首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
利用热重分析仪和管式炉对废聚氨酯进行热解实验,研究了废聚氨酯的热解特性及热解产物.结果表明,废聚氨酯热解有3个失重阶段,热失重主要发生在200~440℃,600℃热失重趋于稳定.红外光谱图分析发现,热解过程中有大量CO和CO2产生.气质联用检测结果分析显示,热解产物复杂,液体产物中检出苯胺、p-苯胺、苯甲腈等多种芳香类化合物,气体产物以低碳的烷烃和烯烃为主,还检测出有机氯化合物,这是废聚氨酯中氟利昂类发泡剂所致.  相似文献   

2.
采用热重分析法研究了不同升温速率下垃圾中典型组分的热失重行为.根据热重分析曲线和实验数据,对不同加热速率条件下垃圾中典型组分的热失重行为进行了比较分析,结果表明,随着升温速率的加大,典型组分TG曲线对应的温度升高.DTG结果与组成成分的性质相关,橡胶塑料类的最大失重速率随着升温速率的加大而升高.纸类不同升温速率下对应的最大失重速度变化不大.  相似文献   

3.
分别在管式炉反应器和热天平上对废电路板的热解行为进行实验研究。在管式炉反应器上考察了在同一升温速率(20 K/min)下不同热解终温 (400、500、600、700和800℃) 对废电路板热解产物产率的影响。在相关实验数据的基础上尝试用灰色理论及方法建立基于热解终温的废电路板热解灰色产率预测模型GM(1,1),预测结果与实验数据对比表明,该预测模型精度较高,能够较好地对不同热解终温下废电路板热解产物产率进行预测。此外,在热天平上获得的不同升温速率(10、15和20 K/min)下的热失重曲线表明,废电路板的失重速率峰随升温速率的提高逐渐向高温侧移动。采用分布活化能模型对废电路板热失重曲线进行动力学分析,获得废电路板热解活化能的变化曲线。计算结果表明,废电路板热解过程中活化能并不是单一数值,而是随失重率变化的一个函数。所得废电路板热解活化能值在140~250 kJ/mol范围内变化,当失重率在10%~60%之间,活化能值总体呈缓慢上升的趋势,但当失重率>60%时,活化能值由155.4 kJ/mol迅速增加到244.4 kJ/mol。  相似文献   

4.
徐创  李宾  袁晓  柳翠  沈春银 《环境工程学报》2019,13(6):1417-1424
为应对光伏产业的快速发展而产生的废旧光伏组件高效低污染回收利用的问题,对不同气氛下光伏封装材料及背板材料的热失重行为及其产物进行了实验分析;并利用高温箱式炉对晶体硅组件进行热处理回收研究。考察了热处理温度、升温速率以及有无背板对硅晶片回收的影响。结果表明,封装材料和背板材料在空气气氛下均存在2个失重阶段,且最终失重温度为500℃左右。通过高温热处理,能够完全去除背板和封装材料,且能回收完整的表面玻璃。预先去除背板的光伏电池在热处理后的硅晶片完整性明显比未去除背板的光伏组件好。以20℃·min~(-1)的升温速率加热至480℃,得到了高完整性的回收硅晶片。  相似文献   

5.
利用热重分析仪和管式炉对废晶体硅光伏组件中的乙烯-醋酸乙烯共聚物(EVA)进行热处理实验,研究了EVA的热失重特性及热处理产物。结果表明,EVA在氮气和氧气气氛中均为两个阶段失重,失重温度分别为300~520、250~550℃,最终失重率均在99%以上。经气相色谱—质谱联用分析,EVA在氮气和空气气氛中的热处理气体产物均为二氧化碳和C5以下的烷烃及烯烃,热处理液体产物以长直链的烷烃和烯烃为主,并带有少量的芳香类化合物和醇类物质。  相似文献   

6.
利用热重-红外联用分析仪(TG-FTIR)研究了生物质成型燃料(玉米秸杆)的热解和燃烧特性。结果表明,热解和燃烧反应过程均可分为3个阶段:干燥脱气(100~200℃)、挥发分反应(200~400℃)与碳化反应(400~1 000℃)。热解和燃烧主要失重阶段(200~400℃),燃烧反应速率总体上大于热解反应速率。利用Coats-Redfern方法对玉米秸杆的主要失重阶段进行动力学分析发现,热解和燃烧的反应过程符合一级反应模型;在主要失重阶段(200~400℃),热解和燃烧所需的活化能相差不大。FTIR分析表明,热解的气相产物主要分为轻质类气体(H2O、CO2、CO、CH4、HCl、NH3和HCN)和焦油类(酸类和酚类)物质,而燃烧的气相产物主要以CO2和H2O析出为主。  相似文献   

