首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
城市污水二级生化出水中有机污染物特性表征   总被引:6,自引:2,他引:6  
城市污水经过二级生化处理后的出水中仍含有种类繁多的有机污染物,目前对水中有机物的常规监测指标(如TOC,COD,BOD5等)主要针对有机物总量的监测,过于笼统.水中有机物种类及特性的不同将极大地影响着有机物在水处理系统中的处理效果和排放后的行为.因此,开展城市污水二级生化出水中各类有机污染物的特性研究,对于了解和掌握城市污水二级出水中有机物对排放水体及周边环境的影响,以及指导生化出水进行深度处理,实现废水再生和循环利用,减轻污染负荷,均具有十分重要的理论意义和实用价值.  相似文献   

2.
通过对城市污水二级出水中溶解性有机物(DOM)的Zeta电位和粒径变化规律的研究,探讨pH值对二级出水中DOM的荷电状态、聚集状态与光谱特性的影响.结果表明,城市污水二级出水中DOM在pH值小于4和大于10时具有自我凝聚的特性.随pH值增大,DOM的Zeta电位绝对值逐渐升高.pH值小于4时,随pH值降低,DOM的聚合度增大,粒径迅速增大,将荧光基团包裹在内,荧光峰荧光强度降低.随pH值增大,pH值在5—9时,DOM粒子聚合度降低,粒径减小,荧光强度有所增强;pH值大于10时,DOM的聚合度增大而将发射荧光基团包裹在内,荧光强度减弱.DOM的荧光等高线谱图表明其主要含有难降解的腐殖酸类有机物.荧光指数FI值在1.86—2.96内,表明DOM主要是生物来源且芳香度较低.DOM的E3/E4值表明随pH值增大,DOM腐殖化程度逐渐减小.UV253/UV203比值说明pH值不会明显地改变二级出水DOM苯环的取代程度.  相似文献   

3.
焦化废水生物出水溶解性有机物特性光谱表征   总被引:7,自引:0,他引:7  
利用非离子型DAX-8树脂和离子型交换树脂对某焦化废水二级生物出水溶解性有机物(DOM)进行组分分离,从溶解性有机碳(DOC)、紫外-可见光谱、三维荧光光谱、傅立叶变换红外光谱(FT-IR)等4个方面对组分进行光谱学分析与特征识别.结果显示,疏水性酸性物质(Ho A)、亲水性酸性物质(Hi A)和亲水性中性物质(Hi N)为DOM的主要组分,其DOC含量占总DOC的39.88%、20.85%、25.38%;DOM主要含有单环芳香族化合物或共轭双键类化合物成分,类腐殖质物质和类富里酸物质是DOM的特征有机物;低分子量有机物在亲水性物质组分(HIS)中含量最高,E2 54/E3 65=3.89,E445/E665=1.91,SR=0.926均证明了这一点;亲水性碱性组分(Hi B)组分UV254占比为32%,SUVA值为49.94 L·mg-1·cm-1,不饱和物质和芳香性物质含量最高,芳香化程度最高;Ho A的E300/E400值为2.58,腐化程度最高,组分中含有类富里酸物质.DOM光谱分析能够提供组分中亲疏水性物质的比例、芳香性高低、分子量、发色团及有机基团等信息,可以作为判断废水特征的参考依据.  相似文献   

4.
溶解性有机物(DOM)结构、组分复杂,传统水处理工艺(混凝、沉淀、过滤、消毒)、深度处理工艺等对DOM去除有限,在消毒过程中可能生成消毒副产物.DOM的结构、组分影响其在饮用水处理过程中的去除效果.为了深入了解DOM在饮用水处理过程中的结构、形态变化,需采用多种检测方法对其变化进行表征.本文围绕DOM在不同饮用水处理工艺中的分子量、馏分、芳香性及荧光组分等性质的变化,综述了当前饮用水研究较为广泛的预处理分级(物理分级-超滤膜过滤、化学分级-树脂吸附)、紫外-可见吸收光谱、三维荧光光谱等表征方法的研究进展,对不同表征方法的优点及局限性进行了详细探讨,以期为准确评估水处理过程中DOM的变化提供科学依据.  相似文献   

5.
6.
焦化废水二级生化出水中有机污染物的氧化特性   总被引:6,自引:1,他引:5  
考察了O3氧化法与UV/O3氧化法对焦化废水二级生化出水中溶解性有机物的去除效果,以及二级出水中有机污染物的氧化特性.结果表明,O3氧化法对于二级出水的UV254值具有较高的去除效率,30min内即可达75.7%,但对COD和DOC的去除效果很差,150min的去除率仅为37.1%和33.7%.而UV/O3氧化法对二级生化出水UV254,COD和DOC均具有良好的去除效果,150min时的去除率分别为95.3%,90.2%和77.8%.经过O3氧化法处理后,疏水性物质的浓度明显下降,而弱疏水有机物与亲水性有机物浓度有所上升;UV/O3氧化法处理对疏水性有机物和弱疏水有机物均具有良好的去除效果,而亲水性有机物浓度仅得到部分降低.  相似文献   

