首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Cover Caption     
Cover: During winter in the interior of Yellowstone National Park most elk migrate from deep snow while many bison do not, existing near thermal areas and on wind-blown ridges. Wolves still attempt to kill these bison and often spend hours making a kill. Wolf-bison systems used to dominate in North America prior to European settlement but now only Yellowstone and Wood Buffalo National Parks have intact wolf-bison systems. See pp. 1105-1116. Photo by Doug Smith, National Park Service.  相似文献   

2.
The influence of winter recreation on wildlife in Yellowstone National Park (YNP), Wyoming and Montana, USA, is a controversial issue. In particular, the effects of road grooming, done to facilitate snowmobile and snowcoach travel, on bison (Bison bison) ecology are under debate. We collected data during winters, from 1997 to 2005, on bison road use, off-road travel, and activity budgets to quantify temporal trends in the amount of bison road and off-road travel and to identify the ecological factors affecting bison movements and use of the groomed road system in the Madison-Gibbon-Firehole (MGF) area of YNP. Using model comparison techniques, we found bison travel patterns to be influenced by multiple, interacting effects. Road travel was negatively correlated with road grooming, and we found no evidence that bison preferentially used groomed roads during winter. Snow water equivalent, bison density, and the springtime melt period were positively correlated with both bison road and off-road travel. From behavioral scans on 68,791 bison, we found that travel is only a small percentage (11%) of all bison activity, with foraging comprising 67% of observations. Also, only 7% of traveling bison and 30% of foraging bison were displacing snow, and we suggest foraging, rather than traveling, is likely the major energetic cost to bison in winter. Bison utilize their own trail network, connecting foraging areas using stream corridors, geothermal pathways, and self-groomed travel routes. Our results indicate that temporal patterns in bison road travel are a manifestation of general travel behavior and that groomed roads in the MGF do not appear to be a major factor influencing bison ecology and spatial redistribution. We suggest that the changes in bison spatial dynamics during the past three decades have likely been the result of the natural phenomenon of density-dependent range expansion, rather than having been caused by the anthropogenic influence of road grooming.  相似文献   

3.
Brucellosis caused by Brucella abortus occurs in the free-ranging bison ( Bison bison ) of Yellowstone and Wood Buffalo National Parks and in elk ( Cervus elaphus ) of the Greater Yellowstone Area. As a result of nationwide bovine brucellosis eradication programs, states and provinces proximate to the national parks are considered free of bovine brucellosis. Thus, increased attention has been focused on the wildlife within these areas as potential reservoirs for transmission to cattle. Because the national parks are mandated as natural areas, the question has been raised as to whether Brucella abortus is endogenous or exogenous to bison, particularly for Yellowstone National Park. We synthesized diverse lines of inquiry, including the evolutionary history of both bison and Brucella , wild animals as Brucella hosts, biochemical and genetic information, behavioral characteristics of host and organism, and area history to develop an evaluation of the question for the National Park Service. All lines of inquiry indicated that the organism was introduced to North America with cattle, and that the introduction into the Yellowstone bison probably was directly from cattle shortly before 1917. Fistulous withers of horses was a less likely possibility. Elk on winter feedgrounds south of Yellowstone National Park apparently acquired the disease directly from cattle. Bison presently using Grand Teton National Park probably acquired brucellosis from feedground elk.  相似文献   

