首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
采用酸催化的溶胶-凝胶法制备了一系列Fe^3+掺杂TiO2/凹凸棒(Fe^3+-TiO2/ATP)复合光催化剂材料。在可见光条件下,以亚甲基蓝(MB)溶液的光催化降解反应,评价了样品的光催化性能,研究了TiO2负载量、Fe^3+掺杂量和焙烧温度对复合材料光催化性能的影响。在单因素实验的基础上,采用正交实验设计(L25(53))优化了催化剂的制备条件。光催化实验结果表明,MB在复合材料上的光催化降解反应遵循Langmuir-Hinshelwood(L-H)动力学模型。正交实验结果表明,当TiO2负载量为15%、Fe^3+掺杂量为0.5%和焙烧温度为550℃时,得到的复合材料对MB的光催化降解效率最佳,测得表观反应速率常数kapp为6.09×10^-3min^-1,反应4 h后MB的降解率(Dt)可达75.88%,相同实验条件下与P25(1.51×10^-3min^-1)相比较,反应速率提高了4.03倍,降解率提高了45.05%。另外,复合材料的沉降性能优于P25,易于分离,是一类有应用前景的复合光催化剂。敏世雄王芳魏立强王永生冯雷佟永纯韩玉琦  相似文献   

2.
Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts   总被引:7,自引:0,他引:7  
Liu Y  Chen X  Li J  Burda C 《Chemosphere》2005,61(1):11-18
This study examined the photocatalytic degradation of three azo dyes, acid orange 7 (AO7), procion red MX-5B (MX-5B) and reactive black 5 (RB5) using a new type of nitrogen-doped TiO2 nanocrystals. These newly developed doped titania nanocatalysts demonstrated high reactivity under visible light (lambda>390 nm), allowing more efficient usage of solar light. The doped titania were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Experiments were conducted to compare the photocatalytic activities of nitrogen-doped TiO2 nanocatalysts and commercially available Degussa P25 powder using both UV illumination and solar light. It is shown that nitrogen-doped TiO2 after calcination had the highest photocatalytic activity among all three catalysts tested, with 95% of AO7 decolorized in 1 h under UV illumination. The doped TiO2 also exhibited substantial photocatalytic activity under direct sunlight irradiation, with 70% of the dye color removed in 1h and complete decolorization within 3 h. Degussa P25 did not cause detectable dye decolorization under identical experimental conditions using solar light. The decrease of total organic carbon (TOC) and evolution of inorganic sulfate (SO4(2-)) ions in dye solutions were measured to monitor the dye mineralization process.  相似文献   

3.
Hu M  Xu Y 《Chemosphere》2004,54(3):431-434
Reactive brilliant red X3B, one recalcitrant textile dye, was decolorized in water by (Photo)-Fenton reactions and TiO(2) photocatalysis [Chemosphere 43 (2001) 1103]. Complementary to this study, the present work has shown the effectiveness of several Keggin-type heteropolyoxomatalates (POM) as a photocatalyst for X3B degradation in water at pH 1.0 under UV light (lambda>/=320 nm) irradiation. Among four POMs, the relative activity was observed to be H(3)PW(12)O(40)z.Gt;H(4)SiW(12)O(40)>H(4)GeW(12)O(40)>H(3)PMo(12)O(40). The reaction was dependent of pH, light intensity and the catalyst loading, but not obviously of the molecular oxygen dissolved in water. Compared to the photocatalyst of TiO(2) (Degussa p25), H(3)PW(12)O(40) was less efficient for the dye bleaching and mineralization. The mechanism study reveals that hydroxyl radicals are involved in the degradation of X3B (and Rhodamine B) by POM photocatalysis.  相似文献   

4.
Kinetics and mechanism of TNT degradation in TiO2 photocatalysis   总被引:9,自引:0,他引:9  
Son HS  Lee SJ  Cho IH  Zoh KD 《Chemosphere》2004,57(4):309-317
The photocatalytic degradation of TNT in a circular photocatalytic reactor, using a UV lamp as a light source and TiO(2) as a photocatalyst, was investigated. The effects of various parameters such as the initial TNT concentration, and the initial pH on the TNT degradation rate of TiO(2) photocatalysis were examined. In the presence of both UV light illumination and TiO(2) catalyst, TNT was more effectively degraded than with either UV or TiO(2) alone. The reaction rate was found to obey pseudo first-order kinetics represented by the Langmuir-Hinshelwood model. In the mineralization study, TNT (30 mg/l) photocatalytic degradation resulted in an approximately 80% TOC decrease after 150 min, and 10% of acetate and 57% of formate were produced as the organic intermediates, and were further degraded. NO(-)(3) NO(-)(2), and NH(+)(4) were detected as the nitrogen byproducts from photocatalysis and photolysis, and more than 50% of the total nitrogen was converted mainly to NO(-)(3)in the photocatalysis. However, NO(-)(3) did not adsorbed on the TiO(2) surface. TNT showed higher photocatalytic degradation efficiency at neutral and basic pH.  相似文献   

