首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Post-combustion carbonate looping processes are based on the capture of carbon dioxide from the flue gases of an existing power plant in a circulating fluidized bed reactor (CFB) of calcium oxide (the carbonator) particles. The calcination of calcium carbonate in a new oxy-fired CFBC power plant regenerates the sorbent (calcium oxide particles) and obtains high purity carbon dioxide. This communication presents experimental results from a small test facility (30 kWt) operated in continuous mode using two interconnected CFB reactors as carbonator and calciner. Capture efficiencies between 70 and 97% have been obtained under realistic flue gas conditions in the carbonator reactor (temperatures around 650 °C). The similarity between process conditions and those existing in CFBC power plants should allow a rapid scaling up of this technology. The next steps for this process development are also outlined.  相似文献   

2.
The effects of addition of a range of organic amendments (biosolids, spent mushroom compost, green waste compost and green waste-derived biochar), at two rates, on some key chemical, physical and microbial properties of bauxite-processing residue sand were studied in a laboratory incubation study. Levels of exchangeable cations were not greatly affected by additions of amendments but extractable P was increased significantly by mushroom and green waste composts and massively (i.e. from 11.8 to 966 mg P kg?1) by biosolids applications. Levels of extractable NO3?–N were also greatly elevated by biosolids additions and there was a concomitant decrease in pH. Addition of all amendments decreased bulk density and increased mesoporosity, available water holding capacity and water retention at field capacity (?10 kPa), with the higher rate having a greater effect. Addition of biosolids, mushroom compost and green waste compost all increased soluble organic C, microbial biomass C, basal respiration and the activities of β-glucosidase, L-asparaginase and alkali phosphatase enzymes. The germination index of watercress grown in the materials was greatly reduced by biosolids application and this was attributed to the combined effects of a high EC and high concentrations of extractable P and NO3?. It was concluded that the increases in water storage and retention and microbial activity induced by additions of the composts is likely to improve the properties of bauxite-processing residue sand as a growth medium but that allowing time for soluble salts, originating from the organic amendments, to leach out may be an important consideration before sowing seeds.  相似文献   

3.
This study applies green coconut shells as adsorbent for the removal of toxic metal ions from aqueous effluents using column adsorption. The results show that a flow rate of 2 mL/min and a bed height of 10 cm are most feasible. Furthermore, larger amounts of effluent can be treated for removal of single ions. The breakthrough curves for multiple elements gave the order of adsorption capacity: Cu+2 > Pb+2 > Cd+2 > Zn+2 > Ni+2. Real samples arising from the electroplating industry can be efficiently handled.  相似文献   

4.
CO2 and SO2 are some of the main polluting gases emitted into atmosphere in combustion processes using fossil fuel for energy production. The former is one of the major contributors to build-up the greenhouse effect implicated in global climate change and the latter produces acid rain. Oxy-fuel combustion is a technology, which consists in burning the fuel with a mix of pure O2 and recirculated CO2. With this technology the CO2 concentration in the flue gas may be enriched up to 95%, becoming possible an easy CO2 recovery. In addition, oxy-fuel combustion in fluidized beds allows in situ desulfurization of combustion gases by supplying calcium based sorbent.In this work, the effect of the principal operation variables affecting the sulfation reaction rate in fluidized bed reactors (temperature, CO2 partial pressure, SO2 concentration and particle size) under typical oxy-fuel combustion conditions have been analyzed in a batch fluidized bed reactor using a limestone as sorbent. It has been observed that sulfur retention can be carried out by direct sulfation of the CaCO3 or by sulfation of the CaO (indirect sulfation) formed by CaCO3 calcination. Direct sulfation and indirect sulfation operating conditions depended on the temperature and CO2 partial pressure. The rate of direct sulfation rose with temperature and the rate of indirect sulfation for long reaction times decreased with temperature. An increase in the CO2 partial pressure had a negative influence on the sulfation conversion reached by the limestone due to a higher temperature was needed to work in conditions of indirect sulfation. Thus, it is expected that the optimum temperature for sulfur retention in oxy-fuel combustion in fluidized bed reactors be about 925–950 °C. Sulfation reaction rate rose with decreasing sorbent particle size and increasing SO2 concentration.  相似文献   

