首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
北京城区道路灰尘重金属和多环芳烃污染状况探析   总被引:20,自引:16,他引:20  
研究了北京市不同功能区道路灰尘中重金属Cd、Hg、Cr、Cu、Ni、Pb、Zn和16种多环芳烃(PAHs)的分布状况和污染水平.结果表明,北京市道路灰尘中重金属Cd、Hg、Cr、Cu、Ni、Pb和Zn的浓度的平均值分别为710 ng/g、307 ng/g、85.0μg/g、78.3μg/g、41.1μg/g、69.6μg/g和248.5μg/g,显著低于世界上已有调研的大多数城市和国内的沈阳市和上海市;道路灰尘中∑16PAHs的浓度的平均值为0.398μg/g,也大大低于国内已有调研的邯郸市、天津市和上海市.弗里德曼非参数检验表明各功能区道路灰尘中重金属含量存在显著差异:居民居住区和绿化区域道路灰尘上重金属和PAHs的吸附量较小,而在机动车密度较大,车辆行驶较慢的城市交通区的道路灰尘上重金属和PAHs的污染都较严重.道路灰尘重金属浓度ZnCrCuPbNiCdHg,这种污染状况与世界其他各大城市是一致的.地积累指数评价法表明北京市道路灰尘上Cd、Zn和Cu处于中度污染水平,Cr和Pb处于轻度污染水平,Ni处于无实际污染水平.∑16PAHs的污染水平在不同功能区的差异比较大:公园道路灰尘为无污染至轻度污染水平,居民区道路灰尘处于中度至严重污染水平,交通密集区PAHs处于严重污染至极度污染水平.重金属和PAHs的质量负荷主要集中在粒径300μm的道路灰尘上,因此城市清扫车在去除地表颗粒物时不仅应当关注小尺度的颗粒物,应该通过升级除尘装备,尽量去除300μm以下的道路灰尘.  相似文献   

2.
北京市街道灰尘粒度特征及其来源探析   总被引:8,自引:2,他引:8  
刘春华  岑况 《环境科学学报》2007,27(6):1006-1012
对北京市2005年4月和11月2次采集的街道灰尘样品进行了粒度分析.结果表明,北京市街道灰尘粒度呈双峰分布特征,第一众数为45~100 μm,第二众数为5~20 μm,平均粒径分别为75 μm(春季)和100 μm(秋季);峰态中等偏窄且不对称,分选差,属轻亚粘土到中亚粘土,与黄土和现代尘暴降尘的粒度分布模式相似;街道灰尘沉积是由大气环流对远、近不同距离粗细颗粒物的混合搬运的结果,应是风积作用的继续.街道灰尘样品秋季平均粒径较大,且有由北西至南东逐渐减小的趋势,而春季样品无此变化特点.道路及建筑物工地附近样品呈现大于250 μm的第三众数,可以看出大规模的建设对街道灰尘的贡献.在适当的大气动力条件下,北京市街道灰尘颗粒有60%~80%可以进入大气悬浮搬运.  相似文献   

3.
上海市大气可吸入颗粒物的粒度分布分形特征   总被引:2,自引:0,他引:2       下载免费PDF全文
采用分形维数定量表征颗粒物的粒度分布的方法,计算2005年上海市大气可吸入颗粒物粒度分布的分形维数,分析不同采样点颗粒物粒度分布分形维数的变化与可吸入颗粒物粒度分布的关系,讨论采样时气象条件等因素对颗粒物粒度分布分形维数的影响;推导大气颗粒物的粒度分布分形维数与颗粒物表面吸附性能之间的关系,并结合部分金属元素的含量进行讨论.结果表明,上海市可吸入颗粒物粒度分布的分形维数在0.6506~2.9254之间,并且相对湿度较大,风力较小均会使颗粒物的粒度分布分形维数减小;粒度分布分形维数值越大,颗粒物中细颗粒物越多,粒度分布分形维数较好地表征了颗粒物的粒度整体分布.粒度分布分形维数和颗粒物比表面积等物理性能有直接关系,粒度分布分形维数值越大,细粒子所占的比表面积越多,对有毒有害污染物吸附更多.  相似文献   

