首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
This study was carried out to assess the fluoride concentration in groundwater in some villages of northern Rajasthan, India, where groundwater is the main source of drinking water. Water samples collected form deep aquifer based hand-pumps were analysed for fluoride content. Fluoride in presently studied sites was recorded in the ranges of 4.78 and 1.01 mg/l. The average fluoride concentration for this region was recorded 2.82 mg/l. As per the desirable and maximum permissible limit for fluoride in drinking water, determined by WHO or by Bureau of Indian Standards, the groundwater of about 95 of the studied sites is unfit for drinking purposes. Due to the higher fluoride level in drinking water several cases of dental and skeletal fluorosis have appeared at alarming rate in this region. The middle and eastern parts of the Hanumangarh, a northern most district of the state, can be classified as higher risk area for fluorosis; due to relatively high concentrations of fluoride (3-4 mg/l) in groundwater of this region. After evaluating the data of this study it is concluded that there is an instant need to take ameliorative steps in this region to prevent the population from fluorosis.  相似文献   

2.
Access to safe drinking water is an important issue of health and development at national, regional, and local levels. The concept of safe drinking water assumes greater significance in countries like India where the majority of the population lives in villages with bare infrastructures and poor sanitation facilities. This review presents an overview of drinking water quality in rural habitations of northern Rajasthan, India. Although fluoride is an endemic problem to the groundwater of this region, recently, other anthropogenic chemicals has also been reported in the local groundwater. Recent case studies indicate that about 95% of sites of this region contain a higher fluoride level in groundwater than the maximum permissible limit as decided by the Bureau of Indian Standards. Nitrate (as NO $_{3}^{\,\,-})$ contamination has appeared as another anthropogenic threat to some intensively cultivable rural habitations of this region. Biological contamination has appeared as another issue of unsafe drinking water resources in rural areas of the state. Recent studies have claimed a wide variety of pathogenic bacteria including members of the family Enterobacteriaceae in local drinking water resources. Overall, the quality of drinking water in this area is not up to the safe level, and much work is still required to establish a safe drinking water supply program in this area.  相似文献   

3.
Serious problems are faced in several parts of the world due to the presence of high concentration of fluoride in drinking water which causes dental and skeletal fluorosis to humans. Nalgonda district in Andhra Pradesh, India is one such region where high concentration of fluoride is present in groundwater. Since there are no major studies in the recent past, the present study was carried out to understand the present status of groundwater quality in Nalgonda and also to assess the possible causes for high concentration of fluoride in groundwater. Samples from 45 wells were collected once every 2 months and analyzed for fluoride concentration using an ion chromatograph. The fluoride concentration in groundwater of this region ranged from 0.1 to 8.8 mg/l with a mean of 1.3 mg/l. About 52% of the samples collected were suitable for human consumption. However, 18% of the samples were having less than the required limit of 0.6 mg/l, and 30% of the samples possessed high concentration of fluoride, i.e., above 1.5 mg/l. Weathering of rocks and evaporation of groundwater are responsible for high fluoride concentration in groundwater of this area apart from anthropogenic activities including irrigation which accelerates weathering of rocks.  相似文献   

4.
Endemic fluorosis was detected in 31 villages in the Dhar district of Madhya Pradesh, Central India. Out of the 109 drinking water sources that were analyzed, about 67 % were found to contain high concentration of fluoride above the permissible level of 1.0 mg/l. Dental fluorosis among the primary school children in the age between 8 and 15 served as primary indicator for fluoride intoxication among the children. Urinary fluoride levels among the adults were found to be correlated with drinking water fluoride in 10 villages affected by fluoride. Intervention in the form of alternate safe water supply in five villages showed significant reduction in the urinary fluoride concentration when compared to the control village. Urinary fluoride serves as an excellent marker for assessing the effectiveness of intervention program in the fluoride-affected villages.  相似文献   