7.
苏欣颖  王宇  程欣  周剑霜 《环境化学》2021,40(1):312-320
研究雨雪中的溶解性有机物(DOM)将有利于把握其理化性质及其在生态系统中的行为和功能.本研究运用三维荧光光谱(EEMs)技术结合平行因子分析(PARAFAC)、紫外-可见光谱技术(UV-vis),对哈尔滨市2018年3月1日降雪样品中DOM的光谱特性及来源进行解析.结果表明,降雪样品中DOM的相对分子质量较大,芳香构造...  相似文献   

8.
长江重庆段溶解性有机物的荧光特性分析   总被引:5,自引:0,他引:5  
蔡文良  许晓毅  罗固源  杜娴 《环境化学》2012,31(7):1003-1008
利用三维荧光光谱(EEMs),并结合平行因子分析(PARAFAC)及主成分分析(PCA),研究了长江重庆段溶解有机物(DOM)的荧光组分特征及其污染来源,并探讨了荧光强度同溶解性有机碳(DOC)及溶解氧(DO)的相关性.结果表明,PARAFAC模型识别出长江重庆段DOM由2类6个荧光组分组成,即类腐殖质荧光组分C1(350/422 nm)、C4(245,305/395 nm)、C5(260,340/420 nm)、C6(260/480 nm)及类蛋白荧光组分C2(275/300 nm)、C3(227,278/329 nm).在DOM来源组成中,陆源的类腐殖质含量占62.56%,类蛋白物质含量占31.31%.类腐殖质组分的荧光强度同DOC的含量存在明显的线性正相关(r=0.73),类蛋白组分的荧光强度同DO的含量呈明显的线性负相关(r=0.80).EEMs-PARAFAC不仅可以表征长江重庆段DOM的光谱特征,示踪长江重庆段的有机污染程度,还可以为三峡库区水体保护提供依据.  相似文献   

9.
为了解降雪中溶解性有机物(DOM)的特征,采集了北京市不同地区两场降雪,对降雪样品中的DOM进行了紫外-可见光谱、三维荧光光谱、同步荧光光谱表征.结果表明,不同区域降雪中溶解性有机碳(DOC)浓度变化规律不同,这可能与降雪所在区域的下垫面性质不同有关;降雪样品中DOM的芳香性和分子量较低,含有类色氨酸、类富里酸和类蛋白质类物质,腐殖化程度较低,受生物过程影响较大;同步荧光光谱表明,DOM为类蛋白类物质和芳香性化合物,其中存在苯环和具有共轭系统的多环芳烃,含有少量胡敏酸类物质.研究降雪中DOM光谱性质将有助于进一步研究DOM与共存污染物之间的相互作用,为有效利用降雪提供基础性数据.  相似文献   

10.
水中天然有机物的臭氧氧化处理特性   总被引:11,自引:0,他引:11  
金鹏康  王晓昌 《环境化学》2002,21(3):250-263
通过小型实验和液相色谱分析,研究了水中天然有机物的臭氧氧化反应的特性和反应前后有机物分子量的变化情况。结果表明,臭氧氧化的主要功效不在于降低以TOC为代表的水中有机物总量,而是改变了有机物的性质和结构。通过臭氧氧化处理,水中大分子有机物分解氧化为小分子有机物分解氧化为小分子有机物,且具有饱和构造的有机物成分明显增加。  相似文献   

11.
Dissolved organic matter (DOM) transformation in sequence batch reactor (SBR) fed with carbon sources of different biodegradability was investigated. During the biologic degradation process, the low molecular weight (MW) fraction (< 1 kDa) gradually decreased, while the refractory compounds with higher aromaticity were aggregated. Size exclusion chromatography (SEC) and fluorescence of excitation emission matrices (EEM) demonstrated that more biopolymers (polysaccharides or proteins) and humic-like substances were presented in the extracellular polymeric substance (EPS) extracted from the SBR fed with sodium acetate or glucose, while the EPS from SBR fed with slowly biodegradable dissolved organic carbon (DOC) substratestarch had relatively less biopolymers. Comparing the EfOM in sewage effluent of three SBRs, the effluent from SBR fed with starch is more aromatic. Organic carbon with MW>1 kDa as well as the hydrophobic fraction in DOM gradually increased with the carbon sources changing from sodium acetate to glucose and starch. The DOC fractionation and the EEM all demonstrated that EfOM from the effluent of the SBR fed with starch contained more fulvic acid-like substances comparing with the SBR fed with sodium acetate and glucose.  相似文献   