7.
以管式炉热解实验和热重分析为基础,研究了初始温度对废轮胎热解产率及气相产物特性影响。结果表明,初始温度对废轮胎的热解存在重要影响。热重分析结果表明,废轮胎的热解过程存在2个主要失重过程,第一失重温度区间为200~500℃,第二失重温度区间为650~800℃;升温速率仅改变了热解的最大失重速率,并未改变废轮胎最终热解失重率;可通过提高升温速率能够缩短热解反应时间。在初始温度低于100℃时,废轮胎在800℃时热解已基本结束;当终温为800℃、初始温度在100~550℃范围内时,随着初始温度的提高,固、气两相产物产率均提高,而液相产物产率降低;其中气相中H2、CO和CH4的含量高于初始温度小于100℃时的含量;分析认为,可以通过调节热解的初始温度调节废轮胎热解在不同热解阶段的时间分配,适当提高热解初始温度有利于提高整个热解过程中的时间利用效率、改变废轮胎热解产物的分布;废轮胎热解气化的最佳温度区间为500~800℃。  相似文献   

8.
为了探索不干胶类包装废弃物的热解特性,采用热重分析手段分析了不同升温速率条件下不干胶类废弃物的失重特点,并且采用Ozawa法和KAS法比较分析不同转化率条件下的表观活化能分布.热重分析结果表明,不干胶类废弃物的热解主要分为3个阶段:第1阶段(室温~ 200℃)为不干胶类废弃物的干燥阶段,第2阶段(200 ~ 590℃)为热解的主要阶段,第3阶段(590 ~800℃)为热解半焦的深度热解阶段.升温速率对热解失重率有重要影响,Ozawa法和KAS法计算结果表明,2种方法计算的热解活化能比较接近,Ozawa法得到的活化能为349.9 kJ/mol,KAS法得到的活化能为336.9kJ/mol;并且不干胶类废弃物的热解表观活化能呈现出阶段性分布.  相似文献   

9.
为研究废弃印刷线路板的热解特性,确定金属和非金属分离的热解最佳参数,用差热-热重联用分析仪对FR-4型印刷线路板进行了热失重分析,并对影响废弃印刷线路板中金属和非金属分离效果的升温速率、颗粒尺寸、热解终温和保温时间等主要因素进行了实验研究。结果表明,FR-4型线路板在320~360℃区间热失重速率达到最大值;升温速率越高,热解起始温度、终止温度和失重峰温也越高,显著失重过程持续的时间越长;当热解终温相同时,升温速率对FR-4型线路板的热失重率影响很小。综合考虑FR-4型废弃印刷线路板中金属和非金属的分离效果、热解装置的设计、热解过程的能耗以及运行过程的控制等因素,最佳热解参数建议设定为升温速率为10℃/min,热解终温为500℃,保温时间取30 min为宜。  相似文献   

10.
利用热重分析(TGA)研究船舶塑料垃圾在不同升温速率和不同气氛下的热解特性,并得到了热解动力学参数。结果表明,船舶塑料垃圾的热解过程主要有3个阶段,比一般塑料热解复杂;随着升温速率增大,最大热解速率和最大热解速率温度等热解特性参数也增大,反应变得更剧烈;N2/CO2比为4∶1时,热解反应进行得最完全,固体残留率最少。动力学分析表明,采用3个连续一级反应模型能很好地拟合实验数据;不同的升温速率和气氛比对反应各阶段活化能均有不同程度的影响。  相似文献   

11.
Concentrations of different chlorinated compounds were measured in mussels incubated in two polluted watercourses, a river (the River Kymijoki) and a lake (Lake Vanaja) for four weeks in summer 1995. The sum concentrations of polychlorinated phenols (PCP) and biphenyls (PCB) were both about 1 μg/g lipid weight (lw) in Lake Vanaja mussels, while in the River Kymijoki mussels PCPs were non-detectable and PCBs were measured 120 ng/g lIw. The concentrations of toxic polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners ranged between <17 and 370 pg/g Iw in Lake Vanaja mussels and between <38 and 11,000 pg/g lw in the River Kymijoki mussels. Polychlorinated diphenyl ethers (PCDE) were detected in the mussels incubated in the River Kymijoki (0.4–1.1 ng/g Iw), but not in those incubated in Lake Vanaja. Polychlorinated phenoxyanisoles (PCPA) were measured 33 ng/g lw and polychlorinated phenoxyphenols (PCPP) 300 ng/g lw in the mussels incubated in the River Kymijoki. PCPAs were also detected in reference samples, which were sediment and pike from the River Kymijoki and Baltic salmon, seal and white-tailed sea eagle.  相似文献   

