首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
An interesting aspect of the chemistry of nitrite is the possibility for this compound to interact with other environmental factors and many oxidising species, which results in the oxidation of nitrite to nitrogen dioxide. This is a potentially interesting process that can lead to the formation of nitroaromatic compounds in the environment. In previous papers we have shown that nitrite can interact with dissolved Fe(III) and nitrate under irradiation, Fenton and heterogeneous photo-Fenton reagents, and semiconductor oxides such as TiO2, alpha-Fe2O3, and beta-FeOOH under irradiation. This paper reports on the interaction between nitrite/nitrous acid and the Mn(III,IV) (hydr)oxides beta-MnO2 and gamma-MnOOH, both in neutral solution under irradiation and in acidic conditions in the dark. beta-MnO2 and gamma-MnOOH originate from the oxidation of Mn(II) and play a key role in the redox cycling of manganese in the environment. These Mn(III,IV) (hydr)oxides show some photocatalytic activity, and they can act as thermal oxidants at acidic pH. The photoinduced oxidation of nitrite and the thermal oxidation of nitrous acid by Mn(III,IV) (hydr)oxides yield nitrogen dioxide and lead to the formation of nitrophenols in the presence of phenol. These processes can take place at the water-sediment or water-colloid interface in natural waters and on the surface of atmospheric particulate. Furthermore, the phenol/gamma-MnOOH/HNO2 system in dark acidic solution is an interesting model due to the formation of phenoxyl radical upon phenol monoelectronic oxidation by gamma-MnOOH. The kinetics of nitrophenol generation under such conditions indicates that phenol nitration is unlikely to take place upon reaction between phenoxyl and *NO2 and suggests a solution to a literature debate on the subject.  相似文献   

2.
Nitrophenols are formed in aqueous solution upon UV irradiation of phenol and nitrite. The formation of nitrophenols is enhanced by dissolved oxygen and inhibited by the addition of 2-propanol. The mechanism of phenol photonitration involves both .NO2 (or N2O4, reacting with phenol, and 4-nitrosophenol, which is oxidised to 4-nitrophenol. A reaction scheme is proposed based on experimental results.  相似文献   

3.
Anthraquinone-2-sulphonate (AQ2S) under UVA irradiation is able to oxidise nitrite to (·)NO(2) and to induce the nitration of phenol. The process involves the very fast reactions of the excited triplet state (3)AQ2S(*) and its 520-nm absorbing exciplex with water, at different time scales (ns and μs, respectively). Quinones are ubiquitous components of coloured dissolved organic matter (CDOM) in surface waters and AQ2S was adopted here as a proxy of CDOM. Using a recently developed model of surface-water photochemistry, we found that the oxidation of nitrite to (·)NO(2) by (3)CDOM(*) could be an important (·)NO(2) source in water bodies with high [NO(2)(-)] to [NO(3)(-)] ratio, for elevated values of column depth and NPOC.  相似文献   

4.
This paper studies the nitration and hydroxylation of benzene in the presence of nitrite/nitrous acid in aqueous solution, both in the dark upon addition of hydrogen peroxide and under 360 nm irradiation. In both cases the detected transformation intermediates were phenol (P), nitrobenzene (NB), 2-nitrophenol (2NP) and 4-nitrophenol (4NP). P and NB directly form from benzene, and the initial formation rate of P is at least an order of magnitude higher than that of NB. In our experiments nitrophenols arise from P nitration, as can be inferred by their time evolution and isomer ratio (2NP:4NP=60:40, 3NP below detection limit). Nitrophenols may also form upon hydroxylation of NB, but in a different ratio (2NP:3NP:4NP=45:30:25). The detection of 3NP is thus a marker for the hydroxylation of NB, since this isomer is not formed in P nitration processes. The formation rates of P and NB increase with decreasing pH, both in the presence of HNO2 + H2O2 in the dark (which produce HOONO) and in the presence of NO2/HNO2 under irradiation. In the former case the pH dependence reflects the formation rate of HOONO. In the case of the irradiation experiments the pH effect can be accounted for by the higher molar absorbivity and photolysis quantum yield of nitrous acid when compared with nitrite. Interestingly, benzene does not react with HNO2 alone in the dark. An important feature of benzene nitration in the presence of NO2/HNO2 under irradiation is that the process is not inhibited by the addition of hydroxyl scavengers, differently from the case of phenol nitration. This finding indicates that nitrite irradiation might lead to the nitration of certain aromatic compounds in natural waters even in the presence of natural hydroxyl scavenging agents, which are usually thought to limit the environmental role of many photochemical processes.  相似文献   