5.
India is among the 23 nations around the globe where health problems occur due to excess ingestion of fluoride (>1.5 mg/l) by drinking water. In Rajasthan, 18 out of 32 districts are fluorotic and 11 million of the populations are at risk. An exploratory qualitative survey was conducted to describe perception of the community regarding fluoride and related health problems in Central Rajasthan. A study on distribution and health hazards by fluoride contaminate in groundwater was performed in 1,030 villages of Bhilwara district of Central Rajasthan. One thousand thirty water samples were collected and analyzed for fluoride concentration. Fluoride concentration in these villages varies from 0.2 to 13.0 mg/l. Seven hundred fifty-six (73.4%) villages have fluoride concentration above 1.0 mg/l. Sixty (5.83%) villages have fluoride concentration above 5.0 mg/l with maximum numbers (24, 19.5%) from Shahpura tehsil. A detailed fluorosis study was carried out in 41 villages out of 60 villages having fluoride above 5.0 mg/l in the study age, sex, and occupation data were also collected. Four thousand, two hundred fifty-two individuals above 5 years age were examined for the evidence of dental fluorosis, while 1998 individuals above 21 years were examined for the evidence of skeletal fluorosis. The overall prevalence of dental and skeletal fluorosis was found to be 3,270/4,252 (76.9%) and 949/1,998 (47.5%), respectively. Maximum of 23.9% (1,016) individuals have mild grade of Dean’s classification. Three hundred seventy-four (8.8%) individuals have severe type of dental fluorosis. The Dean’s Community Fluorosis Index for the studied area in total is 1.62. Maximum CFI 3.0 was recorded from Surajpura of Banera Tehsil. Five hundred sixty-six (28.3%) individuals have Grade I type of skeletal fluorosis while only 0.6% (12) individuals have Grade III skeletal fluorosis. In conclusion, the prevalence and severity of fluorosis increased with increasing fluoride concentration. It was interesting to note that in some villages, the prevalence and severity of fluorosis were highest in subjects belonging to the economically poor community. Similarly, male laborers showed highest prevalence of fluorosis. Prevalence and severity of fluorosis were observed higher in subjects using tobacco, bettle nuts, and alcoholic drinks. In contrast, subjects using citrus fruits and having good nutritional status showed low prevalence.  相似文献   

6.
A study was undertaken to estimate fluoride content in thegroundwater in certain parts of rural Eritrea, North-East Africa,along the River Anseba. Standard procedure was adopted for fluoride detection. Results indicate elevated concentration offluoride in groundwater. The highest concentration was found tobe 3.73 mg L-1, well above the safety level for consumption.Geological basis for the high concentration of high fluoride hasbeen established; it is presumed to be the pegmatite intrusion hosted by a granitic batholith. Extensive dental fluorosis has been observed in the population exposed to drinking water of highfluoride content.  相似文献   

7.
The aim of this study was to estimate the risk for caries and fluorosis in a desertification area, applying the calcium/fluoride concentration ratio of underground water and the quality of water in a selected geographical region. This study was performed in the municipality of São João do Rio do Peixe, located in the tropical semiarid lands of Brazil. A total of 111 groundwater samples were collected. Fluoride concentration varied from 0.11 to 9.33 mg/L. Thirty percent of all samples analyzed showed values above 1.5 mg/L, while 64 % were above the ideal limit of 0.7 mg/L. Mean calcium concentration was 47.6 mg/L, and 14.4 % of all samples presented values above the WHO acceptable limits. The proportional value of calcium/fluoride in water showed that only 12 % of the samples were suitable for dental caries prevention with minimal risk for dental fluorosis. Mapping of the fluoride distribution indicated that approximately 2,465 people could be affected by dental fluorosis and 1,057 people might be affected by skeletal fluorosis. It can be concluded that, in addition to fluoride, many water parameters were not suitable for the drinking water. Mapping out calcium/fluoride ratio may indicate areas of water suitability for caries control, whereas the fluoride concentration solely can indicate the areas with the risk for fluorosis. This approach can be relevant for health authorities for identifying communities where dental caries or dental fluorosis is prevalent.  相似文献   

8.
Excess intake of fluoride through drinking water causes fluorosis on human beings in many States of the country (India), including Andhra Pradesh. Groundwater quality in the Varaha River Basin located in the Visakhapatnam District of Andhra Pradesh has been studied, with reference to fluoride content, for its possible sources for implementing appropriate management measures, according to the controlling mechanism of fluoride concentration in the groundwater. The area occupied by the river basin is underlain by the Precambrian Eastern Ghats, over which the Recent sediments occur. Results of the chemical data of the groundwater suggest that the considerable number of groundwater samples show fluoride content greater than that of the safe limit prescribed for drinking purpose. Statistical analysis shows that the fluoride has a good positive relation, with pH and bicarbonate. This indicates an alkaline environment, as a dominant controlling mechanism for leaching of fluoride from the source material. Other supplementary factors responsible for the occurrence of fluoride in the groundwater are evapotranspiration, long contact time of water with the aquifer material, and agricultural fertilizers. A lack of correlation between fluoride and chloride, and a high positive correlation between fluoride and bicarbonate indicate recharge of the aquifer by the river water. However, the higher concentration of fluoride observed in the groundwater in some locations indicates insufficient dilution by the river water. That means the natural dilution did not perform more effectively. Hence, the study emphasizes the need for surface water management structures, with people's participation, for getting more effective results.  相似文献   