5.
Effect of ZnFe2O4 doping on the photocatalytic activity of TiO2   总被引:9,自引:0,他引:9  
Liu GG  Zhang XZ  Xu YJ  Niu XS  Zheng LQ  Ding XJ 《Chemosphere》2004,55(9):1287-1291
The photocatalytic oxidation of the organic pollutants with the TiO2 as photocatalyst has been widely studied in the world, and many achievements have been got. The degradation of pollutants is highly related with the photocatalytic activity of TiO2. It is demonstrated that doping ions or oxides to TiO2 is one way to enhance the photocatalytic activity of TiO2. In this paper, the ZnFe2O4-doped TiO2 nanoparticles were prepared from butyl titanate by a sol-gel method and characterized by means of X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that when TiO2 was doped with ZnFe2O4, its particle size will decrease and its crystal structure will partly transform from anatase to rutile. The photocatalytic activity of the elaborated powders was studied following the degradation of Rhodamine B. The results showed that doping ZnFe2O4 to TiO2 will enhance the photocatalytic activity of TiO2 and that ZnFe2O4-doped TiO2 in the coexistence of anatase and rutile has higher efficiency for the degradation of Rhodamine B than that in the anatase phase alone. Also the different role of O2 in the direct photolysis and photocatalysis of Rhodamine B was discussed.  相似文献   

6.
在污水处理方面TiO2光催化剂以其独特的氧化活性、光学性能和无机化能力引起了人们极大的关注.对TiO2光催化原理、农药、染料和环境荷尔蒙等有机污染物的分解,提高催化效率的方法以及其实用技术等方面,分别作了综合评述.  相似文献   

7.
纳米TiO2改性可见光催化降解有机物研究进展   总被引:10,自引:0,他引:10  
光催化降解水中有机污染物是一项颇有发展前途的废水处理技术.目前主要的研究工作由紫外光逐步向可见光催化方向发展,使这项技术向实用性又迈进了一步.系统介绍了纳米TiO2的光催化降解有机污染物的原理,光催化处理水的现状,并从离子掺杂、表面光敏化和分子筛负载几个方面综述了可见光化的研究现状和发展方向.  相似文献   

8.
利用TiO2纳米管催化降解水中的4,4’-二溴联苯,对催化降解过程和影响因素进行研究。结果表明,TiO2纳米管对其有较高的催化降解效率且降解过程符合Langmuir-Hinshelwood动力学模式。不同光源、4,4’-二溴联苯的初始浓度、纳米管添加量和pH值对催化降解过程都有较大影响,其中pH值的影响最为明显。反应液在中性状态下的降解率明显低于pH=1或11的情况。在pH=1时,4,4’-二溴联苯的降解率达86%。  相似文献   

9.
为了实现城市污水厂二级出水的回用,将La3+、Fe3+共掺杂TiO2/浮石光催化用于二级出水中有机物的去除。在优化工艺条件下,该方法对TOC的去除率为49.0%,对UV254的去除率为76.5%;出水BDOC/DOC值大幅度提高,由最初的0.21提高到0.56,增加了出水的可生化性;二级出水中存在着影响光催化去除有机物的因素,其中阴离子对有机物的去除有一定的抑制作用;光催化反应在通过O3强化后对有机物的去除率得到提高,TOC的去除率达到75.0%,光催化和O3氧化对有机物的去除具有协同效应;随着光催化反应次数的增加,催化剂活性有下降趋势,使用10次后TOC去除率下降到第一次使用时的16.7%,再生能够使催化活性恢复到使用前的95%,催化剂在使用15次以内稳定性较好。  相似文献   

