首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Atmospheric deposition of fixed nitrogen as nitrate and ammonium in rain and by dry deposition of nitrogen dioxide, nitric acid and ammonia has increased throughout Europe during the last two decades, from 2-6 kg N ha(-1) year(-1) to 15-60 kg N ha(-1) year(-1). The nitrogen contents of bryophytes and the ericaceous shrub Calluna vulgaris have been measured at a range of sites, with the objective of showing the degree to which nitrogen deposition is reflected in foliar plant nitrogen. Tissue nitrogen concentrations of herbarium bryophyte samples and current samples of the same species collected from the same sites were compared. No significant change in tissue nitrogen was recorded at a remote site in north-west Scotland where nitrogen inputs are small (< 6 kg N ha(-1) year(-1)). Significant increases in tissue N occurred at four sites ranging from 38% in central Scotland to 63% in Cumbria where nitrogen inputs range from 15 to 30 kg N ha(-1) year(-1). The relationships found between the estimated input of atmospheric nitrogen and the tissue nitrogen content of the selected bryophytes and Calluna at the sites investigated were found to be generally linear and fitted the form N(tissue) = 0.62 + 0.022 N(dep) for bryophytes and N(tissue) = 0.83 + 0.045 N(dep) for Calluna. There was thus an increase in total tissue nitrogen of 0.02 mg g(-1) dry weight for bryophytes and 0.045 mg g(-1) dry weight for Calluna for an increase in atmospheric nitrogen deposition of 1 kg ha(-1) year(-1). The lowest concentrations were found in north-west Scotland and the highest in Cumbria and the Breckland heaths of East Anglia, both areas of high atmospheric nitrogen deposition (30-40 kg N ha(-1) year(-1)). The implications of increased tissue nitrogen content in terms of vegetation change are discussed. Changes in atmospheric nitrogen deposition with time were also examined using measured values and values inferred from tissue nitrogen content of mosses. The rate of increase in nitrogen deposition is not linear over the 90-year period, and the increases were negligible over the period 1880-1915. However, during the period 1950 to 1990 the data suggest an increase in nitrogen deposition of 2 kg N ha(-1) every 10 years.  相似文献   

2.
Precipitation, soil solution and drainage water were collected from a blanket peat catchment at Moor House National Nature Reserve in the Northern Pennine Uplands, UK, an area of moderately high N deposition. Two tributaries of the main stream were also sampled. Between 1993 and 1995 samples were analysed for NH4+ and NO3- and for part of the period for organic N. Inputs of N in precipitation exceeded outputs in stream water. Organic N represented a small proportion of N inputs while inputs of inorganic N averaged 10.2 kg ha(-1) a(-1). Soil solution from 10 cm depth in the peat was dominated by organic N whereas at 50 cm NH4+ slightly exceeded organic N. NO3- was rarely detected at either depth except during a period of exceptionally warm and dry weather in 1995. Output fluxes in stream water of organic N (5.7 to 6.5 kg ha(-1) a(-1)) were much greater than those of inorganic N (0.6 to 2.2 kg ha(-1) a(-1)). Inorganic N in streams was predominantly NO3- except in the smallest stream which had the largest concentrations of NH4+. This suggests that N transformations, particularly nitrification, may be taking place in the mineral soils adjacent to the streams or within the stream channel of the larger catchment.  相似文献   

3.
Peat cores from six ombrotrophic bogs at different latitudes in Norway (58 degrees N-69 degrees N) were analysed for Hg by atomic fluorescence spectrometry. In all cases a smooth decrease of Hg with depth was observed down to 15-20 cm. At greater depths Hg showed a relatively constant level of the order of 10% of that in the peat surface layer. In the surface peat Hg concentrations exhibit moderate variation with latitude. The pre-industrial levels of Hg in the peat correspond to a net annual Hg accumulation of 0.3-0.9 microgm(-2). The Hg accumulation over the last 100 years is about 15 times higher on average than the pre-industrial level. The present work supports the view that a major part of the present atmospheric Hg in the Northern Hemisphere is of anthropogenic origin. It is speculated that the comparatively high Hg contemporary accumulation rates observed at the And?ya bog on 69 degrees N may be related to the Arctic springtime depletion of Hg.  相似文献   