12.
• SMX was mainly degraded by hydrolysis, isoxazole oxidation and double-bond addition. • Isoxazole oxidation and bond addition products were formed by direct ozonation. • Hydroxylated products were produced by indirect oxidation. • NOM mainly affected the degradation of SMX by consuming OH rather than O3. • Inhibitory effect of NOM on SMX removal was related to the components’ aromaticity. Sulfamethoxazole (SMX) is commonly detected in wastewater and cannot be completely decomposed during conventional treatment processes. Ozone (O3) is often used in water treatment. This study explored the influence of natural organic matters (NOM) in secondary effluent of a sewage treatment plant on the ozonation pathways of SMX. The changes in NOM components during ozonation were also analyzed. SMX was primarily degraded by hydrolysis, isoxazole-ring opening, and double-bond addition, whereas hydroxylation was not the principal route given the low maximum abundances of the hydroxylated products, with m/z of 269 and 287. The hydroxylation process occurred mainly through indirect oxidation because the maximum abundances of the products reduced by about 70% after the radical quencher was added, whereas isoxazole-ring opening and double-bond addition processes mainly depended on direct oxidation, which was unaffected by the quencher. NOM mainly affected the degradation of micropollutants by consuming OH rather than O3 molecules, resulting in the 63%–85% decrease in indirect oxidation products. The NOM in the effluent were also degraded simultaneously during ozonation, and the components with larger aromaticity were more likely degraded through direct oxidation. The dependences of the three main components of NOM in the effluent on indirect oxidation followed the sequence: humic-like substances>fluvic-like substances>protein-like substances. This study reveals the ozonation mechanism of SMX in secondary effluent and provides a theoretical basis for the control of SMX and its degradation products in actual water treatment.  相似文献   

13.
In this paper hydrophilic (HI) and hydrophobic (HO) fractions of dissolved organic matter (DOM) extracted from soils at different degrees of salinisation were characterised by means of fluorescence spectroscopy in the emission, excitation and synchronous-scan modes. Results provided evidence of the different chemical nature of DOM fractions and allowed to distinguish hydrophilic and hydrophobic fractions extracted from the same soil substrate. The strong decrease in fluorescence intensity observed with the increasing salinity of the soils can be utilised to obtain information on the salinity level of different soil substrates by comparison of spectral fluorescence intensities.  相似文献   

14.
● Effect of composting approaches on dissolved organic matter (DOM). ● Effect of composting conditions on the properties of DOM. ● Character indexes of DOM varied in composting. ● The size, hydrophobicity, humification, and electron transfer capacity increased. ● The hydrophilicity, protein-like materials, and aliphatic components reduced. As the most motive organic fraction in composting, dissolved organic matter (DOM) can contribute to the transfer and dispersal of pollutants and facilitate the global carbon cycle in aquatic ecosystems. However, it is still unclear how composting approaches and conditions influence the properties of compost-derived DOM. Further details on the shift of DOM character indexes are required. In this study, the change in properties of compost-derived DOM at different composting approaches and the effect of composting conditions on the DOM characteristics are summarized. Thereafter, the change in DOM character indexes’ in composting was comprehensively reviewed. Along with composting, the elements and spectral properties (chromophoric DOM (CDOM) and fluorescent DOM (FDOM)) were altered, size and hydrophobicity increased, and aromatic-C and electron transfer capacity were promoted. Finally, some prospects to improve this study were put forward. This paper should facilitate the people who have an interest in tracing the fate of DOM in composting.  相似文献   

15.
土壤溶解性有机质的生态环境效应   总被引:7,自引:3,他引:7  
李睿  屈明 《生态环境》2004,13(2):271-275
土壤生态环境是一个复杂的多介质多界面体系。现有的研究表明,DOM作为环境中重要的天然配位体和吸着载体,是一种非常活跃的化学物质,它将土壤中的矿物质、有机质与生物成分联系在一起,通过物理或化学作用改变金属与外源性化合物的环境行为,促进温室气体的排放,调节土壤养分流失,指示土壤质量,并对成土过程、微生物的生长代谢过程、土壤有机质分解和转化过程有着重要作用,已经成为土壤科学、生态科学和环境科学交叉领域的研究热点。文章系统地评述了DOM的组成特点及其环境效应,同时介绍了未来的研究方向及一些有待于进一步研究的问题。  相似文献   