4.
Within predator-prey systems behavior can heavily influence spatial dynamics, and accordingly, the theoretical study of how spatial dynamics relate to stability within these systems has a rich history. However, our understanding of these behaviors in large mammalian systems is poorly developed. To address the relationship between predator selection patterns, prey density, and prey vulnerability, we quantified selection patterns for two fine-scale behaviors of a recovering wolf (Canis lupus) population in Yellowstone National Park, Wyoming, USA. Wolf spatial data were collected between November and May from 1998-1999 until 2001-2002. Over four winters, 244 aerial locations, 522 ground-based telemetry locations, 1287 km of movement data from snow tracking, and the locations of 279 wolf kill sites were recorded. There was evidence that elk (Cervus elaphus) and bison (Bison bison) densities had a weak effect on the sites where wolves traveled and made kills. Wolf movements showed a strong selection for geothermal areas, meadows, and areas near various types of habitat edges. Proximity to edge and habitat class also had a strong influence on the locations where elk were most vulnerable to predation. There was little evidence that wolf kill sites differed from the places where wolves traveled, indicating that elk vulnerability influenced where wolves selected to travel. Our results indicate that elk are more vulnerable to wolves under certain conditions and that wolves are capable of selecting for these conditions. As such, vulnerability plays a central role in predator-prey behavioral games and can potentially impact the systems to which they relate.  相似文献   

5.
The risk of predation drives many behavioral responses in prey. However, few studies have directly tested whether predation risk alters the way other variables influence prey behavior. Here we use information theory (Akaike’s Information Criterion, AICc) in a novel way to test the hypothesis that the decision-making rules governing elk behavior are simplified by the presence of wolves. With elk habitat use as the dependent variable, we test whether the number of independent variables (i.e., the size of the models) that best predict this behavior differ when wolves are present vs absent. Thus, we use AICc scores simply to determine the number of variables to which elk respond when making decisions. We measured habitat use using 2,288 locations from GPS collars on 14 elk, over two winters (14 elk winters), in the Gallatin Canyon portion of the Greater Yellowstone Ecosystem. We found that the use of three major habitat components (grass, conifer, sage) was sensitive to many variables on days that wolves were locally absent, with the best models (ΔAICc≤2) averaging 7.4 parameters. In contrast, habitat use was sensitive to few variables on days when wolves were present: the best models averaged only 2.5 parameters. Because fewer variables affect elk behavior in the presence of wolves, we conclude that elk use simpler decision-making rules in the presence of wolves. This simplification of decision-making rules implies that predation risk imposes selection pressures that do not allow prey to respond to other pressures in ways that they otherwise would. If the affected processes are important, then this indirect effect of predation is likely to be important.  相似文献   

6.
Every winter, government agencies feed approximately 6000 metric tons (6 x 10(6) kg) of hay to elk in the southern Greater Yellowstone Ecosystem (GYE) to limit transmission of Brucella abortus, the causative agent of brucellosis, from elk to cattle. Supplemental feeding, however, is likely to increase the transmission of brucellosis in elk, and may be affected by climatic factors, such as snowpack. We assessed these possibilities using snowpack and feeding data from 1952 to 2006 and disease testing data from 1993 to 2006. Brucellosis seroprevalence was strongly correlated with the timing of the feeding season. Longer feeding seasons were associated with higher seroprevalence, but elk population size and density had only minor effects. In other words, the duration of host aggregation and whether it coincided with peak transmission periods was more important than just the host population size. Accurate modeling of disease transmission depends upon incorporating information on how host contact rates fluctuate over time relative to peak transmission periods. We also found that supplemental feeding seasons lasted longer during years with deeper snowpack. Therefore, milder winters and/or management strategies that reduce the length of the feeding season may reduce the seroprevalence of brucellosis in the elk populations of the southern GYE.  相似文献   