10.
Song S  Tu J  Xu L  Xu X  He Z  Qiu J  Ni J  Chen J 《Chemosphere》2008,73(9):1401-1406
A novel class of visible light-activated photocatalysts was prepared by codoping TiO(2) with cerium and iodine (Ce-I-TiO(2)). The particles were characterized using the Brunauer-Emmett-Teller method, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Visible light absorption. Particles of Ce-I-TiO(2) had greater photoabsorption in the 400-800 nm wavelength range than iodine-doped TiO(2) (I-TiO(2)). The effects on the photocatalytic degradation of oxalic acid under visible light or UV-Visible light irradiation were investigated. The photocatalytic activity of Ce-I-TiO(2) calcined at 673 K was significantly higher than that of Ce-I-TiO(2) calcined at 773 K and I-TiO(2) calcined at 673 K in aqueous oxalic acid solution under visible light or UV-Visible light irradiation. Under visible light irradiation, oxalic acid was first adsorbed on the surface of the catalysts rather than reacted with free radicals in the bulk solution, and then oxidized by (·)OH(ads) to CO(2), which was verified by studying the effects of nitrogen purging and scavengers, as well as by gas chromatography/mass spectrometry.  相似文献   

11.
Solar photocatalytic decolorization of methylene blue in water   总被引:8,自引:0,他引:8  
Kuo WS  Ho PH 《Chemosphere》2001,45(1):77-83
In this study, a photocatalytic decolorization system equipped with immobilized TiO2 and illuminated by solar light was used to remove the color of wastewater. To examine the decoloring efficiency of this system, photocatalytic decolorization of an organic dye such as methylene blue was studied as an example. The effects of light source, pH, as well as the initial concentration of dye were also investigated. It was observed that the solution of methylene blue could be almost completely decolorized by the solar light/TiO2 film process while there was about 50% color remaining with solar irradiation only. In addition, it was found that the decoloring efficiency of solution was higher with solar light irradiation than with artificial UV light irradiation, even though the artificial UV light source supplied higher UV intensity at 254 nm. The color removal rate of methylene blue with solar light irradiation was almost twice that of artificial UV light irradiation. This phenomena was mainly attributed to that some visible light range of solar light was useful for exciting the methylene blue molecules adsorbed on TiO2 film, leading to a photosensitization process undergoing and decoloring efficiency promoted. This solar-assisted photocatalytic device showed potential application for decoloring organic dyes in wastewater.  相似文献   

12.
以尿素和钛酸丁酯为原料,通过溶胶-凝胶法低温下制备了高可见光催化活性的氮掺杂TiO2(NDT)光催化剂,采用XRD、TEM、BET和UV-Vis DRS等测试手段对其进行了表征,并在自制光催化反应器中降解甲基橙评价了样品的光催化活性。结果表明,当氮与钛的摩尔比为0.5∶1时,350℃焙烧的样品(NDT350)具有最佳的可见光光谱吸收和光催化活性,该催化剂为锐钛矿晶相,平均粒径为21 nm,比表面积为89.13 m2/g。可见光辐照下,NDT350降解甲基橙的表观反应速率常数为1.381×10-2min-1,是商业P25催化剂的16.85倍。NDT350优良的可见光催化活性与其大的比表面积和强烈的可见光光谱吸收有关。  相似文献   

13.
Wastewater released from textile industries causes water pollution, and it needs to be treated before discharge to the environment by cost effective technologies. Solar photocatalysis is a promising technology for the treatment of dye wastewater. The Ag@TiO2 nanoparticles comprising of Ag core and TiO2 shell (Ag@TiO2) have unique photocatalytic property of inhibition of electron–hole recombination and visible light absorption, which makes it a promising photocatalyst for use in solar photocatalysis and with higher photocatalytic rate. Therefore, in the present work, the Ag@TiO2 nanoparticles synthesized by one pot method with postcalcination step has been used for the degradation of Acid Yellow-17 (AY-17) dye under solar light irradiation. The Ag@TiO2 nanoparticles were characterized using thermogravimetric–differential thermal analysis, X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray analysis. The catalyst has been found to be very effective in solar photocatalysis of AY-17, as compared to other catalysts. The effects of pH, catalyst loading, initial dye concentration, and oxidants on photocatalysis were also studied. The optimized parameters for degradation of AY-17 using Ag@TiO2 were found to be pH?3, dye/catalyst ratio of 1:10 (g/g), and 2 g/L of (NH4)2S2O8 as oxidant. Efficient decolorization and mineralization of AY-17 was achieved. The kinetics of color, total organic carbon, and chemical oxygen demand removal followed the Langmuir–Hinshelwood model. Ag@TiO2 catalyst can be reused thrice without much decline in efficiency. The catalyst exhibited its potential as economic photocatalyst for treatment of dye wastewater.  相似文献   