5.
Based on available literature data of [NO2 ], steady-state [·OH], and ·OH generation rate upon nitrate photolysis in environmental aqueous samples under sunlight, the steady-state [·NO2], could be calculated. Interestingly, one to two orders of magnitude more ·NO2 would be formed in photochemical processes in atmospheric water droplets compared to transfer from the gas phase. The relative importance of nitrite oxidation compared to nitrate photolysis as an ·NO2 source would be higher in atmospheric than in surface waters. The calculated levels of ·NO2 could lead to substantial transformation of phenol into nitrophenols in both atmospheric and surface waters.  相似文献   

6.
Light-induced disappearance of nitrite in the presence of iron (III)   总被引:1,自引:0,他引:1  
Zhang H  Bartlett RJ 《Chemosphere》2000,40(4):411-418
Understanding of rapid disappearance of nitrite in natural waters and its impact on nitrogen natural cycling has remained limited. We found that NO2- disappeared rapidly in pH 3.2 aqueous Fe(III) solutions both in sunlight and in 356 nm light. Quantum yields of the NO2- loss at 356 nm were 0.049-0.14 for initial levels of 10-80 microns NO2- and 200 microns Fe(III). The NO2- loss (at 356 nm) followed apparent first-order kinetics. The rate constants were 1.3 x 10(-3) (40 microns NO2-) and 4.1 x 10(-4) s-1 (80 microns NO2-) for 100 microns Fe(III), and 2.3 x 10(-3) (40 microns NO2-) and 7.5 x 10(-4) s-1 (80 microns NO2(-1)) for 200 microns Fe(III) (t1/2 = 8.7, 27.9, 5.1, and 15.3 min, respectively). The rate constants were directly proportional to [Fe(III)]0 and inversely proportional to [NO2-]0. Agreement between the rate constants obtained experimentally and those calculated mechanistically supports the hypothesis that NO2- was oxidized to NO2 by .OH radicals from photolysis of FeOH2+ complexes, and at high [NO2-]0 (e.g., 80 microns) relative to [Fe(III)]0, hydrolysis of NO2 or N2O4 to form NO3- and NO2- could be significant. This study showed that light and Fe(III)-induced oxidation of NO2- (rate = approximately 10(-1)-10(-2) microns s-1) was more rapid than its direct photolysis (rate = approximately 10(-4) microns s-1), and the photolysis could be a significant source of .OH radicals only in cases where the Fe(III) level is much lower than the NO2- level ([Fe(III)]/[NO2-] < 1/80). This study suggests that the light and Fe(III)-induced oxidation of NO2- would be one potential important pathway responsible for the rapid transformation of NO2- in acidic surface waters, especially those affected by acid-mine drainage or volcanic activities. This study also may be of interest for modeling certain acidic atmospheric water environments.  相似文献   