4.
南京市城区气溶胶粒度分布特征   总被引:7,自引:0,他引:7  
以九段串级式撞击采样器对南京市气溶胶进行采样测定。经统计分析发现,气溶胶呈双峰分布,粒度分布规律明显,峰值粒径在0.37μm-0.65μm和4.3μm-5.6μm之间,气溶胶浓度季节变化显著,秋季>夏秋,秋季颗粒物中细粒子质量百分比较夏季的多,两季质量中位位直径分别为6.5μm,4,4μm,说明与季节变化密切相关。  相似文献   

5.
沈阳市城区土壤和灰尘中铅的分布特征   总被引:39,自引:1,他引:39       下载免费PDF全文
对沈阳市城市土壤和灰尘中铅的分布特征进行了研究.结果表明,沈阳市区土壤中全铅含量为26~2910.60mg/kg,平均为199.72mg/kg,是对照(33.30mg/kg)的6倍,是沈阳市土壤背景值(22.15mg/kg)的9倍;沈阳市区灰尘中铅浓度范围为19.58~2809.90mg/kg,平均为220.06mg/kg,是对照(37.97mg/kg)的5.8倍;沈阳市土壤和灰尘中铅分布空间差异大,局部污染比较严重,灰尘中铅与土壤中铅的分布规律趋于一致,铁西区铅浓度最高,其次是和平区、皇姑区和于洪区的交界处以及大东工业区;土壤和灰尘中铅含量与距污染源的距离成反比,与距地表的距离也成反比.  相似文献   

6.
北京城市道路灰尘重金属污染的健康风险评价   总被引:20,自引:5,他引:20  
道路灰尘是城市中一类重要的环境介质,人群可通过吸入、摄食及皮肤接触3种途径摄入灰尘中的污染物,长期暴露在灰尘环境中会对人体造成慢性伤害.为探索北京城市道路灰尘中重金属污染的潜在健康风险,本研究于2009年对北京城市道路网络地表灰尘进行调查并获得有效样品225个.研究测定了样品中常见重金属Cd、Cr、Cu、Mn、Ni和Pb的总含量,并应用美国环保署(U.S.EPA)人体暴露风险评价方法进行评价.结果表明,研究区域道路地表灰尘中重金属Mn、Ni的平均含量略低于北京市的土壤背景值,Cr含量略高于土壤背景值,Cu、Pb均值为背景值的2~3倍,Cd含量几乎超出背景值的5倍.不同途径重金属慢性每日平均暴露量排序为:手-口摄食途径>皮肤接触途径>吸入途径.重金属成人非致癌风险排序为Cr>Mn>Pb>Cu>Ni>Cd,儿童非致癌风险排序为Cr>Pb>Mn>Cu>Ni>Cd,均小于非致癌风险阈值;重金属致癌风险排序为Cr>Ni>Cd,均低于致癌风险阈值,其中以Cr和Pb的潜在健康风险最高.对比采样涉及的各行政区内儿童非致癌风险均值发现,风险值随城市功能区定位呈现梯度变化,即首都功能核心区>城市功能拓展区>城市发展新区.Cu、Ni和Pb的健康风险与人口密度、建筑用地等因子显著相关,其含量受人为活动的影响较大,应加强管理控制其风险.  相似文献   

7.
刘玉燕  刘敏  王玉杰 《环境科学》2011,32(9):2676-2680
为了研究道路灰尘铂族元素(PGEs)时间变化规律及其影响机制,以上海市为研究区,共采集季节样品24个、年际样品18个.用王水消解制样,ICP-MS测定.结果表明,灰尘PGEs春、夏、秋、冬含量分别为,Rh:10.40(6.06~17.28)ng/g、11.60(5.52~20.11)ng/g、32.91(18.53~6...  相似文献   

