首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Graff P  Aguiar MR  Chaneton EJ 《Ecology》2007,88(1):188-199
Isolating the single effects and net balance of negative and positive species effects in complex interaction networks is a necessary step for understanding community dynamics. Facilitation and competition have both been found to operate in harsh environments, but their relative strength may be predicted to change along gradients of herbivory. Moreover, facilitation effects through habitat amelioration and protection from herbivory may act together determining the outcome of neighborhood plant-plant interactions. We tested the hypothesis that grazing pressure alters the balance of positive and negative interactions between palatable and unpalatable species by increasing the strength of positive indirect effects mediated by associational resistance to herbivory. We conducted a two-year factorial experiment in which distance (i.e., spatial association) from the nearest unpalatable neighbor (Stipa speciosa) and root competition were manipulated for two palatable grasses (Poa ligularis and Bromus pictus), at three levels of sheep grazing (none, moderate, and high) in a Patagonian steppe community. We found that grazing shifted the effect of Stipa on both palatable grasses, from negative (competition) in the absence of grazing to positive (facilitation) under increasing herbivore pressure. In ungrazed sites, belowground competition was the dominant interaction, as shown by a significant reduction in performance of palatable grasses transplanted near to Stipa tussocks. In grazed sites, biomass of palatable plants was greater near than far from Stipa regardless of competition treatment. Proximity to Stipa reduced the amount of herbivory suffered by palatable grasses, an indirect effect that was stronger under moderate than under intense grazing. Our results demonstrate that facilitation, resulting mainly from protection against herbivory, is the overriding effect produced by unpalatable neighbors on palatable grasses in this rangeland community. This finding challenges the common view that abiotic stress amelioration should be the predominant type of facilitation in arid environments and highlights the role of herbivory in modulating complex neighborhood plant interactions in grazing systems.  相似文献   

2.
Species interactions affect plant diversity through the net effects of competition and facilitation, with the latter more prevalent in physically stressful environments when plant cover ameliorates abiotic stress. One explanation for species loss in invader-dominated systems is a shift in the competition-facilitation balance, with competition intensifying in areas formerly structured by facilitation. We test this possibility with a 10-site prairie meta-experiment along a 500-km latitudinal stress gradient, quantifying the relationships among abiotic stress, exotic dominance, and native plant recruitment over five years. The latitudinal gradient is inversely correlated with abiotic stress, with lower latitudes more moisture- and nutrient-limited. We observed strong negative effects by invasive dominant grasses on plant establishment, but only in northern sites with lower-stress environments. At these locations, disturbance was critical for recruitment by reducing the suppressive dominant (invasive) canopy. In more stressful environments to the south, the impacts of the dominant invaders on plant establishment became facilitative, and diversity was more limited by seed availability. Disturbance prevented recruitment because seedling survival depended on a protective plant canopy, presumably because the canopy reduced temperature or moisture stress. Seed limitation was similarly prevalent in all sites. Our work confirms the importance of facilitation as an organizing process for plants in higher-stress environments, even with transformations of species composition and dominance. It also demonstrates that the mechanisms regulating diversity, including invader impacts, can vary within the same plant community depending on environmental context. Because limits on native plant recruitment are environmentally contingent, management strategies that seek to increase diversity, including invader eradication, must account for site-level variations in the balance between biotic and abiotic constraints.  相似文献   

3.
Interactions among plants have been hypothesized to be context dependent, shifting between facilitative and competitive in response to variation in physical and biological stresses. This hypothesis has been supported by studies of the importance of positive and negative interactions along abiotic stress gradients (e.g., salinity, desiccation), but few studies have tested how variation in biotic stresses can mediate the nature and strength of plant interactions. We examined the hypothesis that herbivory regulates the strength of competitive and facilitative interactions during succession in Argentinean marshes dominated by Spartina densiflora and Sarcocornia perennis. Spartina densiflora is preferred by the dominant herbivore in the system, the crab Chasmagnathus granulatus. We experimentally manipulated crab herbivory, plant structure, and shade, and we found that, when herbivory was low in the spring and summer, competitive interactions between plants were dominant, but in the fall, when herbivory was highest, facilitative interactions dominated, and Spartina densiflora survival was completely dependent upon association with Sarcocornia perennis. Moreover, experimental removal of Sarcocornia perennis across recently disturbed tidal flats revealed that, while Sarcocornia perennis positively affected small Spartina densiflora patches by decreasing herbivory, as patch size increases and they can withstand the impact of herbivory, competitive interactions predominated and Spartina densiflora ultimately outcompeted Sarcocornia perennis. These results show that herbivory can mediate the balance between facilitative and competitive processes in vascular plant communities and that the strength of consumer regulation of interactions can vary seasonally and with patch size.  相似文献   