7.
Understanding mechanisms influencing the movement paths of animals is essential for comprehending behavior and accurately predicting use of travel corridors. In Yellowstone National Park (USA), the effects of roads and winter road grooming on bison (Bison bison) travel routes and spatial dynamics have been debated for more than a decade. However, no rigorous studies have been conducted on bison spatial movement patterns. We collected 121 380 locations from 14 female bison with GPS collars in central Yellowstone to examine how topography, habitat type, roads, and elevation affected the probability of bison travel year-round. We also conducted daily winter bison road use surveys (2003-2005) to quantify how topography and habitat type influenced spatial variability in the amount of bison road travel. Using model comparison techniques, we found the probability of bison travel and spatial distribution of travel locations were affected by multiple topographic and habitat type attributes including slope, landscape roughness, habitat type, elevation, and distances to streams, foraging areas, forested habitats, and roads. Streams were the most influential natural landscape feature affecting bison travel, and results suggest the bison travel network throughout central Yellowstone is spatially defined largely by the presence of streams that connect foraging areas. Also, the probability of bison travel was higher in regions of variable topography that constrain movements, such as in canyons. Pronounced travel corridors existed both in close association with roads and distant from any roads, and results indicate that roads may facilitate bison travel in certain areas. However, our findings suggest that many road segments used as travel corridors are overlaid upon natural travel pathways because road segments receiving high amounts of bison travel had similar landscape features as natural travel corridors. We suggest that most spatial patterns in bison road travel are a manifestation of general spatial travel trends. Our research offers novel insights into bison spatial dynamics and provides conceptual and analytical frameworks for examining movement patterns of other species.  相似文献   

8.
Willow on Yellowstone's northern range: evidence for a trophic cascade?   总被引:3,自引:0,他引:3  
Reintroduction of wolves (Canis lupus) to Yellowstone National Park in 1995-1996 has been argued to promote a trophic cascade by altering elk (Cervus elaphus) density, habitat-selection patterns, and behavior that, in turn, could lead to changes within the plant communities used by elk. We sampled two species of willow (Salix boothii and S. geyeriana) on the northern winter range to determine whether (1) there was quantitative evidence of increased willow growth following wolf reintroduction, (2) browsing by elk affected willow growth, and (3) any increase in growth observed was greater than that expected by climatic and hydrological factors alone, thereby indicating a trophic cascade caused by wolves. Using stem sectioning techniques to quantify historical growth patterns we found an approximately twofold increase in stem growth-ring area following wolf reintroduction for both species of willow. This increase could not be explained by climate and hydrological factors alone; the presence of wolves on the landscape was a significant predictor of stem growth above and beyond these abiotic factors. Growth-ring area was positively correlated with the previous year's ring area and negatively correlated with the percentage of twigs browsed from the stem during the winter preceding growth, indicating that elk browse impeded stem growth. Our results are consistent with the hypothesis of a behaviorally mediated trophic cascade on Yellowstone's northern winter range following wolf reintroduction. We suggest that the community-altering effects of wolf restoration are an endorsement of ecological-process management in Yellowstone National Park.  相似文献   

9.
War Zones and Game Sinks in Lewis and Clark's West   总被引:1,自引:0,他引:1  
The journals of Lewis and Clark reveal a major difference in the taxa, numbers, and behavior of megafauna on either side of the Rocky Mountains in western North America. Two prior events set the stage for what Lewis and Clark would find. The first was the extinction around 13,000 years ago of two-thirds of the native megafauna of the American West. The second was the effects on Indians of deadly new diseases and new technologies brought by Europeans in the post-Columbian era. Populations of large animals, which were preferred prey for native people, were not immune to European influence. Along the Columbia River corridor west of the Rockies, tens of thousands of people lived in a game sink. Here Lewis and Clark's party found too few animals to live off the land by hunting. They adapted poorly to the local diet of fish and roots offered by the Nez Perce and bought dogs and horses to sustain themselves. To the east, uninhabited lands along the Upper Missouri and the Yellowstone rivers supported an abundance of wild game, especially bison, elk, deer, pronghorn, and wolves. This game source occupied part of a buffer zone of 120,000 km2 probed by various Indian war parties, some of them armed with muskets. William Clark recognized the relationship and near the end of their journey he wrote that they found large numbers of large animals in the land between nations that were at war. Both the abundance of game in buffer or war zones and scarcity of big game in sinks have been misinterpreted as a natural or typical condition. Although efforts to restore ecosystems to what is described in early journals may have merit, they are aimed at a flickering target. Long before these journals were written, the land had been stripped of most of its native megafauna through human influence. In the absence of humans, we predict that much larger populations of bison, elk, deer, and wolves would have ranged the West than were reported in historic documents.  相似文献   