5.
Calcium looping (CaL) is a promising post-combustion CO2 capture technology which is carried out in a dual fluidized bed (DFB) system with continuous looping of CaO, the CO2 carrier, between two beds. The system consists of a carbonator, where flue gas CO2 is adsorbed by CaO and a regenerator, where captured CO2 is released. The CO2-rich regenerator flue gas can be sequestered after gas processing and compression. A parametric study was conducted on the 10 kWth DFB facility at the University of Stuttgart, which consists of a bubbling fluidized bed carbonator and a riser regenerator. The effect of the following parameters on CO2 capture efficiency was investigated: carbonator space time, carbonator temperature and calcium looping ratio. The active space time in the carbonator, which is a function of the space time and the calcium looping ratio, was found to strongly correlate with the CO2 capture efficiency. BET and BJH techniques provided surface area and pore volume distribution data, respectively, for collected sorbent samples. The rate of sorbent attrition was found to be 2 wt.%/h which is below the expected sorbent make-up rate required to maintain sufficient sorbent activity. Steady-state CO2 capture efficiencies greater than 90% were achieved for different combinations of operational parameters. Moreover, the experimental results obtained were briefly compared with results derived from reactor modeling studies. Finally, the implications of the experimental results with respect to commercialization of the CaL process have been assessed.  相似文献   

6.
Chemical-looping combustion (CLC) is a promising technology for the combustion of gas or solid fuel with efficient use of energy and inherent separation of CO2. The technique involves the use of an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. A chemical-looping combustion system consists of a fuel reactor and an air reactor. A metal oxide is used as oxygen carrier that circulates between the two reactors. The air reactor is a high velocity fluidized bed where the oxygen carrier particles are transported together with the air stream to the top of the air reactor, where they are then transferred to the fuel reactor using a cyclone. The fuel reactor is a bubbling fluidized bed reactor where oxygen carrier particles react with hydrocarbon fuel and get reduced. The reduced oxygen carrier particles are transported back to the air reactor where they react with oxygen in the air and are oxidized back to metal oxide. The exhaust from the fuel reactor mainly consists of CO2 and water vapor. After condensation of the water in the exit gas from the fuel reactor, the remaining CO2 gas is compressed and cooled to yield liquid CO2, which can be disposed of in various ways.With the improvement of numerical methods and more advanced hardware technology, the time needed to run CFD (Computational fluid dynamics) codes is decreasing. Hence multiphase CFD-based models for dealing with complex gas-solid hydrodynamics and chemical reactions are becoming more accessible. Until now there were a few literatures about mathematical modeling of chemical-looping combustion using CFD approach. In this work, the reaction kinetics model of the fuel reactor (CaSO4 + H2) was developed by means of the commercial code FLUENT. The bubble formation and the relation between bubble formation and molar fraction of products in gas phase were well captured by CFD simulation. Computational results from the simulation also showed low fuel conversion rate. The conversion of H2 was about 34% partially due to fast, large bubbles rising through the reactor, low bed temperature and large particles diameter.  相似文献   

7.
The feasibility of recycling spent foundry sand in clay bricks was assessed in laboratory, pilot line and industrial trials, using naturally occurring sand as a reference. Raw materials were analyzed by X-ray fluorescence, X-ray diffraction, particle size distribution, and leaching and combined to produce bodies containing up to 35% wt. sand. The extrusion, drying and firing behaviour (plasticity, drying sensitivity, mechanical strength, bulk density, water absorption, and shrinkage) were determined. The microstructure, phase composition, durability and leaching (EN 12457, granular materials, end-life step, European Waste Landfill Directive; NEN 7345, monolithic materials, use-life step, Dutch Building Material Decree) were evaluated for bricks manufactured at optimal firing temperature. These results demonstrate that spent foundry sand can be recycled in clay bricks. There are no relevant technological drawbacks, but the feasibility strongly depends on the properties of the raw materials. Spent foundry sand may be introduced into bricks up to 30% wt. Most of the hazardous elements from the spent foundry sand are inertized during firing and the concentrations of hazardous components in the leachates are below the standard threshold for inert waste category landfill excepting for chromium and lead; however, their environmental risk during their use-life step can be considered negligible.  相似文献   