4.
Gibb H 《Ecology》2011,92(10):1871-1878
Habitat succession is thought to influence the importance of competition in assemblages. Competitive interactions are considered of critical importance in structuring ant assemblages, but field experiments show varied effects. I tested how succession in managed boreal forests affects the outcome of competition from dominant red wood ants, Formica aquilonia, through a removal experiment in replicated stands of three different ages (0-4, 30-40, and 80-100 years old). F. aquilonia abundance was reduced by 87%, and procedural controls showed no nontarget effects. The succession gradient revealed the full range of possible responses from ant species: decreases in 1-4-year-old stands, increases in 30-40-year-old stands, and no effects in 80-100-year-old stands, where diversity was lowest. Habitat succession thus regulates competitive interactions in this system. I propose a model for this system, where competitive effects depend on time since disturbance. In this case, soon after disturbance the dominant species facilitates increases in the abundance of other species. At intermediate times, competition reduces the abundance of some species. Finally, in long-undisturbed habitats, competitors may fail to evolve, particularly in high-stress environments. Interactions between competition and habitat succession may explain why structuring effects of ecologically dominant species appear inconsistent.  相似文献   

5.
Spatially periodic vegetation patterns, forming gaps, bands, labyrinths, or spots, are characteristic of arid and semiarid landscapes. Self-organization models can explain this variety of structures within a unified conceptual framework. All these models are based on the interplay of positive and negative effects of plants on soil water, but they can be divided according to whether they assume the interactions to be mediated by water redistribution through runoff/diffusion or by plants' organs. We carried out a multi-proxy approach of the processes operating in a gapped pattern in southwest Niger dominated by a shrub species. Soil moisture within the root layer was monitored in time and space over one month of the rainy season. Soil water recharge displayed no spatial variation with respect to vegetation cover, but the stock half-life under cover was twice that of bare areas. A kernel of facilitation by the aboveground parts of shrubs was parameterized, and soil water half-life was significantly correlated to the cumulated facilitative effects of shrubs. The kernel range was found to be smaller than the canopy radius (81%). This effect of plants on soil water dynamics, probably through a reduction of evaporation by shading, is shown to be a better explanatory variable than potentially relevant soil and topography parameters. The root systems of five individuals of Combretum micranthum G. Don were excavated. Root density data were used as a proxy to parameterize a kernel function of interplant competition. The range of this kernel was larger than the canopy radius (125%). The facilitation-to-competition range ratio, reflecting the above-to-belowground ratio of plant lateral extent, was smaller than 1 (0.64), a result supporting models assuming that patterning may emerge from an adaptation of plant morphology to aridity and shallow soils by means of an extended lateral root system. Moreover, observed soil water gradients had directions opposite to those assumed by alternative mathematical models based on underground water diffusion. This study contributes to the growing awareness that combined facilitative and competitive plant interactions can induce landscape-scale patterns and shape the two-way feedback loops between environment and vegetation.  相似文献   