10.
Excessive levels of herbivory may disturb ecosystems in ways that persist even when herbivory is moderated. These persistent changes may complicate efforts to restore ecosystems affected by herbivores. Willow (Salix spp.) communities within the northern range in Yellowstone National Park have been eliminated or degraded in many riparian areas by excessive elk (Cervus elaphus L.) browsing. Elk browsing of riparian willows appears to have diminished following the reintroduction of wolves (Canis lupis L.), but it remains uncertain whether reduced herbivory will restore willow communities. The direct effects of elk browsing on willows have been accompanied by indirect effects from the loss of beaver (Castor canadensis Kuhl) activity, including incision of stream channels, erosion of fine sediments, and lower water tables near streams historically dammed by beaver. In areas where these changes have occurred, lowered water tables may suppress willow height even in the absence of elk browsing. We conducted a factorial field experiment to understand willow responses to browsing and to height of water tables. After four years of protection from elk browsing, willows with ambient water tables averaged only 106 cm in height, with negligible height gain in two of three study species during the last year of the experiment. Willows that were protected from browsing and had artificially elevated water tables averaged 147 cm in height and gained 19 cm in the last year of the experiment. In browsed plots, elevated water tables doubled height gain during a period of slightly reduced browsing pressure. We conclude that water availability mediates the rate of willow height gain and may determine whether willows grow tall enough to escape the browse zone of elk and gain resistance to future elk browsing. Consequently, in areas where long-term beaver absence has resulted in incised stream channels and low water tables, a reduction in elk browsing alone may not be sufficient for recovery of tall willow stands. Because tall willow stems are important elements of habitat for beaver, mitigating water table decline may be necessary in these areas to promote recovery of historical willow-beaver mutualisms.  相似文献   

11.
Understanding the behaviorally mediated indirect effects of predators in ecosystems requires knowledge of predator-prey behavioral interactions. In predator-ungulate-plant systems, empirical research quantifying how predators affect ungulate group sizes and distribution, in the context of other influential variables, is particularly needed. The risk allocation hypothesis proposes that prey behavioral responses to predation risk depend on background frequencies of exposure to risk, and it can be used to make predictions about predator-ungulate-plant interactions. We determined non-predation variables that affect elk (Cervus elaphus) group sizes and distribution on a winter range in the Greater Yellowstone Ecosystem (GYE) using logistic and log-linear regression on surveys of 513 1-km2 areas conducted over two years. Employing model selection techniques, we evaluated risk allocation and other a priori hypotheses of elk group size and distributional responses to wolf (Canis lupus) predation risk while accounting for influential non-wolf-predation variables. We found little evidence that wolves affect elk group sizes, which were strongly influenced by habitat type and hunting by humans. Following predictions from the risk allocation hypothesis, wolves likely created a more dynamic elk distribution in areas that they frequently hunted, as elk tended to move following wolf encounters in those areas. This response should dilute elk foraging pressure on plant communities in areas where they are frequently hunted by wolves. We predict that this should decrease the spatial heterogeneity of elk impacts on grasslands in areas that wolves frequently hunt. We also predict that this should decrease browsing pressure on heavily browsed woody plant stands in certain areas, which is supported by recent research in the GYE.  相似文献   