16.
Wang  Wei  Ma  Yanfang  Zhou  Yibo  Huang  Hong  Dou  Wenyuan  Jiang  Bin 《Environmental geochemistry and health》2021,43(10):4315-4328

Trihalomethanes (THMs) are a class of disinfection by-products that were proved to have adverse effects to human health. Investigation into its content change and molecular composition variation of its main precursor, which is believed to be dissolved organic matter (DOM) during water purification process, can help understand the formation mechanism of THMs and optimize the processes in drinking water treatment plant (DWTP). This is of great significance to ensure the safety of urban water supply. In this study, detailed changes of THMs’ content and formation potential were determined during the water purification process in summer and winter at a typical DWTP in south China. Specific molecular composition changes of DOM were also characterized by ultrahigh-resolution mass spectrometry, to comprehensively study its correlation with the formation of THMs in different water processing units and seasons. The result showed that chlorination will cause drastic changes of water quality and a sharp increase in the concentration of THMs (18.7 times in summer and 13.9 times in winter). Molecular-level characterization of DOM indicates that a range of lignin-like substance with lower O/C (<?0.5) and H/C (<?1.25) vanished and considerable amount of protein-like and tannins-like substance with higher H/C (>?1.25) and O/C (>?0.5) was formed after chlorination. Analysis of Cl-containing products demonstrated that a bulk of CHOCl1 and CHOCl2 compounds with moderate molecular weights were formed in both winter and summer. However, the newly formed CHOCl1 molecules showed a relatively higher mass weight in summer (>?500 Da) compared to winter (300–500 Da). Seasonal differences also emerged in the result of correlation between the trihalomethanes formation potential and total organic carbon. The correlation coefficient in summer (0.500) was lower than that in winter (0.843). The results suggested that the exhaustive reaction and contribution of DOM to THMs may vary in different seasons.

  相似文献   

17.
溶解有机质作为水生生态系统中一种重要的活跃的有机组分,对生态系统中的碳循环起到重要的作用.利用模拟太阳光对Saguenay河溶解有机质的光氧化过程模拟,研究了溶解氧浓度、模拟太阳光波长范围和铁浓度对溶解无机碳产量的影响.研究表明,基于空气饱和样品前72 h的溶解无机碳产量1.39 μmol·L-1·h-1,氧气饱和条件下照射的溶解无机碳产量增加了52.5%,而氮气饱和条件下的照射则只有空气饱和样品的10%.实验以Mylar-D、有机玻璃UF-3和有机玻璃UF-4为滤光片研究了波长范围对溶解无机碳产量的影响,近似计算的结果表明UV-B、UV-A和可见光部分分别占无机碳产量的16.5%,55.4%和28.0%,表明溶解无机碳的生成可发生在紫外光无法到达的水体较深区域.铁在光化学催化氧化过程中起重要作用,当总铁浓度达到10 μmol·L-1时,有效的增加了溶解无机碳的生成速率,其生成速率约为初始样品的1.68倍(初始样品中总铁含量为3.2 μmol·L-1).  相似文献   

18.
The influence of three effluent organic matter (EfOM) model compounds, humic acid (HA), bovine serum albumin (BSA), and sodium alginate (AGS), on the ozonation of bezafibrate (BF), a typical pharmaceutical and personal care product (PPCP), was investigated. The results show that ozonation efficiently removed BF from aqueous solution with removal efficiencies>95% within 8 min for all conditions. The reaction rate of BF decreased with increasing model compounds concentrations and the influence was more pronounced for HA and BSA, while less pronounced for AGS. Although BF concentration was significantly reduced, the degree of mineralization achieved was only approximately 11%. The addition of HA and BSA improved the mineralization of the solution, while the influence of AGS was minor. The acute toxicity of BF solution during ozonation was determined using the Luminescent bacteria test, and the toxicity exhibited an initial increase and a successive reduction. An overall decreased acute toxicity was observed with an increase of HA. The presence of BSA increased the formation rate of toxicity intermediates and resulted in inhibition peak forward.  相似文献   

19.
The results obtained in the four seasonal cruises planned in the PRISMA II project are reported. These concern dissolved and colloidal organic carbon, free amino acids and total dissolved carbohydrates and heterotrophic activity. Main factors controlling organic matter degradation, resulting from laboratory tests not planned in the above project, are also discussed. Dissolved organic matter shows seasonal accumulation, which may be markedly different from year to year, and large contributions by colloidal and saccharide components. Heterotrophic activities play an important role in the carbon cycle, although laboratory runs highlight limitations caused by aging of organic matter and phosphorus deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号