8.
保定城区地表灰尘污染物分布特征及健康风险评价   总被引:26,自引:4,他引:26  
以河北省保定市城区为研究区域,采集了保定城区内办公区、商业区、居住区、工业区、交通区和屋顶6个类别共14个采样点的地表灰尘,分析了地表灰尘重金属和营养元素N、P在不同区域的分布特征,并分析了其可能来源.最后,应用重金属健康风险评价模型(Chronic Daily Intake,CDI)对地表灰尘中Cd、Cr、Cu、Pb和Zn 5种重金属进行了健康风险评价.结果表明,城市屋顶灰尘污染物质含量普遍高于其它区域,之后依次是商业区>交通区>工业区>办公区>居住区,Cd(5.10 mg·kg-1)、Cr(470 mg·kg-1)、Pb(997 mg·kg-1)、Zn(1377 mg·kg-1)和P(999 mg·kg-1)的最大值均来自屋顶灰尘,而Cu(867 mg·kg-1)和N(19.40 mg·kg-1) 的最大值则来自商业区的地表灰尘.重金属Cd和Cr具有复合污染特征,来源复杂且多样化;重金属Pb、Zn和Cu的含量在各区域中的变化趋势较一致且显著相关,主要来源于交通排放.Cd的平均致癌风险指数均达到了1.25×10-5,超过了美国EPA 10-6的标准,由此将导致每百万人增加12.5个癌症患者,已对当地居民的身体健康造成了严重的威胁;各种重金属的平均叠加风险度达0.124,重金属摄入为慢性参考剂量的10%左右,不会对居民的身体健康产生较大的非致癌风险.  相似文献   

9.
为了验证环境磁学方法监测旅游景区道路灰尘环境的可行性,以新疆喀纳斯5A级景区道路灰尘为研究对象,采用磁测和统计方法对其进行磁学特征、空间变异特征及环境意义研究。结果显示,道路灰尘样品磁性矿物含量偏高;载磁矿物以亚铁磁性矿物为主,同时含有一些不完全反铁磁性矿物;磁性矿物粒度主要是多畴和稳定单畴粗颗粒;考虑到研究区远离工业区、城市等污染源,景区道路灰尘样品磁性增强主要来自旅游交通活动输入的磁性污染物颗粒,其次来自路旁表土和自然大气降尘;从道路样品磁性参数的空间分布看,χLF、SIRM、SOFT的空间变化趋势类似,高值区位于景区换乘中心,中值区出现在湖口区域和通往新村和观鱼亭的主干道,低值区分布在新村和通往湖口别墅区的主干道。景区不同道路旅游交通流量和强度是形成磁性特征空间分布格局的主因。研究发现,环境磁学方法基本具备大范围监测景区道路环境质量、圈定潜在污染范围和判别污染物来源的潜力,可以为景区道路交通污染防治提供参考依据。  相似文献   

10.
为验证环境磁学方法监测和预测旅游景区道路灰尘环境的可行性,以新疆天山天池5A级旅游景区内道路灰尘为研究对象,共采集道路灰尘样品40个、道路旁表土样品35个,并对其进行环境磁学分析。结果表明,天山天池道路灰尘磁性主要由亚铁磁性的磁铁矿主导,含有少量不完全反铁磁性矿物,主要以多畴(MD)粗颗粒和稳定单畴(SSD)为主,伴有极少量的超顺磁性颗粒颗粒(SP);景区道路灰尘样品磁性增强与人为交通活动产生的磁性颗粒外源输入密切相关;从道路样品磁性参数的空间分布看,χLF、χARM、SIRM、SOFT的空间变化趋势类似,高值区位于民族文化村和纪念品商店,中值区出现在天山奇石馆,低值区分布在定海神针和秀水山庄。景区不同道路旅游交通的流量和强度是形成磁性特征空间分布格局的主因。研究发现,环境磁学方法基本具有大范围监测景区道路环境质量、圈定潜在污染范围和判别污染物来源的潜力,并能为景区道路交通污染防治提供了参考依据。  相似文献   

11.
为探究长时间跨度的道路积尘变化特征,于2019~2020年对北京市大兴区内主要道路进行尘负荷检测,并于2020年四季收集道路PM10和PM2.5积尘样品,分析化学组分,建立成分谱.结果表明,2019年和2020年大兴区道路尘负荷年均值分别为1.05g/m2和0.74g/m2,2020年大兴区道路尘负荷较2019年下降29.5%.2019年道路尘负荷热点聚集区分散,大兴区内道路尘负荷高值区较多,2020年热点区集中出现在西北部,冷点区集中在东部区域.2020年大兴区道路扬尘排放因子低于2019年,大部分乡镇/街道中,2020年的扬尘排放因子和排放量低于2019年,呈现出东南部 > 中部 > 西北部的趋势.2020年大兴区道路扬尘排放量低于2019年,大兴区南部和西北部乡镇/街道内的扬尘排放量大于中部.受建筑施工活动影响.2020年大兴区道路PM10和PM2.5积尘化学组分中以土壤风沙和建筑施工活动相关的元素为主,Ca、Mg、Si、Al元素分别共占比39.39%和41.71%.对大兴区道路尘负荷进行针对性管控,首先需要对运输车辆进行及时冲洗,降低轮胎的尘土夹带量.其次应加强工地出口至附近1km的道路清扫保洁频次,将工地出口处道路尘负荷对周边道路的辐射影响降低.  相似文献   

