首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are numerous demands for the limited water supplies in the Rocky Mountain (USA) region, and controversies surrounding instream flows abound. A specific problem involves water diversions (i.e., small dams that shunt water out of stream channels) during the summer irrigation season. We developed an approach to assess the effects of restoration of natural or less-than-natural summer flows on trout that accounts for variation in habitat over long segments of low-gradient, alluvial-valley streams. The approach has utility for managers because it can be conducted with hydologic data, aerial photographs, topographic maps, and a spreadsheet without extensive fieldwork. We applied the approach by assessing the effects of different summer flows on abundance of brown trout (Salmo trutta) in several streams annually dewatered in the Salt River Valley of western Wyoming. The assessment approach can be calibrated for other trout species and areas of the Rocky Mountain region.  相似文献   

2.
Despite rapid growth in river restoration, few projects receive the necessary evaluation and reporting to determine their success or failure and to learn from experience. As part of the National River Restoration Science Synthesis, we interviewed 39 project contacts from a database of 1,345 restoration projects in Michigan, Wisconsin, and Ohio to (1) verify project information; (2) gather data on project design, implementation, and coordination; (3) assess the extent of monitoring; and (4) evaluate success and the factors that may influence it. Projects were selected randomly within the four most common project goals from a national database: in-stream habitat improvement, channel reconfiguration, riparian management, and water-quality improvement. Roughly half of the projects were implemented as part of a watershed management plan and had some advisory group. Monitoring occurred in 79% of projects but often was minimal and seldom documented biological improvements. Baseline data for evaluation often relied on previous data obtained under regional monitoring programs using state protocols. Although 89% of project contacts reported success, only 11% of the projects were considered successful because of the response of a specific ecological indicator, and monitoring data were underused in project assessment. Estimates of ecological success, using three criteria from Palmer and others (2005), indicated that half or fewer of the projects were ecologically successful, markedly below the success level that project contacts self-reported, and sent a strong signal of the need for well-designed evaluation programs that can document ecological success.  相似文献   

3.
Environmental Management - Classification of streams and stream habitats is useful for research involving establishment of monitoring stations, determination of local impacts of land-use practices,...  相似文献   

4.
This article reports a study of the public perception of large wood in rivers and streams in the United States. Large wood is an element of freshwater aquatic ecosystems that has attracted much scientific interest in recent years because of its value in biological and geomorphological processes. At the heart of the issue is the nature of the relationship between scientific recognition of the ecological and geomorphological benefits of wood in rivers, management practices utilizing wood for river remediation progress, and public perceptions of in-channel wood. Surveys of students’ perceptions of riverscapes with and without large wood in the states of Colorado, Connecticut, Georgia, Illinois, Iowa, Missouri, Oregon, and Texas suggest that many individuals in the United States adhere to traditionally negative views of wood. Except for students in Oregon, most respondents considered photographs of riverscapes with wood to be less aesthetically pleasing and needing more improvement than rivers without wood. Analysis of reasons given for improvement needs suggest that Oregon students are concerned with improving channels without wood for fauna habitat, whereas respondents elsewhere focused on the need for cleaning wood-rich channels for flood risk management. These results underscore the importance of public education to increase awareness of the geomorphological and ecological significance of wood in stream systems. This awareness should foster more positive attitudes toward wood. An integrated program of research, education, and policy is advocated to bridge the gap between scientific knowledge and public perception for effective management and restoration of river systems with wood.  相似文献   

5.
Political inaction at the federal level in the United States has driven increased attention to the importance of planning for climate change at the metropolitan level. This study reports on a survey of 25 regional councils in the United States that measures the extent to which they have adopted climate change plans and to identify the factors that influence their ability to implement climate change initiatives. The findings revealed that a majority of regional councils are involved in planning for and seeking to reduce climate change, and that existing efforts in complementary policy domains make this involvement possible. The findings support a multi-level framework to assess the institutional capacity of regional councils to implement climate change policy and planning in a metropolitan area.  相似文献   

6.
7.
8.
The authors' personal experience in watershed planning and decision making in the agricultural Midwest is described to illustrate how: (1) formalization of the process of community-based management is not sufficient to guarantee that local people will meaningfully consider scientific information and opinion when making decisions about watersheds, and (2) genuine social interaction between scientists and nonscientists requires a considerable investment of time and energy on the part of the scientist to develop personal relationships with nonscientists based on trust and mutual exchange of information. This experience provides the basis for developing a general conceptual model of the interaction between scientists and nonscientists in community-based watershed management in the agricultural Midwest. An important aspect of integrating science effectively into community-based decision making is the need to revise existing concepts to accommodate place-based contexts. Stream naturalization is introduced as an alternative to stream restoration and rehabilitation, which are viewed as inappropriate management strategies in human-dominated environments. Stream naturalization seeks to establish sustainable, morphologically and hydraulically varied, yet dynamically stable fluvial systems that are capable of supporting healthy, biologically diverse aquatic ecosystems. This general goal is consistent with the types of stream-management practices emerging from community-based decision making in human-dominated, agricultural landscapes. Further research on the linkages between geomorphological and ecological dynamics of human-modified agricultural streams over multiple spatial and temporal scales is needed to provide a sound scientific framework for stream naturalization.  相似文献   