14.
Zhang M  An T  Fu J  Sheng G  Wang X  Hu X  Ding X 《Chemosphere》2006,64(3):423-431
An adsorptive silica-supported titania photocatalyst TiO(2)/SiO(2) was prepared by using nanosized titania (anatase) immobilized on silica gel by the sol-gel technique with the titanium tetra isopropoxide as the main raw material and acetic acid as the acid catalyst. Meanwhile the structure and properties of the TiO(2)/SiO(2) photocatalyst were studied by means of many modern analysis techniques such as TEM, XRD, and BET. Gas-solid heterogeneous photocatalytic decomposition of four carbonyl compounds mixture at low concentration levels over ultraviolet irradiated TiO(2)/SiO(2) photocatalyst were carried out with high degradation efficiencies in a coaxial triple-cylinder-type fluidized bed photocatalytic reactor, which provided efficient continuous contact of ultraviolet photons, silica-supported titania photocatalyst, and gaseous reactants. Experimental results showed that the photocatalyst had a high adsorption performance and a good photocatalytic activity for four carbonyl compounds mixture. Some factors influencing the photocatalytic decomposition of the mixed carbonyl compounds, i.e. the gas flowrate, relative humidity, concentration of oxygen, and illumination time, were discussed in detail. It is found that the photocatalytic reaction rate of four carbonyl compounds decreased in this order: propionaldehyde, acetone, acetaldehyde and formaldehyde.  相似文献   

15.
The role of hydroxyl radicals on the degradation of lignins during a cellulosic pulp bleaching process including a photocatalytic stage, was assessed using peroxyformic acid lignins EL1 and REL1 and two phenolic niphenyl lignin models 1 and 2. The irradiations were performed in the absence of photocatalyst TiO2 and H2O2 (condition a), in the presence of TiO2 (condition b) and in the presence of H2O2 (condition c). The experiments were conducted in alkaline (pH approximately 11) aqueous ethanol solutions with oxygen bubbling. The relative phenolic content of the irradiated solutions, which is indicative of the involvement of hydroxyl radicals, was determined by ionization absorption spectroscopy. The results obtained show that the catalyzed reaction involves both degradation of the phenolate groups by electron transfer and hydroxylation of the lignin aromatic structure. Benzyl alcohol structural elements in sodium borohydride reduced lignin REL1 and compound 2 were also found as good trapping agents for the hydroxyl radicals. The degradation of EL1 was studied by measuring its fluorescence emission by comparison to the fluorescence of compound 2. The emission spectra indicate that some biphenyl phenolate anions in EL1 are reacting under UV/visible irradiation and some others, probably polyphenolic chromophores emitting less fluorescence, are formed.  相似文献   

16.
Hou YD  Wang XC  Wu L  Chen XF  Ding ZX  Wang XX  Fu XZ 《Chemosphere》2008,72(3):414-421
Mesoporous nanocrystalline N-doped SiO2/TiO2 visible-light photocatalysts were prepared by treating SiO2/TiO2 xerogels in a flow of nitrogen gas bubbled through concentrated ammonia solution. Structural characterization and performance analysis results revealed that the addition of SiO2 remarkably altered the phase composition, specific surface area, microstructure, as well as the photocatalytic activity of N-doped TiO2. The presence of SiO2 in N-doped TiO2 particles suppressed the formation of rutile phase and the crystal growth of N-doped TiO2 particles during thermal calcinations. When weight ratio of SiO2/TiO2 was in 0.05-0.20, the N-doped SiO2/TiO2 exhibited higher photocatalytic activity than the N-doped TiO2, and optimum ratio was found to be 0.05. The enhanced photocatalytic activity could be attributed to the higher specific area, larger pore volume, and more surface hydroxyl groups in the catalyst.  相似文献   