8.
This study uses data from 46 riparian sites to examine the influence of landscape hydrogeology on patterns of groundwater flux and the buffer width required for effective nitrate removal in humid temperate agricultural regions. There is a considerable imbalance in the research focus on different hydrogeologic settings. More than 40% of the buffers are located in landscapes with surficial sand aquifers, whereas few buffers have been studied in glacial till and weathered bedrock landscapes which cover large areas. Annual groundwater fluxes for 29 of these sites ranged from <20 L/m/day for buffers on flat sand plains and uplands with fine‐textured deposits to 50‐1,200 L/m/day for many sites with upland sand aquifers. Despite a similar range of water fluxes, buffers in gently to moderately sloping landscapes with <4 m depths of sand sediments reached a 90% removal efficiency within 30‐60 m while sites with >4 m depths required a 150‐200 m width. The width for 90% efficiency in buffers with loamy sand and sandy loam sediments also increased from 10‐20 m with <4 m sediment depths to 50‐100 m for >4 m depths. Limited data for buffers with fine‐textured sediments suggest that 90% of the nitrate flux was often depleted in a 10‐20 m width. Groundwater flux did not have a significant relationship with nitrate removal percent per meter buffer width because of the variation in efficiency that occurred in buffers with similar fluxes in different hydrogeologic settings.  相似文献   

9.
A novel concept for capturing CO2 from biomass combustion using CaO as an active solid sorbent of CO2 is discussed and experimentally tested. According to the CaO/CaCO3 equilibrium, if a fuel could be burned at a sufficiently low temperature (below 700 °C) it would be possible to capture CO2in situ” with the CaO particles at atmospheric pressure. A subsequent step involving the regeneration of CaCO3 in a calciner operating at typical conditions of oxyfired-circulating fluidized combustion would deliver the CO2 ready for purification, compression and permanent geological storage. Several series of experiments to prove this concept have been conducted in a 30 kW interconnected fluidized bed test facility at INCAR-CSIC, made up of two interconnected circulating fluidized bed reactors, one acting as biomass combustor-carbonator and the other as air-fired calciner (which is considered to yield similar sorbent properties than those of an oxyfired calciner). CO2 capture efficiencies in dynamic tests in the combustor-carbonator reactor were measured over a wide range of operating conditions, including different superficial gas velocities, solids circulation rates, excess air above stoichiometric, and biomass type (olive pits, saw dust and pellets). Biomass combustion in air is effective at temperatures even below the 700 °C, necessary for the effective capture of CO2 by carbonation of CaO. Overall CO2 capture efficiencies in the combustor-carbonator higher than 70% can be achieved with sufficiently high solids circulation rates of CaO and solids inventories. The application of a simple reactor model for the combined combustion and CO2 capture reactions allows an efficiency factor to be obtained from the dynamic experimental test that could be valuable for scaling up purposes.  相似文献   

10.
Abstract: We evaluate the effects of small dams (11 of 15 sites less than 4 m high) on downstream channels at 15 sites in Maryland and Pennsylvania by using a reach upstream of the reservoir at each site to represent the downstream reach before dam construction. A semi‐quantitative geomorphic characterization demonstrates that upstream reaches occupy similar geomorphic settings as downstream reaches. Survey data indicate that dams have had no measurable influence on the water surface slope, width, and the percentages of exposed bedrock or boulders on the streambed. The median grain diameter (D50) is increased slightly by dam construction, but D50 remains within the pebble size class. The percentage of sand and silt and clay on the bed averages about 35% before dam construction, but typically decreases to around 20% after dam construction. The presence of the dam has therefore only influenced the fraction of finer‐grained sediment on the bed, and has not caused other measurable changes in fluvial morphology. The absence of measurable geomorphic change from dam impacts is explicable given the extent of geologic control at these study sites. We speculate that potential changes that could have been induced by dam construction have been resisted by inerodible bedrock, relatively immobile boulders, well‐vegetated and cohesive banks, and low rates of bed material supply and transport. If the dams of our study are removed, we argue that long‐term changes (those that remain after a period of transient adjustment) will be limited to increases in the percentage of sand and silt and clay on the bed. Thus, dam removal in streams similar to those of our study area should not result in significant long‐term geomorphic changes.  相似文献   