6.
We use permanent-plot data from the USDA Forest Service's Forest Inventory and Analysis (FIA) program for an analysis of the effects of competition on tree growth along environmental gradients for the 14 most abundant tree species in forests of northern New England, USA. Our analysis estimates actual growth for each individual tree of a given species as a function of average potential diameter growth modified by three sets of scalars that quantify the effects on growth of (1) initial target tree size (dbh), (2) local environmental conditions, and (3) crowding by neighboring trees. Potential growth of seven of the 14 species varied along at least one of the two environmental axes identified by an ordination of relative abundance of species in plots. The relative abundances of a number of species were significantly displaced from sites where they showed maximum potential growth. In all of these cases, abundance was displaced to the more resource-poor end of the environmental gradient (either low fertility or low moisture). The pattern was most pronounced among early successional species, whereas late-successional species reached their greatest abundance on sites where they also showed the highest growth in the absence of competition. The analysis also provides empirical estimates of the strength of intraspecific and interspecific competitive effects of neighbors. For all but one of the species, our results led us to reject the hypothesis that all species of competitors have equivalent effects on a target species. Most of the individual pairwise interactions were strongly asymmetric. There was a clear competitive hierarchy among the four most shade-tolerant species, and a separate competitive hierarchy among the shade-intolerant species. Our results suggest that timber yield following selective logging will vary dramatically depending on the configuration of the residual canopy, because of interspecific variation in the magnitude of both the competitive effects of different species of neighbors and the competitive responses of different species of target trees to neighbors. The matrix of competition coefficients suggests that there may be clear benefits in managing for specific mixtures of species within local neighborhoods within stands.  相似文献   

7.
Laird RA  Schamp BS 《Ecology》2008,89(1):237-247
Competitive intransitivity, a situation in which species' competitive ranks cannot be listed in a strict hierarchy, promotes species coexistence through "enemy's enemy indirect facilitation." Theory suggests that intransitivity-mediated coexistence is enhanced when competitive interactions occur at local spatial scales, although this hypothesis has not been thoroughly tested. Here, we use a lattice model to investigate the effect of local vs. global competition on intransitivity-mediated coexistence across a range of species richness values and levels of intransitivity. Our simulations show that local competition can enhance intransitivity-mediated coexistence in the short-term, yet hinder it in the long-term, when compared to global competition. This occurs because local competition slows species disaggregation, allowing weaker competitors to persist longer in the shifting spatial refuges of intransitive networks, enhancing short-term coexistence. Conversely, our simulations show that, in the long-term, local competition traps disaggregated species in unfavorable areas of the competitive arena, where they are excluded by superior competitors. As a result, in the long-term, global intransitive competition allows a greater number of species to coexist than local intransitive competition.  相似文献   

8.
Facilitation across stress gradients: the importance of local adaptation   总被引:2,自引:0,他引:2  
Espeland EK  Rice KJ 《Ecology》2007,88(9):2404-2409
While there is some information on genetic variation in response to competition in plants, we know nothing about intraspecific variation in facilitation. Previous studies suggest that facilitation should increase fitness in stressful environments. However, whether a plant experiences an environment as stressful may depend on prior adaptive responses to stressors at a site. Local adaptation to stress at a site may reduce the likelihood of facilitation. Seeds of Plantago erecta from stressful (serpentine soil) and non-stressful (non-serpentine soil) edaphic environments were reciprocally planted into these two soil types. Although competition did not differ significantly among seed sources, there was evidence for a local adaptation effect on facilitation. Non-serpentine seeds planted into serpentine soil exhibited greater individual plant biomass at higher densities. The interaction between population source and growth environment indicates a role for evolutionary processes such as local adaptation in the expression of facilitation in plants.  相似文献   

9.
What are the local community consequences of changes in regional species richness and composition? To answer this question we followed the assembly of microarthropod communities in defaunated areas of moss, embedded in a larger moss "region." Regions were created by combining moss from spatially distinct sites, resulting in regional species pools that differed in both microarthropod richness and composition, but not area. Regional effects were less important than seasonality for local richness. Initial differences in regional richness had no direct effect on local species richness at any time along a successional gradient of 0.5-16 months. The structure of the regional pool affected both local richness and local composition, but these effects were seasonally dependent. Local species richness differed substantially between dates along the successional gradient and continued to increase 16 months after assembly began. To the best of our knowledge, this is the first critical test of saturation theory that experimentally manipulates regional richness. Further, our results failed to support the most important mechanisms proposed to explain the local richness-regional richness relationship. The results demonstrate that complicated interactions between assembly time, seasonality, and regional species pools contribute to structuring local species richness and composition in this community.  相似文献   

