibited a strong hump-shaped response to temporal variation. Spatial variability increased diversity, with the strongest increase occurring at intermediate levels of temporal variability. Finally, rock pockets had the weakest effect, but contributed to diversity by providing refuges for small species, particularly at low temporal variability. The model thus shows that spatio-temporal variation of resource supply can maintain diversity over long time scales even in small systems, as is the case in the Richtersveld succulent communities. Trade-offs in allocation provide the basis for necessary niche differentiation. By describing resource competition between individual plants, our model provides a mechanistic basis for the link from species traits to community composition at given environmental conditions. It thereby contributes to an understanding of the forces shaping plant communities. Such an understanding is critical to reduce the threats environmental change poses to biodiversity and ecosystem services.  相似文献   

15.
Joern A  Provin T  Behmer ST 《Ecology》2012,93(5):1002-1015
The relationship between plant nutrient content and insect herbivore populations and community structure has long interested ecologists. Insect herbivores require multiple nutrients, but ecologists have focused mostly on nitrogen (an estimate of plant protein content), and more recently phosphorus (P); other nutrients have received little attention. Here we document nutrient variation in grass and forb samples from grassland habitats in central Nebraska using an elemental approach; in total we measured foliar concentrations of 12 elements (N and P, plus S, B, Ca, Mg, Na, K, Zn, Fe, Mn, and Cu). We detected significant variability among sites for N, P, Mg, Na, K, and Cu. We next used a model selection approach to explore how this nutritional variation and plant biomass correlate with grasshopper densities (collectively and at the feeding-guild level), and principal component analysis to explore nutrient correlations with grasshopper community species composition. When all grasshoppers were pooled, densities varied among sites, but only P was associated with abundance of the elements shown to vary between sites. Different responses occurred at the feeding-guild level. For grass specialists, densities were associated with N, plus P, Mg, and Na. For forb specialists, N and P were often associated with density, but associations with Na and K were also observed. Finally, mixed-feeder abundance was strongly associated with biomass, and to a lesser extent P, Mg, Na, and Cu. At the community level, B, Ca, Zn, and Cu, plus biomass, explained > 30% of species composition variation. Our results confirm the positive association of N and P with insect herbivore populations, while suggesting a potential role for Mg, Na, and K. They also demonstrate the importance of exploring effects at the feeding-guild level. We hope our data motivate ecologists to think beyond N and P when considering plant nutrient effects on insect herbivores, and make a call for studies to examine functional responses of insect herbivores to dietary manipulation of Mg, Na, and K. Finally, our results demonstrate correlations between variation in nutrients and species assemblages, but factors not linked to plant nutrient quality or biomass likely explain most of the observed variation.  相似文献   

16.
Toxicities of an azo dye methyl red and a heavy metal copper (Cu) were quantified, using growth and mortality as end points, in four plant species and three animal species by subjecting them to short-term (4 days for animals, 10 days for plants) static bioassays. Lemna aequinoctialis Welwitch (EC50: 7–16 ppm) was found to be the most sensitive species for methyl red, Ceratophyllum demersum L. (EC50: 25 ppm) and Lactuca sativa L. (EC50: 56 ppm) were intermediate, while Oryza sativa L. shows reduction in seedling vigor (9–27%) of <50%, being the least sensitive amongst the tested plant species. Methyl red toxicity is almost 3–5-fold higher in growing medium (pH = 5.8–6.0), even at high nutrient levels, while Cu toxicity is higher in nutrient-poor alkaline medium at alkaline pH (8.3–8.7; EC50: Ceratophyllum = 104–200 ppb; Lemna = 100–170 ppb) compared to nutrient-rich acidic medium (pH = 5.4–5.7; EC50: Ceratophyllum = 2600–3175 ppb; Lemna = 4350–4715 ppb). Rice tolerance (EC50: 6500 ppb) was found to be higher than hydrophytes while lettuce was most tolerant to Cu. Fish sensitivity toward the test chemicals was almost parallel to Ceratophyllum and Lemna [Gambusia affinis Baird and Gerard (LC50: 250 ppb for Cu) and Poecilia reticulata Peters (LC50: 24 ppm for methyl red)]. Similar to the plants, dye toxicity increased markedly (LC50: 7 ppm) in the acidic medium (pH = 6.0). Amongst the tested organisms, Daphnia was found to be most sensitive to methyl red (EC50: 6 ppm) while its sensitivity to Cu (EC50: 230 ppb) was similar to hydrophytes and fish. Initially, the combination of dye and Cu (at their sublethal concentrations) had additive effects in duckweed, while dye concentration ruled afterward. These results indicate that hydrophytes and animals are equally sensitive toward the test chemicals. Dye toxicity in hydrophytes and fish was pH dependent, while in the case of Cu, it is related to the nutrient status of the growth medium of plants.  相似文献   