7.
Photocatalytic oxidation of gaseous DMF using thin film TiO2 photocatalyst   总被引:2,自引:0,他引:2  
Chang CP  Chen JN  Lu MC  Yang HY 《Chemosphere》2005,58(8):1071-1078
The heterogeneous photocatalytic oxidation of gaseous N,N'-dimethylformamide (DMF) widely used in the manufacture of synthetic leather and synthetic textile was investigated. The experiments were carried out in a plug flow annular photoreactor coated with Degussa P-25 TiO2. The oxidation rate was dependent on DMF concentration, reaction temperature, water vapor, and oxygen content. Photocatalytic deactivation was observed in these reactions. The Levenspiel deactivation kinetic model was used to describe the decay of catalyst activity. Fourier transform infrared (FTIR) was used to characterize the surface and the deactivation mechanism of the photocatalyst. Results revealed that carbonylic acids, aldehydes, amines, carbonate and nitrate were adsorbed on the TiO2 surface during the photocatalytic reaction. The ions, NH4+ and NO3-, causing the deactivation of catalysts were detected on the TiO2 surface. Several treatment processes were applied to find a suitable procedure for the regeneration of catalytic activity. Among these procedures, the best one was found to be the H2O2/UV process.  相似文献   

8.
Zhihui A  Peng Y  Xiaohua L 《Chemosphere》2005,60(6):824-827
In this work the synergistic effects of several microwave assisted advanced oxidation processes (MW/AOPs) were studied for the degradation of 4-chlorophenol (4-CP). The efficiencies of the degradation of 4-CP in dilute aqueous solution for a variety of AOPs with or without MW irradiation were compared. The results showed that the synergistic effects between MW and H2O2, UV/H2O2, TiO2 photocatalytic oxidation (PCO) resulted in a high degradation efficiency for 4-CP. The potential of MW/AOPs for treatment of industrial wastewater is discussed.  相似文献   

9.
The photocatalytic oxidation of oxalyldihydrazide, N,N'-bis(hydrazocarbonyl)hydrazide, N,N'-bis(ethoxycarbonyl)hydrazide, malonyldihydrazide, N-malonyl-bis[(N'-ethoxycarbonyl)hydrazide] was examined in aqueous TiO2 dispersions under UV illumination. The photomineralization of nitrogen and carbon atoms in the substrates into N2 gas, NH4+ (and/or NO3-) ions, and CO2 gas was determined by HPLC and GC analysis. The formation of carboxylic acid intermediates also occurred in the photooxidation process. The photocatalytic mechanism is discussed on the basis of the experimental results, and with molecular orbital (MO) simulation of frontier electron density and point charge. Substrate carbonyl groups readily adsorb on the TiO2 surface, and the bonds between carbonyl group carbon atoms and adjacent hydrazo group nitrogen atoms are cleaved predominantly in the initial photooxidation process. The hydrazo groups were photoconverted mainly into N2 gas (in mineralization yields above 70%) and partially to NH4 ions (below 10%). The formation of NO3- ions was scarcely recognized.  相似文献   

10.
不同高级氧化法对水中低浓度药物甲硝唑降解过程的比较   总被引:3,自引:0,他引:3  
采用UV、H2O2、UV/H2O2、Fenton、UV/Fenton和UV/TiO2方法,对水中低浓度的药物甲硝唑进行降解。通过HPLC和UV-Vis光谱得到的甲硝唑去除率。详细讨论了Fe2+、TiO2和H2O2的初始浓度以及溶液的初始pH值对降解效率的影响。结果表明,UV/Fenton和UV/TiO2 2种系统对水中低浓度甲硝唑均有很好的去除效果,但前者的光催化效率更高。在甲硝唑浓度=6 μmol/L,H2O2和Fe2+的初始浓度分别为0.5 mg/L和2.94 μmol/L,pH=4的条件下,UV/Fenton方法对甲硝唑水溶液光催化的最佳效率为95.8%。  相似文献   