11.
/ Rivers transport sediment from eroding uplands to depositional areas near sea level. If the continuity of sediment transport is interrupted by dams or removal of sediment from the channel by gravel mining, the flow may become sediment-starved (hungry water) and prone to erode the channel bed and banks, producing channel incision (downcutting), coarsening of bed material, and loss of spawning gravels for salmon and trout (as smaller gravels are transported without replacement from upstream). Gravel is artificially added to the River Rhine to prevent further incision and to many other rivers in attempts to restore spawning habitat. It is possible to pass incoming sediment through some small reservoirs, thereby maintaining the continuity of sediment transport through the system. Damming and mining have reduced sediment delivery from rivers to many coastal areas, leading to accelerated beach erosion. Sand and gravel are mined for construction aggregate from river channel and floodplains. In-channel mining commonly causes incision, which may propagate up- and downstream of the mine, undermining bridges, inducing channel instability, and lowering alluvial water tables. Floodplain gravel pits have the potential to become wildlife habitat upon reclamation, but may be captured by the active channel and thereby become instream pits. Management of sand and gravel in rivers must be done on a regional basis, restoring the continuity of sediment transport where possible and encouraging alternatives to river-derived aggregate sources.KEY WORDS: Dams; Aquatic habitat; Sediment transport; Erosion; Sedimentation; Gravel mining  相似文献   

12.
In this work, the Aspen Hysys conceptual design of a new process for energy generation at large scale with implicit CO2 capture is presented. This process makes use of the CaO capability for CO2 capture at high temperature and the possibility of regenerating this sorbent working in interconnected fluidised bed reactors operating at different temperatures. The proposed process has the advantage of producing power with minimum CO2 emissions and very low energy penalties compared with similar air-based combustion power plants. In this system, five main parts can be distinguished: the combustor where coal is burnt with air, the calciner where the fresh and the recycled CaCO3 is calcined, the carbonator where the CO2 produced in the combustor is captured, the supercritical steam cycle and the CO2 compression system. In this arrangement, the three fluidised bed reactors are interconnected in such a way that it is possible to perform the CaCO3 calcination at a temperature of 950 °C with the energy transported by a hot solid stream produced in the circulating fluidised bed combustor operating at 1030 °C. The stream rich in CaO produced in the calciner is split into three parts. One of them is transported to the carbonator operating at 650 °C where most of the CO2 in the flue gas produced in the combustor is captured. The second one is sent to the combustor, where it is heated up and used as energy carrier. The third solid stream that leaves the calciner is a purge in order to maintain the capture system activity and to avoid inert material accumulation. Because of the high temperatures involved in all the system, it is possible to recover most of the energy in the fuel and to produce power in a supercritical steam cycle. A case study is presented and it is demonstrated that under these operating conditions, 90% CO2 capture efficiency can be achieved with no energy penalty further than the one originated in the CO2 compression system.  相似文献   