17.
The Greater Sudbury region in Northern Ontario is known as one of Canada's most ecologically disturbed regions because of the effects of heavy metal pollution. The main objectives of the present study were to assess the effects of soil liming of sites contaminated with metals on species richness and abundance, forest health in general, and to determine the level of genetic variability in white birch populations from Northern Ontario. Shannon-Wiener diversity index and tree species richness values were higher in populations from limed and control sites compared to the unlimed areas. A significant improvement in forest population health (measured using a scale of 1 to 10) in limed sites over the unlimed areas was observed. Key results revealed no significant difference for metal content in white birch (Betula papyrifera) leaves from limed compared to unlimed sites. But higher levels of Al, Ca, Mg, Mn, Ni, Sr, and Zn in leaves compared to the bioavailable amount in soil were observed. The levels of genetic variability in white birch populations were moderate to high, ranging from 30% to 79% of polymorphic loci. A high level of genetic variability such as observed in the present study is usually associated with long term sustainability in plant populations. No association was found between metal accumulation in soil or plants and the levels of genetic variation.  相似文献   

18.
Genetic differentiation and genetic variability of sporophytic and gametophytic populations of Gelidium arbuscula (Bory) from three localities sampled in 1989 and 1990 in the Canary Islands (Spain) were examined by isozyme electrophoresis. Twenty-three to 29 putative alleles corresponding to 22 gene loci, were compared. High deviations in Hardy-Weinberg equilibrium, and significant differences between allelic frequencies of sporophytic and gametophytic subpopulations at the same locality were found, suggesting a predominant asexual reproduction of G. arbuscula. The genetic variability (percentage of polymorphic loci, mean number of alleles per locus and average gene diversity) of haploid subpopulations was lower than that of diploid subpopulations at all three localities, being the lowest described for seaweeds. No correlation between genetic and geographical distance was found. The high genetic differentiation coefficient between all subpopulations suggests a very reduced genetic flow between subpopulations of the same and of different localities. These results suggest that the genetic structure of the populations of G. arbuscula from the Canary Islands is due to a founder-effect combined with a predominance of asexual reproduction. This is the first report comparing allelic frequencies between sporophytic and gametophytic subpopulations of seaweeds.  相似文献   

19.
An analysis of the population genetics of the meiofaunal polychaete Petitia amphophthalma Siewing, 1956, in which the RAPD-PCR method was applied to 103 individuals from eight populations, some of them very far apart (Atlantic: Florida, Tenerife, France; Mediterranean: two Greek islands, Tunisia; Red Sea: Egypt), gave closely reproducible results. In the band patterns produced with 13 decamer primers, a total of 195 genetic characters was detected. The data were evaluated by a number of methods, including the cluster programs UPGMA, WPGMA and neighbour-joining. The detected genetic distances between the populations vary between 58.9 and 66.6, but 97% of the genetic characters, although polymorphic, are found in at least two populations and usually in all the others as well. Phenograms of the analyses find four population clusters [Florida, France (Atlantic), the Mediterranean and Tenerife]. They are, however, not completely congruent and show low bootstrap values at the junction points of the clusters (with the exception of the Tenerife cluster). Mediterranean P. amphophthalma form a cohesive population, although within it the genetic distances are graded in parallel with the geographic distances between the sites. The colonization of Tenerife, an island of relatively recent volcanic origin, can be taken as evidence that this meiofaunal species can become dispersed not only along coastlines but also across expanses of open water. However, the severely restricted variability of these populations implies that in this case a founder effect has operated, and that transport over open water is not a routine event but extremely rare. The absence of the species on the Australian coast and, for instance, on the Galapagos Islands indicates that there has been no continuous gene flow across the oceans. The idea that all the populations investigated belong to one cosmopolitan species is discussed. Received: 17 October 1997 / Accepted: 15 April 1998  相似文献   

20.
Crucibulum quiriquinae (Lesson, 1830) is the only species of Crucibulum currently recognized in northern Chile. Recent analysis of three Crucibulum populations obtained in northern Chile demonstrates the existence of morphological, genetic, and reproductive differences among populations. Two populations present in Bahía Tongoy (30°15'S), one inhabiting the shells of the snail Turritella cingulata and the other shells of the pectinid Argopecten purpuratus, showed morphological differences. However, both had planktonic larval development and show low genetic divergence (D=0.002). A third population from Bahía La Herradura (29°58'S), which also inhabits the shells of T. cingulata, did not show morphological differences compared with its counterpart from Bahía Tongoy. However the Bahía La Herradura population had intracapsular development and metamorphosis, and a larger genetic distance (D=0.06) from both Tongoy populations. The results of the reproductive and genetic analyses strongly suggested that the two Tongoy populations, although showing morphological differences, are biologically the same species, Crucibulum quiriquinae, whereas the La Herradura population is a new species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号