9.
The present investigation reports the assessment of hydrochemical/geochemical processes controlling the concentration of fluoride in groundwater of a village in India (Boden block, Orissa). Boden block is one of the severely affected fluoride-contaminated areas in the state of Orissa (India). The sampling and subsequent analysis of water samples of the study area was carried out following standard prescribed methods. The results of the analysis indicate that 36.60% groundwater F concentration exceeds the limit prescribed by the World Health Organization for drinking water. The rock interaction with groundwater containing high concentration of HCO3 and Na+ at a higher pH value of the medium could be one of the important reasons for the release of F from the aquatic matrix into groundwater. Geochemical classification of groundwater based on Chadha rectangular diagram shows that most of the groundwater samples having fluoride concentration more than 1.5 mg L−1 belongs to the Na-K-HCO3 type. The saturation index values evaluated for the groundwater of the study area indicated that it is oversaturated with respect to calcite, whereas the same is undersaturated with respect to fluorite content. The deficiency of calcium ion concentration in the groundwater from calcite precipitation favors fluorite dissolution leading to excess of fluoride concentration. The risk index was calculated as a function of fluoride level in drinking water and morbidity of fluorosis categorizes high risk for villages of Amera and Karlakote panchayat of Boden block.  相似文献   

10.
Silurian–Ordovician (S–O) aquifer system is an important drinking water source of central and western Estonia. The fluoride and boron contents of groundwater in aquifer system vary considerably. The fluoride concentration in 60 collected groundwater samples ranged from 0.1 to 6.1 mg/l with a mean of 1.95 mg/l in the study area. Boron content in groundwater varied from 0.05 mg/l to 2.1 mg/l with a mean value of 0.66 mg/l. Considering the requirements of EU Directive 98/83/EC and the Estonian requirements for drinking water quality, the limit value for fluoride (1.5 mg/l) and for boron (1.0 mg/l) is exceeded in 47 and 28 % of wells, respectively. Groundwater with high fluoride and boron concentrations is found mainly in western Estonia and deeper portion of aquifer system, where groundwater chemical type is HCO3–Cl–Na–Mg–Ca, water is alkaline, and its Ca2+ content is low. Groundwater of the study area is undersaturated with respect to fluorite and near to equilibrium phase with respect to calcite. The comparison of TDS versus Na/(Na?+?Ca) and Cl/(Cl?+?HCO3) points to the dominance of rock weathering as the main process, which promotes the availability of fluoride and boron in the groundwater. The geological sources of B in S–O aquifer system have not been studied so far, but the dissolution of fluorides from carbonate rocks (F?=?100–400 mg/kg) and K-bentonites (F?=?2,800–4,500 mg/kg) contributes to the formation of F-rich groundwater.  相似文献   

11.
The ground water quality of District Nainital (Uttarakhand, India) has been assessed to see the suitability of ground water for drinking and irrigation applications. This is a two-part series paper and this paper examines the suitability of ground water including spring water for drinking purposes. Forty ground water samples (including 28 spring samples) were collected during pre- and post-monsoon seasons and analyzed for various water quality constituents. The hydrochemical and bacteriological data was analyzed with reference to BIS and WHO standards and their hydrochemical facies were determined. The concentration of total dissolved solids exceeds the desirable limit of 500 mg/L in about 10% of the samples, alkalinity values exceed the desirable limit of 200 mg/L in about 30% of the samples, and total hardness values exceed the desirable limit of 300 mg/L in 15% of the samples. However, no sample crosses the maximum permissible limit for TDS, alkalinity, hardness, calcium, magnesium, chloride, sulfate, nitrate, and fluoride. The concentration of chloride, sulfate, nitrate, and fluoride are well within the desirable limit at all the locations. The bacteriological analysis of the samples does not show any sign of bacterial contamination in hand pump and tube-well water samples. However, in the case of spring water samples, six samples exceed the permissible limit of ten coliforms per 100 ml of sample. It is recommended that water drawn from such sources should be properly disinfected before being used for drinking and other domestic applications. Among the metal ions, the concentration of iron and lead exceeds the permissible limit at one location whereas the concentration of nickel exceeds the permissible limit in 60 and 32.5% of the samples during pre- and post-monsoon seasons, respectively. The grouping of samples according to their hydrochemical facies indicates that majority of the samples fall in Ca–Mg–HCO3 hydrochemical facies.  相似文献   