10.
Robust predictions of competitive interactions among canopy trees and variation in tree growth along environmental gradients represent key challenges for the management of mixed-species, uneven-aged forests. We analyzed the effects of competition on tree growth along environmental gradients for eight of the most common tree species in southern New England and southeastern New York using forest inventory and analysis (FIA) data, information theoretic decision criteria, and multi-model inference to evaluate models. The suite of models estimated growth of individual trees as a species-specific function of average potential diameter growth, tree diameter at breast height, local environmental conditions, and crowding by neighboring trees. We used ordination based on the relative basal area of species to generate a measure of site conditions in each plot. Two ordination axes were consistent with variation in species abundance along moisture and fertility gradients. Estimated potential growth varied along at least one of these axes for six of the eight species; peak relative abundance of less shade-tolerant species was in all cases displaced away from sites where they showed maximum potential growth. Our crowding functions estimate the strength of competitive effects of neighbors; only one species showed support for the hypothesis that all species of competitors have equivalent effects on growth. The relative weight of evidence (Akaike weights) for the best models varied from a low of 0.207 for Fraxinus americana to 0.747 for Quercus rubra. In such cases, model averaging provides a more robust platform for prediction than that based solely on the best model. We show that predictions based on the selected best models dramatically overestimated differences between species relative to predictions based on the averaged set of models.  相似文献   

11.
White JW  Caselle JE 《Ecology》2008,89(5):1323-1333
While there is great interest in the degree to which local interactions "scale-up" to predict regional patterns of abundance, few studies in marine systems have simultaneously examined patterns of abundance at both the large scale (tens of kilometers) typical of larval movement and the small scale (meters) typical of post-settlement interactions. We addressed this gap by monitoring larval supply, adult survivorship, and giant kelp (Macrocystis pyrifera, a primary habitat-forming species) abundance for 13 populations of kelp bass (Paralabrax clathratus) spread over approximately 200 km in the Santa Barbara Channel, California, USA. At the small, within-site scale, both recruitment and adult survivorship of kelp bass were density-dependent and positively related to kelp abundance. At the larger, among-site scale, the spatial pattern of adult kelp bass abundance was predicted well by the pattern of kelp bass larval supply, but there was a consistent negative spatial relationship between kelp abundance and kelp bass larval supply despite the positive effects of kelp on kelp bass at the smaller spatial scale. This large-scale negative relationship was likely a product of a channel-wide spatial mismatch between oceanographic conditions that favor kelp survival and those that concentrate and distribute fish larvae. These results generally support the recruit-adult hypothesis: kelp bass populations are limited by recruitment at low recruit densities but by density-dependent competition for food resources and/or predator refuges at high recruit densities. At the same time, spatial variation in kelp abundance produced substantial spatiotemporal heterogeneity in kelp bass demographics, which argues for a multispecies, metacommunity approach to predicting kelp bass dynamics.  相似文献   

12.
Pringle RM 《Ecology》2008,89(1):26-33
Ecologists increasingly recognize the ability of certain species to influence ecological processes by engineering the physical environment, but efforts to develop a predictive understanding of this phenomenon are in their early stages. While many believe that the landscape-scale effects of ecosystem engineers will be to increase habitat diversity and therefore the abundance and richness of other species, few generalities exist about the effects of engineering at the scale of the engineered patch. According to one hypothesis, activities that increase structural habitat complexity within engineered patches will have positive effects on the abundance or diversity of other organisms. Here I show that, by damaging trees and increasing their structural complexity, browsing elephants create refuges used by a common arboreal lizard. Observational surveys and a lizard transplant experiment revealed that lizards preferentially occupy trees with real or simulated elephant damage. A second experiment showed that lizards vacate trees when elephant-engineered refuges are removed. Furthermore, local lizard densities increased with (and may be constrained by) local densities of elephant-damaged trees. This facilitative effect of elephants upon lizards via patch-scale habitat modification runs contrary to previously documented negative effects of the entire ungulate guild on lizards at the landscape scale, suggesting that net indirect effects of large herbivores comprise opposing trophic and engineering interactions operating at different spatial scales. Such powerful megaherbivore-initiated interactions suggest that anthropogenic changes in large-mammal densities will have important cascading consequences for ecological communities.  相似文献   