4.
The annual nitrogen (N) budget and groundwater nitrate-N concentrations were studied in the field in three major intensive cropping systems in Shandong province, north China. In the greenhouse vegetable systems the annual N inputs from fertilizers, manures and irrigation water were 1358, 1881 and 402 kg N ha(-1) on average, representing 2.5, 37.5 and 83.8 times the corresponding values in wheat (Triticum aestivum L.)-maize (Zea mays L.) rotations and 2.1, 10.4 and 68.2 times the values in apple (Malus pumila Mill.) orchards. The N surplus values were 349, 3327 and 746 kg N ha(-1), with residual soil nitrate-N after harvest amounting to 221-275, 1173 and 613 kg N ha(-1) in the top 90 cm of the soil profile and 213-242, 1032 and 976 kg N ha(-1) at 90-180 cm depth in wheat-maize, greenhouse vegetable and orchard systems, respectively. Nitrate leaching was evident in all three cropping systems and the groundwater in shallow wells (<15 m depth) was heavily contaminated in the greenhouse vegetable production area, where total N inputs were much higher than crop requirements and the excessive fertilizer N inputs were only about 40% of total N inputs.  相似文献   

5.
The marker variables, Ellenberg Nitrogen Index, nitrous oxide and nitric oxide fluxes and foliar nitrogen, were used to define the impacts of NH3 deposition from nearby livestock buildings on species composition of woodland ground flora, using a woodland site close to a major poultry complex in the UK. The study centred on 2 units in close proximity to each other, containing 350,000 birds, and estimated to emit around 140,000 kg N year(-1) as NH3. Annual mean concentrations of NH3 close to the buildings were very large (60 microg m(-3)) and declined to 3 microg m(-3) at a distance of 650 m from the buildings. Estimated total N deposition ranged from 80 kg N ha(-1) year(-1) at a distance of 30 m to 14 kg N ha(-1) year(-1) at 650 m downwind. Emissions of N2O and NO were 56 and 131 microg N m(-2) h(-1), respectively at 30 m and 13 and 80 microg N m(-2) h(-1), respectively at 250 m downwind of the livestock buildings. Species number in woodland ground flora downwind of the buildings remained fairly constant for a distance of 200 m from the units then increased considerably, doubling at a distance of 650 m. Within the first 200 m downwind, trends in plant species composition were hard to discern because of variations in tree canopy composition and cover. The mean Ellenberg N Index ranged from 6.0 immediately downwind of the livestock buildings to 4.8 at 650 m downwind. The mean abundance weighted Ellenberg N Index also declined with distance from the buildings. Tissue N concentrations in trees, herbs and mosses were all large, reflecting the substantial ammonia emissions at this site. Tissue N content of ectohydric mosses ranged from approximately 4% at 30 m downwind to 1.6% at 650 m downwind. An assessment of the relative merits of the three marker variables concludes, that while Ellenberg Index and trace gas fluxes of N2O and NO give broad indications of impacts of ammonia emissions on woodland vegetation, the application of a critical foliar N content for ectohydric mosses is the most useful method for providing spatial information which could be of value to policy developers and planners.  相似文献   

6.
This study was designed to investigate the effect of long-term (11 years) ammonium nitrate additions on standing mass, nutrient content (% and kg ha(-1)), and the proportion of the added N retained within the different compartments of the system. The results showed that more than 90% of all N in the system was found in the soil, particularly in the organic (Oh) horizon. Added N increased the standing mass of vegetation and litter and the N content (kg N ha(-1)) of almost all measured plant, litter and soil compartments. Green tissue P and K content (kg ha(-1)) were increased, and N:P ratios were increased to levels indicative of P limitation. At the lowest treatment, most of the additional N was found in plant/litter compartments, but at higher treatments, there were steep increases in the amount of additional N in the underlying organic and mineral (Eag) horizons. The budget revealed that the proportion of added N found in the system as a whole increased from 60%, 80% and up to 90% in response to the 40, 80 and 120 kg N ha(-1) year(-1) treatments, respectively.  相似文献   