13.
Reactive barriers are used for in situ treatment of contaminated ground water. Waste green sand, a by-product of gray-iron foundries that contains iron particles and organic carbon, was evaluated in this study as a low-cost reactive material for treating ground water contaminated with the herbicides alachlor [2-chloro-2',6'-diethyl-N-(methoxymethyl)acetanilide] and metolachlor [2-chloro-6'-ethyl-N-(2-methoxy-1-methylethyl)-o-acetoluidide]. Batch and column tests were conducted with 11 green sands to determine transport parameters and reaction rate constants for the herbicides. Similar Fe-normalized rate constants (K(SA)) were obtained from the batch and column tests. The K(SA) values obtained for green sand iron were also found to be comparable with or slightly higher than K(SA) values for Peerless iron, a common reactive medium used in reactive barriers. Partition coefficients ranging between 3.6 and 50.2 L/kg were obtained for alachlor and between 1.0 and 54.8 L/kg for metolachlor, indicating that the organic carbon and clay in green sands can significantly retard the movement of the herbicides. Partition coefficients obtained from the batch and column tests were similar (+/-25%), but the batch tests typically yielded higher partition coefficients for green sands exhibiting greater sorption. Calculations made using transport parameters from the column tests indicate that a 1-m-thick reactive barrier will result in a 10-fold reduction in concentration of alachlor and metolachlor for seepage velocities less than 0.1 m/d provided the green sand contains at least 2% iron. This level of reduction generally is sufficient to reduce alachlor and metolachlor concentrations below maximum contaminant levels in the United States.  相似文献   

14.
A sorbent having a calcium oxide core and a clay shell was prepared and shown to be capable of reusable applications in absorption and desorption processes for carbon dioxide. The novelty of this sorbent is that only calcium carbonate and clay are used for its preparation with water as a binder. A two-step granulation procedure is used to get the core and then another step to coat the shell layer with the clay powder. A repeated wet-and-dry procedure probably makes the core porous yet strong enough to serve as a sorbent. The pellet is then calcined at 1200 degrees C for 2h to reach its final structure. The core-shell pellets have an overall diameter of 4.4mm with average shell thickness of 0.45 mm, crush load of 35 N and attrition index of 0.035 wt%/h. These results indicate that the pellets will probably be capable of withstanding the stress in future applications. Carbon dioxide absorption at or below 300 degrees C showed a maximum weight gain of 38% for our pellets. Finally, desorption in nitrogen at 800 degrees C can restore the pellet to its original state and hence it is ready for re-use as a sorbent.  相似文献   

15.
Chemical-looping combustion (CLC) is a combustion technology where an oxygen carrier is used to transfer oxygen from the combustion air to the fuel, avoiding direct contact between air and fuel. Thus, CO2 and H2O are inherently separated from the rest of the flue gases and the carbon dioxide can be obtained in a pure form without the use of an energy intensive air separation unit. The paper presents results from a 3-year project devoted to developing the CLC technology for use with syngas from coal gasification. The project has focused on: (i) the development of oxygen carrier particles, (ii) establishing a reactor design and feasible operating conditions and (iii) construction and operation of a continuously working hot reactor. Approximately, 300 different oxygen carriers based on oxides of the metals Ni, Fe, Mn and Cu were investigated with respect to parameters, which are important in a CLC system, and from these investigations, several particles were found to possess suitable qualities as oxygen carriers. Several cold-model prototypes of CLC based on interconnected fluidized bed reactors were tested, and from these tests a hot prototype CLC reactor system was constructed and operated successfully using three carriers based on Ni, Fe and Mn developed within the project. The particles were used for 30–70 h with combustion, but were circulated under hot conditions for 60–150 h.  相似文献   

16.
Chemical-looping combustion is a novel combustion technology with inherent separation of the greenhouse gas CO2. The technology uses circulating oxygen carriers to transfer oxygen from the combustion air to the fuel. In this paper, oxygen carriers based on commercially available NiO and α-Al2O3 were prepared using the industrial spray-drying method, and compared with particles prepared by freeze-granulation. The materials were investigated under alternating oxidizing and reducing conditions in a laboratory fluidized bed, thus simulating the cyclic conditions of a chemical-looping combustion system. The particles produced by spray-drying displayed a remarkable similarity to the freeze-granulated oxygen carriers, with high reactivity when the bed was fluidized and similar physical properties when sintered at the same temperature. This is an important result as it shows that the scaling-up from a laboratory production method, i.e. freeze-granulation, to a commercial method suitable for large-scale production, i.e. spray-drying, did not involve any unexpected difficulties. A difference noticed between the spray-dried and freeze-granulated particles was the sphericity. Whereas the freeze-granulated particles showed near perfect sphericity, a large portion of the spray-dried particles had hollow interiors. Defluidization was most likely to occur for highly reduced particles, at low gas velocities. The apparent density and crushing strength of the oxygen carriers could be increased either by increasing the sintering temperature or by increasing the sintering time. However, the fuel conversion was fairly unchanged when the sintering temperature was increased but was clearly improved when the sintering time was increased.  相似文献   