13.
Veblen KE 《Ecology》2008,89(6):1532-1540
Empirical and theoretical evidence suggests that facilitation between plants, when it occurs, is more likely during periods of abiotic stress, while competition predominates under more moderate conditions. Therefore, one might expect the relative importance of competition vs. facilitation to vary seasonally in ecosystems characterized by pronounced dry (abiotically stressful) and wet (benign) seasons. Herbivory also varies seasonally and can affect the net outcome of plant-plant interactions, but the interactive effects of seasonality and herbivory on the competition-facilitation balance are not known. I experimentally manipulated neighboring plants and herbivory during wet and dry periods for two species of grass: Cynodon plectostachyus and Pennisetum stramineum, in the semiarid Laikipia District of Kenya. These experiments indicate that Pennisetum was competitively dominant during the wet season and that it responded negatively to grazing, especially during the dry season. Cynodon showed more complex season- and herbivore-dependent responses. Cynodon experienced facilitation that was simultaneously dependent on presence of herbivores and on dry season. During the wet season Cynodon experienced net competition. These results illustrate how herbivory and seasonality can interact in complex ways to shift species-species competition-facilitation balance. Additionally, because Cynodon and Pennisetum are key players in a local successional process, these results indicate that herbivory can affect the direction and pace of succession.  相似文献   

14.
Baumeister D  Callaway RM 《Ecology》2006,87(7):1816-1830
Studies of facilitation have primarily been limited to single mechanisms, species, or environments. We examined interacting mechanisms governing the facilitative effects of Pinus flexilis on two later successional understory species, Pseudotsuga menziesii and Ribes cereum, in different microhabitats and seasons at the ecotone between the Rocky Mountain forests and Great Plains grasslands in Montana, USA. In field surveys, 69% of Pseudotsuga and 91% of Ribes were located beneath P. flexilis even though P. flexilis subcrowns accounted for a small proportion of available habitat. For three years, we monitored the survival of Pseudotsuga and Ribes seedlings experimentally planted beneath P. flexilis and in the open at a windward and a leeward site. Survival of both species was highest beneath P. flexilis at a site topographically protected from strong unidirectional winds (38% for Pseudotsuga and 63% for Ribes), and lowest at a windward site and in the open where tree crowns did not provide shelter from winds (2% and 6%, respectively). These results suggest that wind amelioration contributed to the facilitative effect of P. flexilis. However, even at the leeward site, where wind speed was low, survival of Pseudotsuga and Ribes was higher beneath P. flexilis, suggesting the importance of shade. To explore the relative importance of different mechanisms, we designed an experiment with six treatments: "shade," "shade + wind," "shade + drift," "wind," "drift," and a "control." After two years, we found shade to be of overwhelming importance for the survival of Pseudotsuga and Ribes. Without shade, no other treatments were significant, but once shade was provided, wind amelioration and snow pack accumulation increased survival of Pseudotsuga, suggesting that these different facilitative mechanisms functioned in a nested hierarchical manner: some mechanisms were important only when others were already functioning. Many studies have demonstrated multiple interacting mechanisms in the way that plants interact, but to our knowledge hierarchical interactive processes have not been previously documented. If the effects of positive or competitive mechanisms are often hierarchical, then studies of isolated mechanisms may not accurately assess their importance in nature.  相似文献   