17.
Ling CM  Mohamed AR  Bhatia S 《Chemosphere》2004,57(7):547-554
TiO2 thin film photocatalyst was successfully synthesized and immobilized on glass reactor tube using sol-gel method. The synthesized TiO2 coating was transparent, which enabled the penetration of ultra-violet (UV) light to the catalyst surface. Two photocatalytic reactors with different operating modes were tested: (a) tubular photocatalytic reactor with re-circulation mode and (b) batch photocatalytic reactor. A new proposed TiO2 synthesized film formulation of 1 titanium isopropoxide: 8 isopropanol: 3 acetyl acetone: 1.1 H2O: 0.05 acetic acid (in molar ratio) gave excellent photocatalytic activity for degradation of phenol and methylene blue dye present in the water. The half-life time, t1/2 of photocatalytic degradation of phenol was 56 min at the initial phenol concentration of 1000 microM in the batch reactor. In the tubular photocatalytic reactor, 5 re-circulation passes with residence time of 2.2 min (single pass) degraded 50% of 40-microM methylene blue dye. Initial phenol concentration, presence of hydrogen peroxide, presence of air bubbling and stirring speed as the process variables were studied in the batch reactor. Initial methylene blue concentration, pH value, light intensity and reaction temperature were studied as the process variables in the tubular reactor. The synthesized TiO2 thin film was characterized using SEM, XRD and EDX analysis. A comparative performance between the synthesized TiO2 thin film and commercial TiO2 particles (99% anatase) was evaluated under the same experimental conditions. The TiO2 film was equally active as the TiO2 powder catalyst.  相似文献   

18.
Photocatalytic oxidation of pesticide rinsate   总被引:1,自引:0,他引:1  
Pesticide rinsate has been considered as one of the major threats for the environment. In this study, photocatalysts such as TiO2 and O3 were used to promote the efficiency of direct UV photolysis to prevent such wastewater pollution. Carbofuran (a carbamate pesticide) and mevinphos (an organophosphate pesticide) with a concentration of 100 mg/L were selected as the test pesticide rinsates. Parent pesticide compound, COD, and microtoxicity analysis were employed to investigate the effect of photocatalyst on the degradation efficiency of pesticide in rinsate. It was found that the photocatalytic oxidation process (UV/O3, UV/TiO2) showed much higher COD removal and microtoxicity reduction efficiency for pesticide rinsate than did direct UV photolysis under the imposed conditions, suggesting that photocatalytic oxidation processes such as UV/O3 and UV/TiO2 could be a better alternative to treat pesticide rinsate. In addition, it was noted that increasing the initial pH of mevinphos rinsate to a basic level was required to reach higher COD removal efficiency and positive microtoxicity reduction efficiency while it was not necessary for the treatment of carbofuran rinsate.  相似文献   

19.
模拟室内环境下掺杂TiO_2纳米晶体的光催化性能   总被引:1,自引:0,他引:1  
采用环境测试舱模拟可见光下的室内环境,以甲醛气体的光催化降解为探针反应,评价了通过溶胶-凝胶法分别制备的8种(银Ag、铜Cu、铁Fe、钨W、铈Ce、镧La、硫S和氯C l)掺杂TiO2纳米晶体的光催化活性及对甲醛气体的去除效果。用X射线衍射、激光粒度分析和紫外-可见分光光谱表征了掺杂钠米TiO2的微晶尺寸、晶体结构与光学性能。结果表明,Cu掺杂可以提高TiO2对氧的吸附能力,减少纳米粒子表面光生电子与光生空穴的复合,使TiO2的光吸收带边发生红移且有利于对可见光的吸收,从而使Cu掺杂TiO2在模拟室内环境下光催化甲醛气体的能力得到明显提高。  相似文献   

20.
Wong CC  Chu W 《Chemosphere》2003,50(8):981-987
Direct photolysis and photocatalytic degradations of alachlor, a widely used herbicide, were studied using three different monochromatic UV lamps (254, 300 and 350 nm) and two TiO(2) sources. Both the direct photolysis and photocatalytic degradations of alachlor follow pseudo-first-order decay kinetics. TiO(2)-P25 was found to be an effective photocatalyst compared to TiO(2)-BDH. The direct photolysis of alachlor was dominant at 254 nm even if TiO(2) was present in the solution. Among the three UV wavelengths used, the highest photocatalysis quantum yield was obtained at 300 nm. The photocatalytic degradation rate of alachlor increased with the dosages of TiO(2), but an overdose of TiO(2) would retard the reaction due to light attenuation. Photocatalytic reactions were slightly enhanced in an alkaline medium, and the different proton sources causing various degrees of rate retardation were due to the presence of the corresponding counter anions. This effect was diminished at a later stage after the reaction intermediates were formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号