12.
Though studies have modeled the effects of fires on elk, no studies have related the effects of post-fire landscape succession on ungulate movements and distribution using dynamic modeling techniques. The purpose of this study was to develop and test a spatially-explicit, stochastic, individual-based model (IBM) to evaluate potential movement and distribution patterns of elk (Cervus elaphus nelsoni) in relation to spatial and temporal aspects of the Cerro Grande Fire that burned north central New Mexico in May of 2000. Following extensive literature review, the SAVANNA Ecosystem Model was selected to simulate the underlying post-fire successional processes driving elk movement and distribution. Standard logisitic regression was used to analyze habitat-use patterns of ten elk from data collected using global positioning system radio collars while an additional five animals were used as an independent test set during model validation. Static variables in the form of roads, buildings, fences, and habitual use/memory were used to modify a map of impedance values based on the logistic regression of slope, aspect, and elevation. Integration with SAVANNA came through the application of a habitat suitability index (HSI), which combined movement rules written for the IBM and variables modified and produced by the dynamic ecological processes run in SAVANNA. Overall pattern analysis indicated that realistic migrational processes and habitat-use patterns emerged from movement rules incorporated into the IBM in response to advancing and receding snow when compared to the independent test set. Primary and secondary movement pathways emerged from the collective responses of simulated individuals. Using regression analyses, no significant differences between simulated animals and animals used in either model development or an independent test set revealed any differences in response to snow patterns. These considerations suggest the model was adequately corroborated based on existing data and outlined objectives.  相似文献   

13.
Kauffman MJ  Brodie JF  Jules ES 《Ecology》2010,91(9):2742-2755
Behaviorally mediated trophic cascades (BMTCs) occur when the fear of predation among herbivores enhances plant productivity. Based primarily on systems involving small-bodied predators, BMTCs have been proposed as both strong and ubiquitous in natural ecosystems. Recently, however, synthetic work has suggested that the existence of BMTCs may be mediated by predator hunting mode, whereby passive (sit-and-wait) predators have much stronger effects than active (coursing) predators. One BMTC that has been proposed for a wide-ranging active predator system involves the reintroduction of wolves (Canis lupus) to Yellowstone National Park, USA, which is thought to be leading to a recovery of trembling aspen (Populus tremuloides) by causing elk (Cervus elaphus) to avoid foraging in risky areas. Although this BMTC has been generally accepted and highly popularized, it has never been adequately tested. We assessed whether wolves influence aspen by obtaining detailed demographic data on aspen Stands using tree rings and by monitoring browsing levels in experimental elk exclosures arrayed across a gradient of predation risk for three years. Our study demonstrates that the historical failure of aspen to regenerate varied widely among stands (last recruitment year ranged from 1892 to 1956), and our data do not indicate an abrupt cessation of recruitment. This pattern of recruitment failure appears more consistent with a gradual increase in elk numbers rather than a rapid behavioral shift in elk foraging following wolf extirpation. In addition, our estimates of relative survivorship of young browsable aspen indicate that aspen are not currently recovering in Yellowstone, even in the presence of a large wolf population. Finally, in an experimental test of the BMTC hypothesis we found that the impacts of elk browsing on aspen demography are not diminished in sites where elk are at higher risk of predation by wolves. These findings suggest the need to further evaluate how trophic cascades are mediated by predator-prey life history and ecological context.  相似文献   

14.
Land use is rapidly expanding in the Greater Yellowstone Ecosystem, primarily from growth in the number of rural homes. There is a need to project possible future land use and assess impacts on nature reserves as a guide to future management. We assessed the potential biodiversity impacts of alternative future land use scenarios in the Greater Yellowstone Ecosystem. An existing regression-based simulation model was used to project three alternative scenarios of future rural home development. The spatial patterns of forecasted development were then compared to several biodiversity response variables that included cover types, species habitats, and biodiversity indices. We identified the four biodiversity responses most at risk of exurban development, designed growth management policies to protect these areas, and tested their effectiveness in two alternative future scenarios. We found that the measured biodiversity responses, including riparian habitat, elk winter range, migration corridors, and eight other land cover, habitat, and biodiversity indices, are likely to undergo substantial conversion (between 5% and 40%) to exurban development by 2020. Future habitat conversion to exurban development outside the region's nature reserves is likely to impact wildlife populations within the reserves. Existing growth management policies will provide minimal protection to biodiversity in this region. We identified specific growth management policies, including incentives to cluster future growth near towns, that can protect "at risk" habitat types without limiting overall growth in housing.  相似文献   