9.
A straightened stream stretch with poor habitat heterogeneity was divided into a “control” section with a low amount of submerged woody debris and an experimentally “wood-enriched” downstream section to study the effect of enhanced habitat diversity on the benthic invertebrate community. The downstream section was enriched by fixing 25 wood packages constructed from 9–10 branches on the stream bottom. Succession processes occurring in the two stream sections were compared by chironomid exuviae drift from July to November 2000 and from April to August 2001. During the first sampling period, more drifting chironomid exuviae (medians of control vs. wood-enriched: 446 vs. 331, no significant difference) and total number of taxa (44 vs. 36, Wilcoxon signed-rank test P = 0.019) were recorded for the control section. Although species compositions of both stream sections were highly similar (Sørensen index: 0.83) the diversity in the wood-enriched section was distinctly lower compared to the control section (Shannon–Weaver index: 1.19 vs. 1.50). During the second sampling period, exuviae numbers remained higher in the control section (median: 326 vs. 166), but total numbers of taxa were nearly equal (51 vs. 49), as well as species diversity (Shannon–Weaver index: 1.67 vs. 1.64). The lower chironomid diversity observed during the first sampling period coincided with a gradual but significant change of the streambed morphology in the wood-enriched section. There, the initially more U-shaped profile (V/U = 0.81 ± 0.37) had turned into a pronounced V shape (V/U = 1.14 ± 0.21), whereas the control section retained its unaltered U shape (V/U = 0.62–0.75). This small-scale study on experimental of woody debris in sandy lowland streams showed that the negative impact of increased hydraulic disturbance of the existing streambed more than outweighed any positive impact resulting from the increase in woody debris.  相似文献   

10.
Non-native shrub species in the genus Tamarix (saltcedar, tamarisk) have colonized hundreds of thousands of hectares of floodplains, reservoir margins, and other wetlands in western North America. Many resource managers seek to reduce saltcedar abundance and control its spread to increase the flow of water in streams that might otherwise be lost to evapotranspiration, to restore native riparian (streamside) vegetation, and to improve wildlife habitat. However, increased water yield might not always occur and has been substantially lower than expected in water salvage experiments, the potential for successful revegetation is variable, and not all wildlife taxa clearly prefer native plant habitats over saltcedar. As a result, there is considerable debate surrounding saltcedar control efforts. We review the literature on saltcedar control, water use, wildlife use, and riparian restoration to provide resource managers, researchers, and policy-makers with a balanced summary of the state of the science. To best ensure that the desired outcomes of removal programs are met, scientists and resource managers should use existing information and methodologies to carefully select and prioritize sites for removal, apply the most appropriate and cost-effective control methods, and then rigorously monitor control efficacy, revegetation success, water yield changes, and wildlife use.  相似文献   

11.
Best management practices (BMPs) have been developed to address soil loss and the resulting sedimentation of streams, but information is lacking regarding their benefits to stream biota. We compared instream physical habitat and invertebrate and fish assemblages from farms with BMP to those from farms with conventional agricultural practices within the Whitewater River watershed of southeastern Minnesota, USA, in 1996 and 1997. Invertebrate assemblages were assessed using the US EPA's rapid bioassessment protocol (RBP), and fish assemblages were assessed with two indices of biotic integrity (IBIs). Sites were classified by upland land use (BMP or conventional practices) and riparian management (grass, grazed, or wooded buffer). Physical habitat characteristics differed across buffer types, but not upland land use, using an analysis of covariance, with buffer width and stream as covariates. Percent fines and embeddedness were negatively correlated with buffer width. Stream sites along grass buffers generally had significantly lower percent fines, embeddedness, and exposed streambank soil, but higher percent cover and overhanging vegetation when compared with sites that had grazed or wooded buffers. RBP and IBI scores were not significantly different across upland land use or riparian buffer type but did show several correlations with instream physical habitat variables. RBP and IBI scores were both negatively correlated with percent fines and embeddedness and positively correlated with width-to-depth ratio. The lack of difference in RBP or IBI scores across buffer types suggests that biotic indicators may not respond to local changes, that other factors not measured may be important, or that greater improvements in watershed condition are necessary for changes in biota to be apparent. Grass buffers may be a viable alternative for riparian management, especially if sedimentation and streambank stability are primary concerns.  相似文献   