15.
Preisser EL  Dugaw CJ  Dennis B  Strong DR 《Ecology》2006,87(5):1116-1123
Interest in facilitative predator plant interactions has focused upon above-ground systems. Underground physical conditions are distinctive, however, and we provide evidence that bush lupine, Lupinus arboreus, facilitates the survival of the predatory nematode Heterorhabditis marelatus. Because H. marelatus is prone to desiccation and lupines maintain a zone of moist soil around their taproots even during dry periods, we hypothesized that dry-season nematode survival under lupines might be higher than in the surrounding grasslands. We performed field surveys and measured nematode survival in lupine and grassland rhizospheres under wet- and dry-season conditions. Nematodes survived the crucial summer period better under lupines than in grasslands; however, this advantage disappeared in wet, winter soils. Modeling the probability of nematode population extinction showed that, while even large nematode cohorts were likely to go extinct in grasslands, even small cohorts in lupine rhizospheres were likely to survive until the arrival of the next prey generation. Because this nematode predator has a strong top-down effect on lupine survival via its effect on root-boring larvae of the ghost moth Hepialus californicus, this facilitative interaction may enable a belowground trophic cascade. Similar cases of predator facilitation in seasonally stressful environments are probably common in nature.  相似文献   

16.
Miriti MN 《Ecology》2007,88(5):1177-1190
I present results from analyses of 20 years of spatiotemporal dynamics in a desert perennial community. Plants were identified and mapped in a 1-ha permanent plot in Joshua Tree National Park (California, USA) in 1984. Plant size, mortality, and new seedlings were censused every five years through 2004. Two species, Ambrosia dumosa and Tetracoccus hallii, were dominant based on their relative abundance and ubiquitous distributions. Spatial analysis for distance indices (SADIE) identified regions of significantly high (patches) or low (gaps) densities. I used SADIE to test for (1) transience in the distribution of patches and gaps within species over time and (2) changes in juvenile-adult associations with conspecific adults and adults of the two dominant species over time. Plant performance was quantified in patches and gaps to determine plant responsiveness to local spatial associations. Species identity was found to influence associations between juveniles and adults. Juveniles of all species showed significant positive spatial associations with the dominant A. dumosa but not with T. hallii. The broad distribution of A. dumosa may increase the spatial extent of non-dominant species that are facilitated by this dominant. The spatial location of patches and gaps was generally consistent over time for adults but not juveniles. Observed variability in the locations of juvenile patches and gaps suggested that suitable locations for establishment were broad relative to occupied regions of the habitat, and that conditions for seed germination were independent of conditions for seedling survival. A dramatic change in spatial distributions and associations within and between species occurred after a major drought that influenced data from the final census. Positive associations between juveniles and adults of all species were found independent of previous associations and most species distributions contracted to areas that were previously characterized by low density. By linking performance to spatial distribution, results from this study offer a spatial context for plant-plant interactions within and among species. Community composition could be influenced both by individual species tolerances of abiotic conditions and by the competitive or facilitative interactions individuals exert over neighbors.  相似文献   

17.
Ecological interaction networks are a valuable approach to understanding plant-pollinator interactions at the community level. Highly structured daily activity patterns are a feature of the biology of many flower visitors, particularly provisioning female bees, which often visit different floral sources at different times. Such temporal structure implies that presence/absence and relative abundance of specific flower-visitor interactions (links) in interaction networks may be highly sensitive to the daily timing of data collection. Further, relative timing of interactions is central to their possible role in competition or facilitation of seed set among coflowering plants sharing pollinators. To date, however, no study has examined the network impacts of daily temporal variation in visitor activity at a community scale. Here we use temporally structured sampling to examine the consequences of daily activity patterns upon network properties using fully quantified flower-visitor interaction data for a Kenyan savanna habitat. Interactions were sampled at four sequential three-hour time intervals between 06:00 and 18:00, across multiple seasonal time points for two sampling sites. In all data sets the richness and relative abundance of links depended critically on when during the day visitation was observed. Permutation-based null modeling revealed significant temporal structure across daily time intervals at three of the four seasonal time points, driven primarily by patterns in bee activity. This sensitivity of network structure shows the need to consider daily time in network sampling design, both to maximize the probability of sampling links relevant to plant reproductive success and to facilitate appropriate interpretation of interspecific relationships. Our data also suggest that daily structuring at a community level could reduce indirect competitive interactions when coflowering plants share pollinators, as is commonly observed during flowering in highly seasonal habitats.  相似文献   