7.
Diagnostic indicators of elevated nitrogen deposition   总被引:1,自引:0,他引:1  
Tissue N content of mosses, which has been shown to be an indicator of enhanced N, was studied at a range of locations dominated either by wet or dry deposited and oxidised and reduced forms of N. Tissue N responded differently to wet and dry deposited N. For a 1 kg ha(-1) y(-1) increase in N deposition, tissue N increased by 0.01% at wet deposition sites but by 0.03% at sites dominated by dry deposited NH3. Tissue N at wet deposition sites responded more to concentrations of NO3- and NH4+ in precipitation (r(2) 0.63) than to total N deposition (r(2) 0.27), concentration explaining 66% of the variation in tissue N, wet deposition 33%. The study clearly concludes that tissue N concentration in mosses provides a good indication of N deposition at sites where deposition is dominated by NH3, and is also valuable in identifying vegetation exposed to large concentrations of NH4+ or NO3-, in wet deposition dominated areas, such as hilltops and wind exposed woodland edges.  相似文献   

8.
Most reports on mercury (Hg) in boreal ecosystems are from the Nordic countries and North America. Comparatively little information is available on Hg in wetlands in China. We present here a study on Hg in the Tangwang River forested catchment of the Xiaoxing'an Mountain in the northeast of China. The average total Hg (THg) in peat profile ranged from 65.8 to 186.6 ng g(-1) dry wt with the highest at the depth of 5-10 cm. THg in the peat surface was higher than the background in Heilongjiang province, the Florida Everglades, and Birkeness in Sweden. MethylHg (MeHg) concentration ranged from 0.16 to 1.86 ng g(-1) dry wt, with the highest amount at 10-15 cm depth. MeHg content was 0.2-1.2% of THg. THg and MeHg all decreased with the depth. THg in upland layer of soil (0-20 cm) was comparable to the peat surface, but in deeper layers THg concentration in peat was much higher than that in the forested mineral soil. THg in the peat bog increased, but MeHg decreased after it was drained. THg content in plant was different; THg contents in moss (119 ng g(-1) dry wt, n=12) were much higher than in the herbage, the arbor, and the shrubs. The peat bog has mainly been contaminated by Hg deposition from the atmosphere.  相似文献   

9.
Forest soil organic horizons from 15 profiles in NE Scotland originally sampled in 1949/50, were resampled in 1987. Analyses of both sets of soils for organic C and N show that although concentrations of the two elements have decreased with time, there has been a large increase in storage due to an increase in O horizon thickness. In most cases surface organic horizons have become more acid between 1949/50 and 1987. Calculated mean accumulation rates for C and N are 353.4 kg ha(-1) year(-1) and 21.2 kg ha(-1) year(-1) respectively. Changes in the C/N ratio with time give no indication of progressive N saturation and suggest sudden breakthrough of N in drainage water is not imminent.  相似文献   

10.
Leaching rates of the herbicide dichlorprop [(+/--2-(2,4-dichlorophenoxy)propanoic acid] and nitrate were measured together in field lysimeters containing undisturbed clay and peat soils. The purpose of the study was to investigate the leaching pattern of the two solutes in structured soils under different precipitation regimes. Spring barley (Hordeum distichum L.) was sown on each monolith and fertilized with 100 kg N ha(-1). Dichlorprop was applied at a rate of 1.6 kg active ingredient (a.i.) ha(-1). Each soil type received supplemental irrigation at two levels ('average' and 'worst-case'), giving total water inputs (irrigation and precipitation) of 664 and 749 mm year(-1), respectively. The larger water input approximately doubled the nitrate loads, from, on average, 11.6 to 21.8 kg N ha(-1) year(-1) in the clay soil and from 37.6 to 65.4 kg N ha(-1) year(-1) in the peat soil. In contrast, dichlorprop leaching was reduced by more than one order of magnitude when the water input was increased, from average amounts of 3.22 to 0.26 g a.i. ha(-1) during an S-month period in the clay and from 28.9 to 2.67 g a.i. ha(-1) in the peat. This leaching pattern of dichlorprop was explained in terms of preferential flow. The dried-out topsoil of 'average' watered monoliths may have allowed water flow in cracks, thus moving some of the herbicide rapidly through the topsoil to the subsoil. Once the compound reached the subsoil, degradation rates would be reduced and the herbicide residues would be stored for later leaching. Nitrate was presumably more evenly distributed in the soil matrix; therefore, water rapidly moving through macropores would not carry significant amounts of nitrate. In contrast, leaching would occur more evenly through the soil matrix, causing larger nitrate loads in the 'worst-case' watered monoliths. These results show that wet years may constitute a worst case scenario in terms of nitrate leaching, but not pesticide leaching, if macropore flow exerts a significant influence on leaching.  相似文献   