12.
Across the western United States, environmental water transaction programs (EWTPs) restore environmental flows by acquiring water rights and incentivizing changes in water management. These programs have evolved over several decades, expanding from relatively simple two‐party transactions to multiobjective deals that simultaneously benefit the environment and multiple water‐using sectors. Such programs now represent an important water management tool and provide an impetus for collaboration among stakeholders; yet, most evaluations of their effectiveness focus exclusively on environmental outcomes, without adequate attention to impacts on other water users or local economies. To understand how these programs affect stakeholders, a systematic, multiobjective evaluation framework is needed. To meet this need, we developed a suite of environmental and socioeconomic indicators that can guide the design and track the implementation of water transaction portfolios, and we applied them to existing EWTPs in Oregon and Nevada. Application of the indicators quantifies impacts and helps practitioners design water transaction portfolios that avoid unintended consequences and generate mutually beneficial outcomes among environmental, agricultural, and municipal interests.  相似文献   

13.
14.
/ Fish and macroinvertebrate assemblage composition, instream habitat features and surrounding land use were assessed in an agriculturally developed watershed to relate overall biotic condition to patterns of land use and channel structure. Six 100-m reaches were sampled on each of three first-order warm-water tributaries of the River Raisin in southeastern Michigan. Comparisons among sites and tributaries showed considerable variability in fish assemblages measured with the index of biotic integrity, macroinvertebrate assemblages characterized with several diversity indexes, and both quantitative and qualitative measurements of instream habitat structure. Land use immediate to the tributaries predicted biotic condition better than regional land use, but was less important than local habitat variables in explaining the variability observed in fish and macroinvertebrate assemblages. Fish and macroinvertebrates appeared to respond differently to landscape configuration and habitat variables as well. Fish showed a stronger relationship to flow variability and immediate land use, while macroinvertebrates correlated most strongly with dominant substrate. Although significant, the relationships between instream habitat variables and immediate land use explained only a modest amount of the variability observed. A prior study of this watershed ascribed greater predictive power to land use. In comparison to our study design, this study covered a larger area, providing greater contrast among subcatchments. Differences in outcomes suggests that the scale of investigation influences the strength of predictive variables. Thus, we concluded that the importance of local habitat conditions is best revealed by comparisons at the within-subcatchment scale. KEY WORDS: Stream; Biomonitoring; Land use; Scale; Habitat; Fish; Macroinvertebrates  相似文献   

15.
/ Arthropod communities from several habitats on and adjacent to the El Segundo dunes (Los Angeles County, CA) were sampled using pitfall and yellow pan traps to evaluate their possible use as indicators of restoration success. Communities were ordinated and clustered using correspondence analysis, detrended correspondence analysis, two-way indicator species analysis, and Ward's method of agglomerative clustering. The results showed high repeatability among replicates within any sampling arena that permits discrimination of (1) degraded and relatively undisturbed habitat, (2) different dune habitat types, and (3) annual change. Canonical correspondence analysis showed a significant effect of disturbance history on community composition that explained 5-20% of the variation. Replicates of pitfall and yellow pan traps on single sites clustered together reliably when species abundance was considered, whereas clusters using only species incidence did not group replicates as consistently. The broad taxonomic approach seems appropriate for habitat evaluation and monitoring of restoration projects as an alternative to assessments geared to single species or even single families.  相似文献   

16.
Hathaway, Deborah L., 2011. Transboundary Groundwater Policy: Developing Approaches in the Western and Southwestern United States. Journal of the American Water Resources Association (JAWRA) 47(1):103‐113. DOI: 10.1111/j.1752‐1688.2010.00494.x Abstract: The western and southwestern United States include dozens of groundwater basins that cross political boundaries. Common among these shared groundwater basins is an overlay of differing legal structures and water development priorities, typically, with insufficient water supply for competing human uses, and often, a degraded ecosystem. Resolution of conflicts over ambiguously regulated groundwater has clarified transboundary groundwater policy in some interstate basins, while transboundary groundwater policy in international basins is less evolved. This paper identifies and contrasts approaches to transboundary groundwater policy, drawing from recent conflicts and cooperative efforts, including those associated with the interstate compacts on the Arkansas and Pecos Rivers; the Hueco and Lower Rio Grande Basins shared by New Mexico, Texas, and Mexico; and the Mexicali Basin in California and Mexico. Some efforts seek to fit groundwater policy into existing surface water allocation procedures; some strive for a better fit – incorporating scientific understanding of key differences between groundwater and surface water into policy frameworks. In some cases, neither policy nor precedent exists. The collective experience of these and other cases sets the stage for improved management of transboundary groundwater; as such, challenges and successes of these approaches, and those contemplated in several hypothetical model agreements, are examined.  相似文献   