12.
New particle formation is a key process in shaping the size distribution of aerosols in the atmosphere.We present here the measurement results of number and size distribution of aerosol particles (10-1...  相似文献   

13.
道路下垫面是街尘累积-冲刷这一城市地表径流发生核心过程的重要场所,研究道路下垫面粗糙度对街尘及其负载污染物的持留分布与污染特征将对估算地表径流负荷及控制策略提供重要科学依据.本文以典型沥青和混凝土路面的街尘为研究对象,采样配对法试验设计并结合分形理论,对比分析粗糙度对街尘单位面积含量、颗粒物粒径组成、负载的氮磷及重金属污染的影响.结果表明,相比沥青路面,粗糙度较小的水泥路面所持留的颗粒物单位面积含量较少,颗粒物粒径较细,分选性较好.氮、磷含量与2种下垫面的粗糙度并无显著的相关关系,主要受环境因素影响较大,各粒径的氮、磷含量负荷比与其质量比一致,细粒径颗粒物对氮、磷的吸附作用并不明显.而重金属污染则受2种下垫面的粗糙度影响较大,水泥路面重金属含量高于沥青路面,且细粒径颗粒物的重金属污染负荷比较大,高于其质量比2.4%~24.1%.不同下垫面街尘样品各粒径段颗粒物微观形态相似.破损路面对街尘累积过程的单位面积含量及粒径组成有着较大的影响,可能对街尘累积冲刷过程及污染物富集存在不同程度的影响.  相似文献   

14.
芜湖市区春季地表灰尘中汞和砷的空间及粒径分布规律   总被引:11,自引:1,他引:11  
以芜湖市高新技术开发区、中心城区和经济技术开发区为研究区域,于2008年春季对其地表灰尘中汞和砷含量、空间分布特征及其在粒径中的分布规律进行了研究.结果表明:芜湖市区地表灰尘中汞、砷含量范围分别为0.011~1.477mg·kg-1、3.533~169.368mg·kg-1,平均值分别为0.230、15.371mg·kg-1,分别是土壤背景值的1.9和1.5倍,存在一定程度的污染;;灰尘中汞含量在经济技术开发区较高,而砷则在高新技术开发区出现高值区;;汞属于空间中相关,说明其变异主要受随机或人为因素的影响;;砷属于空间强相关,说明其变异主要受土壤母质、土地利用方式等因素影响;;研究区地表灰尘汞和砷含量大体上呈随粒径减小而增加的趋势;;不同粒径上汞和砷含量的富集比例随粒径减小呈增加的趋势,汞和砷在>200目粒径上的平均富集比例分别为63.5%和55.8%,说明汞更容易富集在细小颗粒上.  相似文献   

15.
磷代阻燃剂(Phosphorus flame retardants,PFRs)是目前被广受关注的一类新型有机污染物.探究了北京市5类典型室内外灰尘中3种PFRs(三(2-丁氧乙基)磷酸酯(Tris(2-butoxyethyl)phosphate,TBOEP)、磷酸三(2-氯乙基)酯(Tris(chloroethyl)phosphate,TCEP)、磷酸三(2-氯异丙基)酯(Tris(2-chloroisopropyl)phosphate,TCIPP))的污染特征、粒径分布规律及人体暴露水平.结果显示,3种PFRs在宾馆灰尘中的污染水平均最高,在道路灰尘中最低.PFRs在不同类型灰尘中的粒径分布特征存在显著差异.宾馆员工和儿童对灰尘中PFRs的暴露水平较高,需引起重视.  相似文献   