11.
Ichiura H  Kitaoka T  Tanaka H 《Chemosphere》2003,51(9):855-860
The photocatalytic oxidation of nitrogen oxides (NO(x)) over titanium dioxide (TiO(2)) sheets containing metal compounds (MCs) had been studied. Calcium oxide (CaO), magnesium oxide (MgO), calcium carbonate (CaCO(3)), aluminium oxide (Al(2)O(3)) and ferric oxide (Fe(2)O(3)) were used as MCs. Al(2)O(3) and Fe(2)O(3) added to the TiO(2) sheet did not affect the photooxidation of nitrogen oxides (NO(x)). The CaO sheet treated with TiO(2) sol had the greatest efficiency as a NO(x) remover under UV irradiation. It is believed that CaO has a high adsorptivity for nitrogen dioxide (NO(2)) and nitric acid (HNO(3)). The amount of NO(x) removed by a TiO(2) sheet including MC showed a tendency to increase with increasing pH of the MC suspension, i.e. there is a good correlation between the alkalinity of the MC and the retention of NO(2) and HNO(3).  相似文献   

12.
Rengaraj S  Li XZ 《Chemosphere》2007,66(5):930-938
A series of Bi(3+)-doped TiO(2) (Bi(3+)-TiO(2)) catalysts with a doping concentration up to 2wt% were prepared by a sol-gel method. The prepared photocatalysts were characterized by different means to determine their chemical composition, surface structure and light absorption properties. The photocatalytic activity of different Bi(3+)-TiO(2) catalysts was evaluated in the photocatalytic reduction of nitrate in aqueous solution under UV illumination. In the experiments, formic acid was used as a hole scavenger to enhance the photocatalytic reduction reaction. The experiments demonstrated that nitrate was effectively degraded in aqueous Bi(3+)-TiO(2) suspension by more than 83% within 150min, while the pH of the solution increased from 3.19 to 5.83 due to the consumption of formic acid. The experimental results indicate that the presence of Bi(3+) in TiO(2) catalysts substantially enhances the photocatalytic reaction of nitrate reduction. It was found that the optimal dosage of 1.5wt% Bi(3+) in TiO(2) achieved the fastest reaction of nitrate reduction under the experimental condition. Bismuth ions deposit on the TiO(2) surface behaves as sites where electrons accumulate. Better separation of electrons and holes on the modified TiO(2) surface allows more efficient channeling of the charge carriers into useful reduction and oxidation reactions rather than recombination reactions. Two intermediate products of nitrite and ammonia during the reaction were also monitored to explore the possible mechanisms of photoluminescence quenching and photocatalytic reduction in the context of donor-acceptor interaction with electron trapping centers.  相似文献   

13.
Ling CM  Mohamed AR  Bhatia S 《Chemosphere》2004,57(7):547-554
TiO2 thin film photocatalyst was successfully synthesized and immobilized on glass reactor tube using sol-gel method. The synthesized TiO2 coating was transparent, which enabled the penetration of ultra-violet (UV) light to the catalyst surface. Two photocatalytic reactors with different operating modes were tested: (a) tubular photocatalytic reactor with re-circulation mode and (b) batch photocatalytic reactor. A new proposed TiO2 synthesized film formulation of 1 titanium isopropoxide: 8 isopropanol: 3 acetyl acetone: 1.1 H2O: 0.05 acetic acid (in molar ratio) gave excellent photocatalytic activity for degradation of phenol and methylene blue dye present in the water. The half-life time, t1/2 of photocatalytic degradation of phenol was 56 min at the initial phenol concentration of 1000 microM in the batch reactor. In the tubular photocatalytic reactor, 5 re-circulation passes with residence time of 2.2 min (single pass) degraded 50% of 40-microM methylene blue dye. Initial phenol concentration, presence of hydrogen peroxide, presence of air bubbling and stirring speed as the process variables were studied in the batch reactor. Initial methylene blue concentration, pH value, light intensity and reaction temperature were studied as the process variables in the tubular reactor. The synthesized TiO2 thin film was characterized using SEM, XRD and EDX analysis. A comparative performance between the synthesized TiO2 thin film and commercial TiO2 particles (99% anatase) was evaluated under the same experimental conditions. The TiO2 film was equally active as the TiO2 powder catalyst.  相似文献   