11.
The suitability of the two pleurocarpous mosses Pleurozium schreberi and Scleropodium purum for assessing spatial variation in nitrogen deposition was investigated. Sampling was carried out at eight sites in the western part of Germany with bulk deposition rates ranging between 6.5 and 18.5 kg N ha(-1) yr(-1). In addition to the effect of deposition on the nitrogen content of the two species, its influence on 15N natural abundance (delta15N values) and on productivity was examined. Annual increases of the mosses were used for all analyses. Significant relationships between bulk N deposition and nitrogen content were obtained for both species; delta15N-values reflected the ratio of NH4-N to NO3-N in deposition. A negative effect of nitrogen input on productivity, i.e. decreasing biomass per area with increasing N deposition due to a reduction of stem density, was particularly evident with P. schreberi. Monitoring of N deposition by means of mosses is considered an important supplement to existing monitoring programs. It makes possible an improved spatial resolution, and thus those areas that receive high loads of nitrogen are more easily discernible.  相似文献   

12.
Effects and implications of reduced and oxidised N, applied under 'real world' conditions, since May 2002, are reported for Calluna growing on an ombrotrophic bog. Ammonia has been released from a 10 m line source generating monthly concentrations of 180-6 microg m(-3), while ammonium chloride and sodium nitrate are applied in rainwater at nitrate and ammonium concentrations below 4mM and providing up to 56 kg N ha(-1) year(-1) above a background deposition of 10 kg N ha(-1) year(-1). Ammonia concentrations, >8 microg m(-3) have significantly enhanced foliar N concentrations, increased sensitivity to drought, frost and winter desiccation, spring frost damage and increased the incidence of pathogen outbreaks. The mature Calluna bushes nearest the NH3 source have turned bleached and moribund. By comparison the Calluna receiving reduced and oxidised N in rain has shown no significant visible or stress related effects with no significant increase in N status.  相似文献   

13.
The sulphur content and sulphur isotopic composition of Sphagnum as well as anionic compositions and sulphur isotope ratios of rainwater inputs and bog waters have been measured at Thorne Moors, a raised bog in eastern England. Rainwater sulphate isotopic composition shows the sulphur input at this site to be dominated by anthropogenic pollution from fossil fuel burning. Strong depletion of sulphate (low SO4(2-)/Cl-) and enrichment in 34S in sulphate occurs at depth in the bog porewaters due to bacterial sulphate reduction. Some surface waters have low SO4(2-)/Cl-) and are 34S enriched due to removal of sulphate by downward diffusion into a sulphate-reducing zone. Other sites have high SO4(2-)/Cl-) which appears to result from oxidation of organically bound sulphur in the peat. Sulphur is present in Sphagnum at around 0.2% by weight and is depleted by 0 to -9 per thousand in the heavier 34S isotope compared to sulphate. Comparison with similar data from pristine coastal sites shows that sulphur incorporation into Sphagnum is enhanced in the polluted site (as Sphagnum sulphur concentrations are higher at lower total sulphur inputs) and that sulphur incorporation is accompanied by a smaller isotopic shift than in the pristine sites. The data support a model of preferential incorporation of partially reduced sulphur species (probably HSO3-) into Sphagnum. In pristine sites these are only available as oxidation products of sulphide formed by sulphate reduction and are 32S depleted. In polluted sites this source is augmented by sulphur(IV) species in atmospheric inputs and the resultant mixture is less depleted in 32S. Thus, in the polluted sites more HSO3- is available for uptake and the isotopic shift between Sphagnum and aqueous sulphur species is smaller.  相似文献   