12.
A total of 60 drinking water samples collected from Erode district, Tamilnadu, India were analysed for fluoride contamination, besides water quality parameters such as pH, electrical conductivity, total dissolved solids, total alkalinity, total hardness, fluoride, bicarbonates, calcium, magnesium, nitrate, sulphate, phosphate, sodium and potassium. The results obtained were found to exceed the permissible limits. The concentration of fluoride in the water samples ranged between 0.5 and 8.2 mg/l and revealed that 80% of the water samples contain fluoride above the maximum permissible limit. Similarly, the concentrations of nitrate, hardness, calcium and magnesium in some samples were also more than the permissible level. Pearson’s correlation coefficient among the parameters showed a positive correlation of fluoride with total hardness and calcium. It is inferred from the study that these water sources can be used for potable purpose only after prior treatment.  相似文献   

13.
石家庄市农村饮用水中氟化物健康风险评估   总被引:2,自引:1,他引:1  
利用中国疾病预防控制信息系统农村饮用水水质监测数据,对2010年18个项目县的水质监测结果进行分析,评估石家庄市农村饮用水氟化物对人群危害的风险。 石家庄市农村饮用水中氟化物浓度为0.01~0.98 mg/L,平原县和山区县饮用水氟化物浓度差异无显著性(t=-1.403,P>0.05),只有72份氟化物浓度超过0.5 mg/L,占9.7%。石家庄市农村患龋齿风险性较大,及时增加氟的摄入量非常必要。  相似文献   

14.
The study was carried out to access the fluoride, boron, and nitrate concentrations in ground water samples of different villages in Indira Gandhi, Bhakra, and Gang canal catchment area of northwest Rajasthan, India. Rural population, in the study site, is using groundwater for drinking and irrigation purposes, without any quality test of water. All water samples (including canal water) were contaminated with fluoride. Fluoride, boron, and nitrate were observed in the ranges of 0.50–8.50, 0.0–7.73, and 0.0–278.68 mg/l, respectively. Most of the water samples were in the categories of fluoride 1.50 mg/l, of boron 2.0–4.0 mg/l, and of nitrate <?45 mg/l. There was no industrial pollution in the study site; hence, availability of these compounds in groundwater was due to natural reasons and by the use of chemical fertilizers.  相似文献   

15.
为考察遂宁市辖区内集中式饮用水水源地污染物钡的分布特征和健康风险水平,通过电感耦合等离子体原子发射光谱法对研究区域内市级、县级和乡镇级所有在用的56个集中式饮用水水源地钡的浓度进行分析检测,借助空间分析与统计分析的结果,探讨了其空间分布和浓度差异,并利用环境健康风险评价模型,对不同类型水源地钡的健康风险进行了评价。结果表明,38个地表水水源地钡的浓度范围为0.065~0.180 mg/L,均值为0.110 mg/L;18个地下水水源地钡的浓度范围为0.027~0.370 mg/L,均值为0.130 mg/L。地表水与地下水水源地间钡的浓度差异具有统计学意义(P0.05),钡的空间分布也存在不同程度的差异性。各水源地中的钡经饮用和皮肤暴露两种途径对成人和儿童所引起的非致癌风险值为1.34×10~(-8)~1.62×10~(-8),远低于推荐的最大可接受风险水平(1.0×10~(-6)),各水源地因污染物钡导致的非致癌风险极低。  相似文献   