14.
The paper focuses on the production of H2O2 by photocatalysis over ZnO in an aerated aqueous phase. The presence of different reductants that increase the H2O2 production in the aqueous phase is analysed; particular attention is paid to nitrite, which has been shown to be the reductant that produces the most significant increments in the H2O2 production. The photocatalytic anodic decomposition of ZnO in the presence of the different reductants is also investigated. From the results obtained, the relevance of the ZnO photocatalysis in the formation of environmental hydrogen peroxide is estimated.  相似文献   

15.
The photocatalytic removal kinetics of fenitrothion at a concentration of 0.5mgl(-1) in pure and natural waters were investigated in Fe(III)/H2O2/UV-Vis, Fe(III)/UV-Vis and H2O2/UV-Vis oxidation systems, with respect to decreases in fenitrothion concentrations with irradiation time using a solar simulator. Fenitrothion concentrations were determined by HPLC analysis. Furthermore, total mineralization of fenitrothion in these systems was evaluated by monitoring the decreases in DOC concentrations with solar simulator irradiation time by TOC analysis. It was shown that the degradation rate of fenitrothion was much faster in the Fe(III)/H2O2/UV-Vis system than the Fe(III)/UV-Vis and H2O2/UV-Vis systems in both pure and river waters. Consequently, the mineralization rate of fenitrothion was much faster in the Fe(III)/H2O2/UV-Vis system than in the other two systems. The high *OH generation rate measured in the Fe(III)/H2O2/UV-Vis system was the key to faster degradation of fenitrothion. Increases in the concentrations of H2O2 and Fe led to better final degradation of fenitrothion. These results suggest that the photo-Fenton reaction (Fe(III)/H2O2/UV-Vis) system is likely to be an effective method for removing fenitrothion from contaminated natural waters.  相似文献   

16.
Effect of ZnFe2O4 doping on the photocatalytic activity of TiO2   总被引:9,自引:0,他引:9  
Liu GG  Zhang XZ  Xu YJ  Niu XS  Zheng LQ  Ding XJ 《Chemosphere》2004,55(9):1287-1291
The photocatalytic oxidation of the organic pollutants with the TiO2 as photocatalyst has been widely studied in the world, and many achievements have been got. The degradation of pollutants is highly related with the photocatalytic activity of TiO2. It is demonstrated that doping ions or oxides to TiO2 is one way to enhance the photocatalytic activity of TiO2. In this paper, the ZnFe2O4-doped TiO2 nanoparticles were prepared from butyl titanate by a sol-gel method and characterized by means of X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that when TiO2 was doped with ZnFe2O4, its particle size will decrease and its crystal structure will partly transform from anatase to rutile. The photocatalytic activity of the elaborated powders was studied following the degradation of Rhodamine B. The results showed that doping ZnFe2O4 to TiO2 will enhance the photocatalytic activity of TiO2 and that ZnFe2O4-doped TiO2 in the coexistence of anatase and rutile has higher efficiency for the degradation of Rhodamine B than that in the anatase phase alone. Also the different role of O2 in the direct photolysis and photocatalysis of Rhodamine B was discussed.  相似文献   

17.
Irfan MF  Goo JH  Kim SD  Hong SC 《Chemosphere》2007,66(1):54-59
The oxidation characteristics of NO over Pt/TiO2 (anatase, rutile) catalysts have been determined in a fixed bed reactor as a function of O2, CO and SO2 concentrations in the presence of 8% water. The conversion of NO to NO2 increases with increasing O2 concentration up to 12% and it levels off. This saturation effect is more pronounced over rutile-Pt/TiO2 (r-Pt/TiO2) than that of anatase-Pt/TiO2 (a-Pt/TiO2). The presence of CO increases NO oxidation significantly and this enhanced effect is more pronounced on a-Pt/TiO2 than that on r-Pt/TiO2 with increasing CO concentration at lower temperatures. The same effect is also observed on the catalysts with different Pt and tungsten oxide (WO3) loadings. With increasing Pt and WO3 loadings on TiO2 support (Pt-WO3/TiO2), formation of NO2 is high even at lower temperatures. The presence of SO2 significantly suppresses the oxidation of NO over both r-Pt/TiO2 and a-Pt/TiO2 catalysts but it is less pronounced due to low stability of sulfate on a-Pt/TiO2.  相似文献   