16.
天津城市交通道路扬尘排放特征及空间分布研究   总被引:7,自引:0,他引:7       下载免费PDF全文
许妍  周启星 《中国环境科学》2012,32(12):2168-2173
对天津市中心城区道路按照不同道路类型采取道路灰尘样本,研究统计不同类型道路车辆构成和车流量,依据美国EPA AP-42道路扬尘排放因子模型计算排放因子及排放量并应用Mapinfo软件得到了道路灰尘排放量的空间分布图.计算结果表明,天津市区环线、主干路、次干路、支路的道路粉尘负荷分别为0.30,0.40,0.64,2.02g/m2.环线的PM10的排放强度最高,为30.7kg/(km·d),其次为主干路、次干路和支路.天津市区一年道路灰尘的排放量为27985t,其中PM10排放量为5372t.中环线内和平区由于道路密集,交通扬尘排放量最高,向四周排放量递减.  相似文献   

17.
城市道路灰尘中邻苯二甲酸酯污染特征研究   总被引:11,自引:4,他引:11  
2 0 0 3年 1月采集广州市城区包括居民区、城区交通主干道、垃圾堆放场、休闲旅游区、商业区和工业区等 2 0个道路灰尘样品 .参照USE PA80 61系列方法 ,研究了广州市城区道路灰尘中邻苯二甲酸酯 (PhthalateEsters,PAEs)的分布特征 .结果表明 ,道路灰尘样品中PAEs含量范围为 4 48~ 3 70 42 μg·g- 1 (干重 ) ,平均值为 13 2 5 8μg·g- 1 (干重 ) ,TOC质量分数为 1 42 %~ 16 93 % .综合商业大厦、繁华商业步行街、饮料生产厂区、城区交通主干道和农贸市场道路灰尘PAEs含量较高 ;DEHP、DnBP和DiBP为道路灰尘中主要的PAEs;道路灰尘中wDEHP>wDnBP>wDiBP>wDnOP>wDEP>wDMP.  相似文献   

18.
为研究不同类型工地以及搅拌站和消纳场出口道路尘负荷变化特征,于2020年秋季对北京市通州区主要施工工地(场站)出口道路及137条常规道路(指未受工地影响的公共道路,包括城市道路和公路)进行道路尘负荷监测。根据AP-42模型计算分析典型工地(场站)出口道路扬尘排放因子和排放量。结果表明:2020年秋季北京市通州区不同类型工地(场站)出口2个方向100 m道路尘负荷均值呈搅拌站>消纳场>拆迁工地>房建工地>水务工地>园林绿化工地>交通工地;常规道路尘负荷均值为0.59 g/m2,各典型工地(场站)出口2个方向100 m道路尘负荷均值是常规道路的1.3~21.1倍;典型工地(场站)出口道路尘负荷随距出口距离变化在不同的工地类型之间差异明显,其出口2个方向各200 m道路的PM10和PM2.5扬尘排放因子高出其背景值的1.26~7.37倍,对应的道路扬尘排放量相当于背景点道路路长增加了0.10~2.55 km,平均值相当于13个典型工地(场站)出口道路各增加了1.16 km;所有监测工地(场站)出口及周边道路尘负荷和道路扬尘PM10、PM2.5排放量空间分布表现为北低南高,其影响因素与工地(场站)类型和密度分布、出口道路类型及车流量等密切相关。  相似文献   

19.
APEC会议期间北京市交通扬尘控制效果研究   总被引:5,自引:3,他引:5  
为了评估APEC会议期间严格的交通扬尘控制措施的效果,选取北京地区不同类型道路,在会议之前和会议期间分别采集40个道路积尘负荷样品,并调研了道路车流量及车型比例等机动车活动水平变化.采用AP-42方法计算不同类型道路PM10排放因子和排放强度,基于Arc GIS平台应用自下而上的方法建立了排放清单,分析交通扬尘PM10排放的空间分布特征,评估APEC会议期间北京市道路交通扬尘控制效果.结果表明:APEC会议期间北京市日均车流量减少12%,快速路、主干道、次干道、支路、郊区道路的积尘负荷分别下降31%、58%、73%、54%和46%,PM10排放因子分别下降63%、67%、86%、63%和40%,排放强度分别下降73%、71%、87%、78%和49%.在空间分布上,城区道路交通扬尘PM10排放量减少77%,郊区道路减少49%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号