12.
Book review     
The Pesticide Manual ‐ A World Compendium, 8th Edition, C.R. Worthing, Editor and S.B. Walker, Assistant Editor, British Crop Protection Council, BCPC Publications Sales, Bear Farm, Binfield, Bracknell, Berkshire RG12 5QE, England. 1987, 1100 pp., UK £50; Overseas £56. ISBN 0–948404–01–9.  相似文献   

13.
Organochlorine compounds in a three-step terrestrial food chain   总被引:1,自引:0,他引:1  
The concentrations of 15 organochlorine chemicals (PCBs and pesticides) were studied in a Central European oak wood food chain system: Great tit (Parus major), caterpillars (Tortrix viridana, Operophtera brumata, Erannis defoliaria), and oak-leaves (Quercus robur). Juvenile tits receive organochlorines from the mother via egg transfer and, eventually to a greater extent, from the caterpillar food source during nestling period. The concentrations of PCB 153 (2,2′,4,4′,5,5′-hexachlorobiphenyl, the most abundant in this study) was found in leaf material at ca. 1 ng/g, in caterpillars 10 ng/g, and in bird eggs 170 ng/g on an average and on a dry mass basis.  相似文献   

14.
Abstract

The active ingredients in commercial formulations of malathion, oxamyl, carbaryl, diazinon, and chlorpyrifos diluted to “spray tank”; concentrations with buffered distilled or natural water of pH 4–9 were stable for at least 24 hr. Formulations of trichlorfon were not stable at pH 7 or above but disappearance rates were slower than for the pure chemical in homogeneous solution. Cupric ion was observed to be an effective catalyst for the hydrolysis of a variety of pure organophosphorus insecticides but did not catalyze hydrolysis of the active ingredients of the formulations examined. Increasing the dilution of the formulation increased the susceptibility of malathion, oxamyl, and carbaryl to hydrolysis.  相似文献   

15.
Abstract

The pH‐disappearance rate profiles were determined at ca. 25°C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water‐ethanol (99: 1 v/v). Half‐lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (>1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1–2 days for trichlorfon and oxamyl to >1 year for fensulfothion and cyper‐methrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.  相似文献   

16.
The ability of two biodegradable surfactants, polyoxyethylene (20) sorbitan monooleate (Tween 80) and sodium dihexyl sulfosuccinate (Aerosol MA), to recover a representative dense non-aqueous-phase liquid (DNAPL), trichloroethene (TCE), from heterogeneous porous media was evaluated through a combination of batch and aquifer cell experiments. An aqueous solution containing 3.3% Aerosol MA, 8% 2-propanol and 6 g/l CaCl(2) yielded a weight solubilization ratio (WSR) of 1.21 g TCE/g surfactant, with a corresponding liquid-liquid interfacial tension (IFT) of 0.19 dyn/cm. Flushing of aquifer cells containing a TCE-DNAPL source zone with approximately two pore volumes of the AMA formulation resulted in substantial (>30%) mobilization of TCE-DNAPL. However, a TCE mass recovery of 81% was achieved when the aqueous-phase flow rate was sufficient to displace the mobile TCE-DNAPL toward the effluent well. Aqueous solutions of Tween 80 exhibited a greater capacity to solubilize TCE (WSR=1.74 g TCE/g surfactant) and exerted markedly less reduction in IFT (10.4 dyn/cm). These data contradict an accepted empirical correlation used to estimate IFT values from solubilization capacity, and indicate a unique capacity of T80 to form concentrated TCE emulsions. Flushing of aquifer cells with less than 2.5 pore volumes of a 4% T80 solution achieved TCE mass recoveries ranging from 66 to 85%, with only slight TCE-DNAPL mobilization (<5%) occurring when the total trapping number exceeded 2 x 10(-5). These findings demonstrate the ability of Tween 80 and Aerosol MA solutions to efficiently recover TCE from a heterogeneous DNAPL source zone, and the utility of the total trapping number as a design parameter for a priori prediction of DNAPL mobilization and bank angle formation when flushing with low-IFT solutions. Given their potential to stimulate microbial reductive dechlorination at low concentrations, these surfactants are well-suited for remedial action plans that couple aggressive mass removal followed by enhanced bioremediation to treat chlorinated solvent source zones.  相似文献   

17.
Abstract

One of the dominant tree species growing within and around the eastern portion of Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis). Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food—the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3H, 137Cs, 90Sr, totU, 238Pu, 239, 240Pu, and241 Am in soils (0‐ to 12‐in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (3) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 μSv); this is far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem (1000 μSv). Soil‐to‐nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.  相似文献   