14.
Racomitrium lanuginosum shoot growth was studied under the combined effects of N deposition (0, 20, 40 and 60 kg N ha(-1) year(-1)). competition with Festuca ovina, and a drought pre-treatment. Moss regeneration from shoot fragments was also investigated. Growth was initially stimulated at the 60 kg N level. However, after 6 months, growth was lower in all N treatments than in the 0 kg N control. Reductions in shoot growth first became apparent in the pre-desiccated moss, while moss shoots grew longer when surrounded by a F. ovina canopy. Optimum regeneration occurred at 20-40 kg N on bare soil, and at 0-20 kg N under a F. ovina canopy. These results suggest that current N deposition in upland Wales is already detrimental to growth of this species, and to regeneration under certain conditions. This species may be affected under predicted climatic scenarios of increased summer drought in Britain.  相似文献   

15.
Regular applications of ammonium nitrate (35-140 kg N ha(-1) year(-1)) and ammonium sulphate (140 kg N ha(-1) year(-1)) to areas of acidic and calcareous grassland in the Derbyshire Peak District over a period of 6 years, have resulted in significant losses in both overall plant cover, and the abundance of individual species, associated with clear and dose-related increases in shoot nitrogen content. No overall growth response to nitrogen treatment was seen at any stage in the experiment. Phosphorus additions to the calcareous plots did however lead to significant increases in plant cover and total biomass, indicative of phosphorus limitation in this system. Clear and dose-related increases in soil nitrogen mineralization rates were also obtained, consistent with marked effects of the nitrogen additions on soil processes. High nitrification rates were seen on the calcareous plots, and this process was associated with significant acidification of the 140 kg N ha(-1) year(-1) treatments.  相似文献   

16.
This study was designed to investigate the leaching response of an upland moorland to long-term (10 yr) ammonium nitrate additions of 40, 80 and 120 kg N ha(-1) yr(-1) and to relate this response to other indications of potential system damage, such as acidification and cation displacement. Results showed increases in nitrate leaching only in response to high rates of N input, in excess of 96 and 136 kg total N input ha(-1) yr(-1) for the organic Oh horizon and mineral Eag horizon, respectively. Individual N additions did not alter ammonium leaching from either horizon and ammonium was completely retained by the mineral horizon. Leaching of dissolved organic nitrogen (DON) from the Oh horizon was increased by the addition of 40 kg N ha(-1) yr(-1), but in spite of increases, retention of total dissolved nitrogen reached a maximum of 92% and 95% of 80 kg added N ha(-1) yr(-1) in the Oh and Eag horizons, respectively. Calcium concentrations and calcium/aluminium ratios were decreased in the Eag horizon solution with significant acidification mainly in the Oh horizon leachate. Nitrate leaching is currently regarded as an early indication of N saturation in forest systems. Litter C:N ratios were significantly lowered but values remained above a threshold predicted to increase leaching of N in forests.  相似文献   

17.
Empirical critical loads (CL) for N deposition were determined from changes in epiphytic lichen communities, elevated NO(3)(-) leaching in streamwater, and reduced fine root biomass in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at sites with varying N deposition. The CL for lichen community impacts of 3.1kg ha(-1) year(-1) is expected to protect all components of the forest ecosystem from the adverse effects of N deposition. Much of the western Sierra Nevada is above the lichen-based CL, showing significant changes in lichen indicator groups. The empirical N deposition threshold and that simulated by the DayCent model for enhanced NO(3)(-)leaching were 17kg N ha(-1) year(-1). DayCent estimated that elevated NO(3)(-) leaching in the San Bernardino Mountains began in the late 1950s. Critical values for litter C:N (34.1), ponderosa pine foliar N (1.1%), and N concentrations (1.0%) in the lichen Letharia vulpina ((L.) Hue) are indicative of CL exceedance.  相似文献   