17.
通过野外观测实验探讨了戈壁地表风沙运动的若干特征。结果表明:戈壁地表风沙活动层主要集中在距地表60 cm高度内;不同粒径沙粒输沙强度的垂向分布不同,以0.25~0.5mm为过渡区,0.25mm颗粒输沙强度随高度增大先增加而后按指数规律递减,0.5mm颗粒则随高度增加呈线性递减,且粒径越大,递减的梯度越小;风沙流中颗粒的粒度组成不仅受风速和颗粒起动风速影响,而且还与地表粒度组成直接相关;输沙率与风速之间关系服从指数规律,公式形式为q=α.eβ.u,其中α、β为相关系数,u为地面2m高处风速。  相似文献   

18.
This work presents results from a rate-based model of strippers at normal pressure (160 kPa) and vacuum (30 kPa) in Aspen Custom Modeler® (ACM) for the desorption of CO2 from 5 m K+/2.5 m piperazine (PZ). The model solves the material, equilibrium, summation and enthalpy (MESH) equations, the heat and mass transfer rate equations, and computes the reboiler duty and equivalent work for the stripping process. Simulations were performed with IMTP #40 random packing and a temperature approach on the hot side of the cross-exchanger of 5 °C and 10 °C. A “short and fat” stripper requires 7–15% less total equivalent work than a “tall and skinny” one because of the reduced pressure drop. The vacuum and normal pressure strippers require 230 s and 115 s of liquid retention time to get an equivalent work 4% greater than the minimum work. Stripping at 30 kPa was controlled by mass transfer with reaction in the boundary layer and diffusion of reactants and products (88% resistance at the rich end and 71% resistance at the lean end). Stripping at 160 kPa was controlled by mass transfer with equilibrium reactions (84% resistance at the rich end and 74% resistance at the lean end) at 80% flood. The typical predicted energy requirement for stripping and compression to 10 MPa to achieve 90% CO2 removal was 37 kJ/gmol CO2. This is about 25% of the net output of a 500 MW power plant with 90% CO2 removal.  相似文献   

19.
针对临盘油田盘河区块地层砂粒细、泥质含量偏高,导致油井实施高压充填防砂后大面积堵塞、小井眼防砂措施有效率偏低两方面的问题,成功试验引进糠醛树脂防砂工艺。2010年初至2011年末,共在临盘油田试验22口井,有效率达86.3%,累计增油13 319.1t。该技术在临盘油田的成功应用,为同类油藏的防砂和开发提供了宝贵的经验和数据,具有重要的理论和实践意义。  相似文献   

20.
In 2005 a pollution accident occurred in the Songhua River, which is geographically located next to groundwater supply plants. This caused public concern about the transport and fate of nitrobenzene (NB) in the groundwater. This paper discusses the mechanisms and effects of the transport and fate of NB in groundwater based on pilot scale experiments conducted in the laboratory, including a simulation experiment, bench-scale batch tests and a one-dimensional numerical model. Parallel batch tests showed that the adsorption of NB to the clay and sand followed the Langmuir-type isotherm, and clay had a greater NB adsorption capacity than sand. NB biodegradation in different conditions was well fitted by the Monod equation and the qmax values varied from 0.018 to 0.046 h?1. Results indicated that NB’s biodegradation was not affected by the initial NB concentration. Numerical modeling results indicated a good match between computed and observed data, and in the prediction model NB entered the groundwater after the pollution accident. However, the highest concentration of NB was much lower than the allowable limit set by the national standard (0.017 mg/L).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号