15.
I examined the searching behavior of free-ranging plains bison (Bos bison bison) in their natural habitat, and determined whether their assessment of food patch quality was influenced by the short-term sampling information acquired during search. Bison used area-concentrated search during their winter foraging activity. Their movements between areas of suitable food patches were influenced by local environmental conditions, being sometimes less sinuous, and at other times more sinuous, than expected from a correlated random walk model. Bison also systematically avoided digging in areas where plants of low profitability lay under the snow. Where they dug, there was evidence that a bison's perception of food quality varied during a foraging bout, and was therefore influenced by short-term sampling information. After controlling for forage quality, I found that small feeding craters were more likely to be preceded by samples of high quality food patches. My observations suggest that bison take advantage of the structural characteristics of their environment during searching activity, and base foraging decisions on local rather than global availability.  相似文献   

16.
Developing tools that help predict animal distribution in the face of environmental change is central to understanding ecosystem function, but it remains a significant ecological challenge. We tested whether a single foraging currency could explain bison (Bison bison) distribution in dissimilar environments: a largely forested environment in Prince Albert National Park (Saskatchewan, Canada) and a prairie environment in Grasslands National Park (Saskatchewan, Canada). We blended extensive behavioral observations, relocations of radio-collared bison, vegetation surveys, and laboratory analyses to spatially link bison distribution in the two parks and expected gains for different nutritional currencies. In Prince Albert National Park, bison were more closely associated with the distribution of plants that maximized their instantaneous energy intake rate (IDE) than their daily intake of digestible energy. This result reflected both bison's intensity of use of individual meadows and their selection of foraging sites within meadows. On this basis, we tested whether IDE could explain the spatial dynamics of bison reintroduced to Grasslands National Park. As predicted, bison distribution in this park best matched spatial patterns of plants offering rapid IDE rather than rapid sodium intake, phosphorus intake, or daily intake of digestible energy. Because the two study areas have very different plant communities, a phenomenological model of resource selection developed in one area could not be used to predict animal distribution in the other. We were able, however, to successfully infer the distribution of bison from their foraging objective. This consistency in foraging currency across ecosystems and populations provides a strong basis for forecasting animal distributions in novel and dynamic environments.  相似文献   

17.
Seasonal snow is among the most important factors governing the ecology of many terrestrial ecosystems, but rising global temperatures are changing snow regimes and driving widespread declines in the depth and duration of snow cover. Loss of the insulating snow layer will fundamentally change the environment. Understanding how individuals, populations, and communities respond to different snow conditions is thus essential for predicting and managing future ecosystem change. We synthesized 365 studies that examined ecological responses to variation in winter snow conditions. This research encompasses a broad range of methods (experimental manipulations, measurement of natural snow gradients, and long-term monitoring), locations (35 countries), study organisms (plants, mammals, arthropods, birds, fish, lichen, and fungi), and response measures. Earlier snowmelt was consistently associated with advanced spring phenology in plants, mammals, and arthropods. Reduced snow depth often increased mortality or physical injury in plants, although there were few clear effects on animals. Neither snow depth nor snowmelt timing had clear or consistent directional effects on body size of animals or biomass of plants. However, because 96% of studies were from the northern hemisphere, the generality of these trends across ecosystems and localities is also unclear. We identified substantial research gaps for several taxonomic groups and response types; research on wintertime responses was notably scarce. Future research should prioritize examination of the mechanisms underlying responses to changing snow conditions and the consequences of those responses for seasonally snow-covered ecosystems.  相似文献   