18.
In multiply invaded ecosystems, introduced species should interact with each other as well as with native species. Invader-invader interactions may affect the success of further invaders by altering attributes of recipient communities and propagule pressure. The invasional meltdown hypothesis (IMH) posits that positive interactions among invaders initiate positive population-level feedback that intensifies impacts and promotes secondary invasions. IMH remains controversial: few studies show feedback between invaders that amplifies their effects, and none yet demonstrate facilitation of entry and spread of secondary invaders. Our results show that supercolonies of an alien ant, promoted by mutualism with introduced honeydew-secreting scale insects, permitted invasion by an exotic land snail on Christmas Island, Indian Ocean. Modeling of land snail spread over 750 sites across 135 km2 over seven years showed that the probability of land snail invasion was facilitated 253-fold in ant supercolonies but impeded in intact forest where predaceous native land crabs remained abundant. Land snail occurrence at neighboring sites, a measure of propagule pressure, also promoted land snail spread. Site comparisons and experiments revealed that ant supercolonies, by killing land crabs but not land snails, disrupted biotic resistance and provided enemy-free space. Predation pressure on land snails was lower (28.6%), survival 115 times longer, and abundance 20-fold greater in supercolonies than in intact forest. Whole-ecosystem suppression of supercolonies reversed the probability of land snail invasion by allowing recolonization of land crabs; land snails were much less likely (0.79%) to invade sites where supercolonies were suppressed than where they remained intact. Our results provide strong empirical evidence for IMH by demonstrating that mutualism between invaders reconfigures key interactions in the recipient community. This facilitates entry of secondary invaders and elevates propagule pressure, propagating their spread at the whole-ecosystem level. We show that identification and management of key facilitative interactions in invaded ecosystems can be used to reverse impacts and restore resistance to further invasions.  相似文献   

19.
Understanding how species interactions drive succession is a key issue in ecology. In this study we show the utility of combining the concepts and methodologies developed within the biodiversity-ecosystem functioning research program with J. H. Connell and R. O. Slatyer's classic framework to understand succession in assemblages where multiple interactions between early and late colonists may include both inhibitory and facilitative effects. We assessed the net effect of multiple species interactions on successional changes by manipulating the richness, composition, and abundance of early colonists in a low-shore assemblage of algae and invertebrates of the northwestern Mediterranean. Results revealed how concomitant changes in species richness and abundance can strongly alter the net effect of inhibitory vs. facilitative interactions on succession. Increasing richness of early colonists inhibited succession, but only under high levels of initial abundance, probably reflecting the formation of a highly intricate matrix that prevented further colonization. In contrast, increasing initial abundance of early colonists tended to facilitate succession under low richness. Thus, changes in abundance of early colonists mediated the effects of richness on succession.  相似文献   

20.
Guo H  Pennings SC 《Ecology》2012,93(1):90-100
Understanding of how plant communities are organized and will respond to global changes requires an understanding of how plant species respond to multiple environmental gradients. We examined the mechanisms mediating the distribution patterns of tidal marsh plants along an estuarine gradient in Georgia (USA) using a combination of field transplant experiments and monitoring. Our results could not be fully explained by the "competition-to-stress hypothesis" (the current paradigm explaining plant distributions across estuarine landscapes). This hypothesis states that the upstream limits of plant distributions are determined by competition, and the downstream limits by abiotic stress. We found that competition was generally strong in freshwater and brackish marshes, and that conditions in brackish and salt marshes were stressful to freshwater marsh plants, results consistent with the competition-to-stress hypothesis. Four other aspects of our results, however, were not explained by the competition-to-stress hypothesis. First, several halophytes found the freshwater habitat stressful and performed best (in the absence of competition) in brackish or salt marshes. Second, the upstream distribution of one species was determined by the combination of both abiotic and biotic (competition) factors. Third, marsh productivity (estimated by standing biomass) was a better predictor of relative biotic interaction intensity (RII) than was salinity or flooding, suggesting that productivity is a better indicator of plant stress than salinity or flooding gradients. Fourth, facilitation played a role in mediating the distribution patterns of some plants. Our results illustrate that even apparently simple abiotic gradients can encompass surprisingly complex processes mediating plant distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号