16.
Fluoride in high concentration in groundwater has been reported from many parts of India. However, a systematic study is required to understand the behavior of fluoride in natural water in terms of local hydrogeological setting, climatic conditions, and agricultural practices. The present study is an attempt to assess hydrogeochemistry of groundwater in parts of Palar river basin pertaining to Kancheepuram district Tamil Nadu to understand the fluoride abundance in groundwater and to deduce the chemical parameters responsible for the dissolution activity of fluoride. The study area is geologically occupied by partly sedimentary and partly crystalline formations. A total of 50 dug cum borewell-water samples, representing an area of 2,628.92 km2. The results of the chemical analyses in September 2009 show fluoride abundance in the range of 1 to 3.24 mg/l with 86% of the samples in excess of the permissible limit of 1.5 mg/l. Presence of fluoride-bearing minerals in the host rock, chemical properties like decomposition, dissociation, and dissolution, and their interaction with water are considered to be the main causes for fluoride in groundwater. Chemical weathering with relatively high alkalinity favors high concentration of fluoride in groundwater. Villagers who consume nonpotable high fluoride water may suffer from yellow, cracked teeth; joint pains; and crippled limbs and also age rapidly.  相似文献   

17.
The ground and municipal water supply samples of Karachi city were analyzed for their fluoride contents. The fluoride contents in water samples collected from the subsurface and river sources were found below the WHO recommended value for the general health of the people. However, in some industrial areas the groundwater sample showed higher level of fluoride concentration. Continuous monitoring of water resources and cautious fluoridation is suggested to maintain proper status of fluoride concentration in the drinking water.  相似文献   

18.
This study analyzes the concentrations and health risks of fluoride in 249 drinking water samples collected from different regions of Anhui Province in China. Results indicated that fluoride content in drinking water ranged from 0.12 to 1.94 mg L?1 (mean?=?0.57 mg L?1) in the following order: Huaibei plain region > Jianghuai hill region ≈ Dabieshan mountainous region > plain along the Yangtze River region > southern Anhui mountainous region. The fluoride contents were less than 0.50 mg L?1 in 66.66 % of the drinking water samples, 0.51–1.0 mg L?1 in 23.29 %, and higher than 1.0 mg L?1 in 12.04 %. The fluoride levels in some samples were lower than the recommended values for controlling dental caries (0.50–1.0 mg L?1). The total fluoride intake from drinking water was between 0.14 and 2.33 mg per day in different regions of the province, supposing an individual consumes 1.2 L of water per day. Therefore, measures should be taken to increase fluoride intake in the Jianghuai hill region, Dabieshan mountainous region, plain along the Yangtze River, and southern Anhui mountainous region to control dental caries. On the other hand, the fluoride levels must be reduced in the Huaibei plain region to decrease endemic fluorosis. The results serve as crucial guidelines for managing fluoride safety in drinking water and controlling endemic fluorosis in different regions of Anhui Province.  相似文献   

19.
As part of our efforts to find effective methods to the drinking water risk management, the health risk assessment of arsenic and cadmium in groundwater near Xiangjiang River was analyzed. The results suggest that although the arsenic and cadmium concentrations in 97% of groundwater sources are less than the requirement of Water Quality Standards for Drinking Water (GB5749-2006) in China, the residents served by almost all of the investigated centralized drinking water sources have a significant potential health risk by consumption, especially cancer risk. It is justified through analyses that risk assessment is an effective tool for risk management, and the maximum permissible concentration of arsenic and cadmium in drinking water (0.01 and 0.005?mg L-1, respectively) is suitable for China at present, considering the current economic status of China. Risk managers develop cleanup standards designed to protect against all possible adverse effects, which should take into account highly exposed individuals, effects of mixtures of toxic substances, attendant uncertainties, and other factors such as site-specific (or generic) criteria, technical feasibility, cost?Cbenefit analyses, and sociopolitical concerns.  相似文献   

20.
Ground water quality of Hisar city was assessed for its suitability for drinking purposes. Samples collected from the Bore-wells (forms a part of municipal water supply) and handpumps (direct consumption) were analyzed for the various physico-chemical parameters including pH, electrical conductivity, total dissolved salts, total hardness, total alkalinity, sodium, potassium, calcium, magnesium, carbonate, bicarbonate, chloride and sulfate. The concentrations of magnesium, sodium, potassium, sulfate and especially of chloride were found moderately higher than the WHO standards for the drinking water. Further a comparison of fluoride (F) levels in groundwater of various cities and towns of Haryana state was performed. The relatively higher concentrations of F in groundwater of Haryana raise the risk of fluorosis and hence groundwater must be used with proper treatment. Promising defluoridation methods using locally available materials and technologies are discussed for the prevention and control of fluorosis. Data were assessed statistically to find the suitable markers of ground water quality as an aid to monitoring groundwater quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号