18.
Introducing a new or extirpated species to an ecosystem is risky, and managers need quantitative methods that can predict the consequences for the recipient ecosystem. Proponents of keystone predator reintroductions commonly argue that the presence of the predator will restore ecosystem function, but this has not always been the case, and mathematical modeling has an important role to play in predicting how reintroductions will likely play out. We devised an ensemble modeling method that integrates species interaction networks and dynamic community simulations and used it to describe the range of plausible consequences of 2 keystone‐predator reintroductions: wolves (Canis lupus) to Yellowstone National Park and dingoes (Canis dingo) to a national park in Australia. Although previous methods for predicting ecosystem responses to such interventions focused on predicting changes around a given equilibrium, we used Lotka–Volterra equations to predict changing abundances through time. We applied our method to interaction networks for wolves in Yellowstone National Park and for dingoes in Australia. Our model replicated the observed dynamics in Yellowstone National Park and produced a larger range of potential outcomes for the dingo network. However, we also found that changes in small vertebrates or invertebrates gave a good indication about the potential future state of the system. Our method allowed us to predict when the systems were far from equilibrium. Our results showed that the method can also be used to predict which species may increase or decrease following a reintroduction and can identify species that are important to monitor (i.e., species whose changes in abundance give extra insight into broad changes in the system). Ensemble ecosystem modeling can also be applied to assess the ecosystem‐wide implications of other types of interventions including assisted migration, biocontrol, and invasive species eradication.  相似文献   

19.
A decline in the stature and abundance of willows during the 20th century occurred throughout the northern range of Yellowstone National Park, where riparian woody-plant communities are key components in multiple-trophic-level interactions. The potential causes of willow decline include climate change, increased elk browsing coincident with the loss of an apex predator, the gray wolf, and an absence of habitat engineering by beavers. The goal of this study was to determine the spatial and temporal patterns of willow establishment through the 20th century and to identify causal processes. Sampled willows established from 1917 to 1999 and contained far fewer young individuals than was predicted from a modeled stable willow population, indicating reduced establishment during recent decades. Two hydrologically distinct willow establishment environments were identified: fine-grained beaver pond sediments and coarse-grained alluvium. Willows established on beaver pond sediment earlier in time, higher on floodplain surfaces, and farther from the current stream channel than did willows on alluvial sediment. Significant linear declines from the 1940s to the 1990s in alluvial willow establishment elevation and lateral distance from the stream channel resulted in a much reduced area of alluvial willow establishment. Willow establishment was not well correlated with climate-driven hydrologic variables, but the trends were consistent with the effects of stream channel incision initiated in ca. 1950, 20-30 years after beaver dam abandonment. Radiocarbon dates and floodplain stratigraphy indicate that stream incision of the present magnitude may be unprecedented in the past two millennia. We propose that hydrologic changes, stemming from competitive exclusion of beaver by elk overbrowsing, caused the landscape to transition from a historical beaver-pond and willow-mosaic state to its current alternative stable state where active beaver dams and many willow stands are absent. Because of hydrologic changes in streams, a rapid return to the historical state may not occur by reduction of elk browsing alone. Management intervention to restore the historical hydrologic regime may be necessary to recover willows and beavers across the landscape.  相似文献   

20.
In regions where snowfall historically has been a defining seasonal characteristic of the landscape, warming winters have reduced the depth, duration, and extent of snowpack. However, most management and conservation has focused on how aboveground wildlife will be affected by altered snow conditions, even though the majority of species that persist through the winter do so under the snowpack in a thermally stable refugium: the subnivium. Shortened winters, forest management practices, and winter recreation can alter subnivium conditions by increasing snow compaction and compromising thermal stability at the soil–snow interface. To help slow the loss of the subnivium in the face of rapidly changing winter conditions, we suggest managers adopt regional conservation plans for identifying threatened snow‐covered environments; measure and predict the effects land cover and habitat management has on local subnivium conditions; and control the timing and distribution of activities that disturb and compact snow cover (e.g., silvicultural practices, snow recreation, and road and trail maintenance). As a case study, we developed a spatially explicit model of subnivium presence in a working landscape of the Chequamegon National Forest, Wisconsin. We identified landscapes where winter recreation and management practices could threaten potentially important areas for subnivium persistence. Similar modeling approaches could inform management decisions related to subnivium conservation. Current climate projections predict that snow seasons will change rapidly in many regions, and as result, we advocate for the immediate recognition, conservation, and management of the subnivium and its dependent species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号