17.
N   = 11,076). Results were compared to a large, nonrandomly sampled data set for the same area compiled by Rohm and others and contrasted with lake trophic state information published in the National Water Quality Inventory: 1994 Report to Congress [305(b) report. Lakes across the entire Northeast were identified by EMAP data as 37.9% (±8.4%) oligotrophic, 40.1% (±9.7%) mesotrophic, 12.6% (±7.9%) eutrophic, and 9.3% (±6.3%) hypereutrophic. Lakes in the ADI and NEU generally are at a low, nearly identical trophic state (96% oligotrophic/mesotrophic), while those in the CLP are much richer (45% eutrophic). EMAP results are similar to results of the Rohm data set across the entire region. In the CLP, however, EMAP identified approximately 45% of the lakes as eutrophic/hypereutrophic, while the Rohm data set identified only 21% in these categories. Across the entire Northeast, the 305(b) report identified a much higher proportion (32.2%) of lakes in eutrophic condition and a much smaller proportion (19.8%) in oligotrophic condition than did the EMAP survey data (12.5% ± 7.9% and 37.9% ± 8.5%, respectively). Probability sampling has several advantages over nonrandom sampling when regional resource condition assessment is the goal.  相似文献   

18.
Svejcar et al. (Environ Manage, 2014) offered several perspectives regarding Beschta et al. (Environ Manage 51:474–491, 2013)—a publication that addressed the interacting ecological effects of climate change and domestic, wild, and feral ungulates on public lands in the western United States (US)—by largely focusing on three livestock grazing issues: (1) legacy versus current day impacts; (2) grazing as a fire reduction tool; and (3) the complexity of grazing. Regarding these issues, we indicate that (1) legacy effects to western ecosystems were indeed significant and contemporary livestock use on public lands generally maintains or exacerbates many of those effects; (2) livestock grazing has been a major factor affecting fire frequency, fire severity, and ecosystem trajectories in the western US for over a century; and (3) the removal or reduction of grazing impacts in these altered ecosystems is the most effective means of initiating ecological recovery. Svejcar et al. (Environ Manage, 2014) offer no evidence that livestock use is consistent with the timely recovery of grazing-degraded uplands, riparian areas, or stream systems. We thus conclude that public-land ecosystems can best persist or cope with a changing climate by significantly reducing ungulate grazing and related impacts.  相似文献   

19.
Over the last three decades, livestock exclosure research has emerged as a preferred method to evaluate the ecology of riparian ecosystems and their susceptibility to livestock impacts. This research has addressed the effects of livestock exclusion on many characteristics of riparian ecosystems, including vegetation, aquatic and terrestrial animals, and geomorphology. This paper reviews, critiques, and provides recommendations for the improvement of riparian livestock exclosure research. Exclosure-based research has left considerable scientific uncertainty due to popularization of relatively few studies, weak study designs, a poor understanding of the scales and mechanisms of ecosystem recovery, and selective, agenda-laden literature reviews advocating for or against public lands livestock grazing. Exclosures are often too small (<50 ha) and improperly placed to accurately measure the responses of aquatic organisms or geomorphic processes to livestock removal. Depending upon the site conditions when and where livestock exclosures are established, postexclusion dynamics may vary considerably. Systems can recover quickly and predictably with livestock removal (the “rubber band” model), fail to recover due to changes in system structure or function (the “Humpty Dumpty” model), or recover slowly and remain more sensitive to livestock impacts than they were before grazing was initiated (the “broken leg” model). Several initial ideas for strengthening the scientific basis for livestock exclosure research are presented: (1) incorporation of meta-analyses and critical reviews. (2) use of restoration ecology as a unifying conceptual framework; (3) development of long-term research programs; (4) improved exclosure placement/design; and (5) a stronger commitment to collection of pretreatment data.  相似文献   

20.
Preston, Stephen D., Richard B. Alexander, Gregory E. Schwarz, and Charles G. Crawford, 2011. Factors Affecting Stream Nutrient Loads: A Synthesis of Regional SPARROW Model Results for the Continental United States. Journal of the American Water Resources Association (JAWRA) 47(5):891‐915. DOI: 10.1111/j.1752‐1688.2011.00577.x Abstract: We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models – 6 for total nitrogen and 6 for total phosphorus – all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long‐term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号