18.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg?1 degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg?1 application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to > 70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of 14C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative 14CO2 was less than 1.5% of applied 14C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

19.
Abstract

Five organophosphorous insecticides: Leptophos, EPN, Cyano‐fenphos, trichloronate and salithion proved to cause irreversible ataxia not only to chicken but also to mice and sheep. TOCP was included as a reference. Cyanofenphos blocked the catecholamine B‐receptor binding activity with 3H‐norepinephrine at a level similar to that of the specific inhibitor propranolol in the mouse heart preparation. In the lamb heart preparation, the B‐receptor was more sensitive to Leptophos, salithion and TOCP than to propranolol. The six compounds and their oxons were screened for their in‐vitro inhibition to monamine oxidase (MAO), acetyl cholinesterase (AChE) and neurotoxic esterase (NTE) in the brain of either mouse, lamb or chicken. It is believed that their AChE inhibition stands for their acute toxicity, while NTE inhibition is responsible for their paralytic ataxia.  相似文献   

20.
Background, Aims and Scope The global problem concerning contamination of the environment as a consequence of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contributes to a variety of health effects such as decline in mental, cognitive and physical health of the individual. An alternative way of reducing Pb concentration from the soil is through phytoremediation. Phytoremediation is an alternative method that uses plants to clean up a contaminated area. The objectives of this study were: (1) to determine the survival rate and vegetative characteristics of three grass species such as vetivergrass, cogongrass and carabaograss grown in soils with different Pb levels; and (2) to determine and compare the ability of the three grass species as potential phytoremediators in terms of Pb accumulation by plants. Methods The three test plants: vetivergrass (Vetiveria zizanioides L.); cogongrass (Imperata cylindrica L.); and carabaograss (Paspalum conjugatum L.) were grown in individual plastic bags containing soils with 75 mg kg−1 (37.5 kg ha−1) and 150 mg kg−1 (75 kg ha−1) of Pb, respectively. The Pb contents of the test plants and the soil were analyzed before and after experimental treatments using an atomic absorption spectrophotometer. This study was laid out following a 3 × 2 factorial experiment in a completely randomized design. Results On the vegetative characteristics of the test plants, vetivergrass registered the highest whole plant dry matter weight (33.85–39.39 Mg ha−1). Carabaograss had the lowest herbage mass production of 4.12 Mg ha−1 and 5.72 Mg ha−1 from soils added with 75 and 150 mg Pb kg−1, respectively. Vetivergrass also had the highest percent plant survival which meant it best tolerated the Pb contamination in soils. Vetivergrass registered the highest rate of Pb absorption (10.16 ± 2.81 mg kg−1). This was followed by cogongrass (2.34 ± 0.52 mg kg−1) and carabaograss with a mean Pb level of 0.49 ± 0.56 mg kg−1. Levels of Pb among the three grasses (shoots + roots) did not vary significantly with the amount of Pb added (75 and 150 mg kg−1) to the soil. Discussion Vetivergrass yielded the highest biomass; it also has the greatest amount of Pb absorbed (roots + shoots). This can be attributed to the highly extensive root system of vetivergrass with the presence of an enormous amount of root hairs. Extensive root system denotes more contact to nutrients in soils, therefore more likelihood of nutrient absorption and Pb uptake. The efficiency of plants as phytoremediators could be correlated with the plants’ total biomass. This implies that the higher the biomass, the greater the Pb uptake. Plants characteristically exhibit remarkable capacity to absorb what they need and exclude what they do not need. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roots or a restricted transport of the metals from root to shoots. Combination of high metal accumulation and high biomass production results in the most metal removal from the soil. Conclusions The present study indicated that vetivergrass possessed many beneficial characteristics to uptake Pb from contaminated soil. It was the most tolerant and could grow in soil contaminated with high Pb concentration. Cogongrass and carabaograss are also potential phytoremediators since they can absorb small amount of Pb in soils, although cogongrass is more tolerant to Pb-contaminated soil compared with carabaograss. The important implication of our findings is that vetivergrass can be used for phytoextraction on sites contaminated with high levels of heavy metals; particularly Pb. Recommendations and Perspectives High levels of Pb in localized areas are still a concern especially in urban areas with high levels of traffic, near Pb smelters, battery plants, or industrial facilities that burn fuel ending up in water and soils. The grasses used in the study, and particularly vetivergrass, can be used to phytoremediate urban soil with various contaminations by planting these grasses in lawns and public parks. ESS-Submission Editor: Dr. Willie Peijnenburg (wjgm.peijnenburg@rivm.nl)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号