18.
Lee DK  Cho JS  Yoon WL 《Chemosphere》2005,61(4):573-578
The role of catalyst and the reason for the preferential formation of N(2) in the catalytic oxidation reaction of ammonia in water over a Ru (3wt.%)/TiO(2) catalyst were elucidated. It was verified that the catalyst in the reaction had no direct relevance to the selective formation of N(2), but was responsible only for the oxidation of aqueous ammonia, NH(3)(aq), finally giving a molecule of nitrous acid. The preferential production of N(2) was experimentally demonstrated due to the homogeneous aqueous phase reaction of the nitrous acid-dissociated NO(2)(-) with NH(4)(+) ions. Even under the highly oxidizing condition, NO(2)(-) was much more likely to react with NH(4)(+) to form N(2) than being oxidized over the catalyst to NO(3)(-) as long as NH(4)(+) was available in solution.  相似文献   

19.
Chen S  Cao G 《Chemosphere》2005,60(9):1308-1315
In this paper, dichromate and dichlorvos are selected as the deputies of inorganic and organic pollutants, respectively, and TiO2/beads is used as a photocatalyst. The effects of various parameters, such as the amount of the photocatalyst, H2O2 concentration, metal ions, anions, pH value, and organic compounds on the photocatalytic reduction of dichromate and photocatalytic oxidation of dichlorvos are studied. From the studies, the differences of the parameters effect on the photocatalytic degradation of organic and inorganic pollutants are obtained. The results show that the optimum amount of the photocatalyst used is 6.0 g cm(-3) for the photocatalytic reactions. With the addition of a small amount of H2O2, the photocatalytic reduction of dichromate is inhibited while the photocatalytic oxidation of dichlorvos is accelerated. With the addition of trace amounts of Fe3+ or Cu2+, both the reactions are accelerated, and with the addition of Zn2+ and Na+, no obvious effects on the reactions are observed. Acidic solution is favorable for the photocatalytic reduction of dichromate; and acidic and alkaline solutions are favorable for the photocatalytic oxidation of dichlorvos. Adding SO4(2-), the photocatalytic oxidation is accelerated and adding Cl- the reaction is inhibited; and with the addition of trace amounts of SO4(2-), Cl- and NO3-, no obvious effects on the photocatalytic reduction of dichromate are observed. With the addition of methanol and toluene, the photocatalytic reduction of dichromate is accelerated, and the photocatalytic oxidation of dichlorvos is inhibited. The possible roles of the additives on the reactions are also discussed.  相似文献   

20.
Goo JH  Irfan MF  Kim SD  Hong SC 《Chemosphere》2007,67(4):718-723
The selective catalytic reduction (SCR) characteristics of NO and NO(2) over V(2)O(5)-WO(3)-MnO(2)/TiO(2) catalyst using ammonia as a reducing agent have been determined in a fixed-bed reactor at 200-400 degrees C. The presence of NO(2) enhances the SCR activity at lower temperatures and the optimum ratio of NO(2)/NO(x) is found to be 0.5. During the SCR reactions, there are some side reactions occurred such as ammonia oxidation and N(2)O formation. At higher temperatures, the selective catalytic oxidation of ammonia and the nitrous oxide formation compete with the SCR reactions. The denitrification (DeNO(x)) conversion decreases at lower temperatures but it increases at higher temperatures with increasing SO(2) concentration. The presence of SO(2) in the feeds inhibits N(2)O formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号