18.
Norway spruce seedlings were grown under greenhouse conditions in Rootrainers with a vermiculite-peat moss mixture under various N-regimes for 6 months. Either ammonium or nitrate was applied in loads of 100 or 800 kg N ha(-1) year(-1) to seedlings which were either non-mycorrhizal or inoculated with the mycorrhizal fungi Hebeloma crustuliniforme or Laccaria bicolor. The use of increasing N loads enhanced shoot and total biomass, whereas root/shoot ratio, number of short roots and mycorrhization decreased. A significant enhancement of the concentration and content was obvious for the element N, whereas a significant decrease was obvious for P and Zn concentrations. The use of ammonium, as opposed to nitrate, significantly enhanced the biomass and the numbers of short roots, and reduced the root/shoot ratios, but did not influence the mycorrhization. It further significantly enhanced the N concentrations in roots and shoots. Fungal inoculation with H. crustuliniforme or L. bicolor compared to non-inoculated controls significantly enhanced shoot and total biomass, but reduced root/shoot ratios. The mycorrhization further significantly enhanced N and P concentrations and contents, but reduced Mn. Overall, the mycorrhization improved the P nutrition of the seedlings independently on the applied N loads or N sources. Dose response curves using ammonium nitrate as N source with a maximum load of 1600 kg N ha(-1) year(-1) applied on seedlings associated with H. crustuliniforme revealed that the maximum growth was reached at a load of 800 kg N ha(-1) year(-1) with a simultaneous decrease of the mycorrhization. In both shoots and roots, N concentrations increased constantly with increasing N loads, while P, Ca, and Zn concentrations decreased constantly.  相似文献   

19.
Abstract

The spatial distribution of hexazinone and two primary metabolites were measured in forest soil for two years following the aerial application of a granular formulation, PRONONE 10G, in northern Alberta. Residues were quantified using solid‐phase extraction and capillary gas chromatography. Initial deposition rates of two hexazinone treatments averaged 2.3 ± 0.5 and 4.1 ± 0.8 kg/ha for each triplicated plots. One year after application, residues of hexazinone averaged 0.25 ± 0.09 and 0.40 ± 0.02 kg/ha in 2.3 and 4.1 kg/ha treatment, respectively, in the 0–10 cm surface soil; and were distributed vertically in soil depths of 0–10, 10–20, and 20–30 cm at ratios of 10:11:2 and 10:5:2, respectively, in 2.3 and 4.1 kg/ha treatment. Metabolites A and B amounted to 15 and 30% of hexazinone, respectively. Two years after application, the vertical movement of hexazinone in soil was quantifiable to the 40‐cm depth in both 2.3‐ and 4.1‐kg/ha treatment plots. Trace amounts of hexazinone were detected at 130 cm only in the 2.3‐kg/ha plot, which is likely due to the more freely downward movement of hexazinone to deeper horizons along decayed root channels.  相似文献   

20.
In surface waters, phosphorus (P) concentrations exceeding 0.05 mg liter(-1) may cause eutrophic conditions. This study was undertaken to measure total P concentrations in runoff and tile drainage waters from land receiving either inorganic fertilizer or anaerobically digested sewage sludge. Total P was measured in runoff and tile drainage waters during 2 years of sample collections from instrumented, large-scale lysimeters planted to corn (Zea mays L.). During the 3 years prior to monitoring P concentrations, six of the lysimeter plots had been amended with anaerobically digested sewage sludge which supplied 5033 kg P per ha. Additional sludge applications supplied 1058 and 1989 kg P per ha during the first and second years of monitoring operations, respectively. Another six lysimeters were annually treated with fertilizer which included P applications amounting to 112 kg ha(-1). For years 1 and 2, respectively, annual losses from lysimeters treated with sewage sludge were 4.27 and 0.35 kg P per ha in runoff and 0.91 from 0.91 and 0.51 kg Per P per ha in drainage waters. Parallel annual losses of P from lysimeters treated with superphosphate were 2.15 and 0.17 kg ha(-1) in runoff and 0.53 and 0.35 kg ha(-1) in tile drainage waters. Sludge applications did not significantly change absolute soil contents of organic P, but did decrease the per cent of total P present in organic forms. Sludge and soil, respectively, contained 21 and 36% of their total P contents in organic forms. In sludge and soil about 85 and 64% of their respective total inorganic P contents were associated with the Al and Fe fractions. Sludge applications significantly increased soil contents of P in the saloid (water-soluble plus P extracted with 1 N NH(4)Cl), Al, Fe and reductant soluble P fractions, but contents of Ca-bound P were not changed. Total P contents of the soil below a depth of 30 cm were not affected by sludge incorporated to a depth of about 15 cm by plowing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号