共查询到19条相似文献,搜索用时 62 毫秒
1.
接种稳定运行300余天的厌氧氨氧化污泥,通过批次试验,研究了不同浓度乙酸钠和不同种类有机物对厌氧氨氧化系统的冲击影响.结果表明:在初始NO2--N浓度为35mg/L左右,乙酸钠浓度为0~200mg/L时,乙酸钠的冲击不会抑制厌氧氨氧化菌的活性,且一定程度上促进厌氧氨氧化反应的进行,最大比氨氧化速率与乙酸钠浓度呈正相关性;不同有机物对厌氧氨氧化系统的促进作用不同,氨氧化速率从高到低依次为乙酸钠、蛋白胨、葡萄糖和淀粉;反硝化作用伴随整个反应过程,但硝态氮还原速率[0.0155~0.0442mgN/(L?min)]小于氨氧化速率[0.1090~0.1498mgN/(L?min)],因此厌氧氨氧化菌在系统中一直占主导地位.在有机物的冲击下,厌氧氨氧化反应可协同反硝化反应去除系统中的总氮,提高系统总氮的去除率,从而改善出水水质. 相似文献
2.
温度、pH值和有机物对厌氧氨氧化污泥活性的影响 总被引:46,自引:16,他引:46
通过厌氧氨氧化速率的测定研究了温度、pH值和有机物对厌氧氨氧化污泥活性的影响.结果表明:温度和pH值对污泥的厌氧氨氧化活性有明显影响,最佳温度为30~35℃,在20~30℃之间,厌氧氨氧化速率与温度之间的关系可以用修正的Arrhenius方程式描述;最佳pH值为7.5~8.3,在pH值为7.0~9.0之间,厌氧氨氧化速率与pH值之间的关系可以用双底物双抑制剂模型描述;厌氧氨氧化污泥中存在着异养反硝化菌,有机物的存在会导致其与厌氧氨氧化菌之间的基质竞争. 相似文献
3.
为实现厌氧氨氧化(Anammox)工艺的深度脱氮,在厌/缺氧运行序批式反应器(SBR)的厌氧段投加乙酸钠(100mgCOD/L)实现了内源反硝化与Anammox的协同脱氮,并考察了反应器的脱氮性能和微生物种群结构变化.结果表明,耦合内源反硝化可明显提升Anammox工艺的脱氮性能,系统的总无机氮(TIN)去除率由79.07%±2.63%提高至97.00%±1.35%,出水TIN降低为(3.30±1.49)mg/L.典型周期数据表明厌氧段合成的内碳源如聚羟基脂肪酸酯可为后续内源反硝化作用提供电子供体,但不对Anammox的反应速率产生影响,基于物料平衡分析表明系统的氮素主要通过Anammox作用去除(PAMX:PEDN=98.27%:1.73%).乙酸钠的投加刺激了系统中反硝化菌Thauera的大量增殖,但随着具有内源反硝化能力的Denitratisoma丰度上升,促进了Anammox菌Candidatus Brocadia的丰度恢复,实现了Anammox系统的深度脱氮. 相似文献
4.
5.
《环境科学与技术》2021,44(4):54-63
短程反硝化-厌氧氨氧化工艺因无须曝气,节省碳源,理论上可实现100%氮去除,成为近年来最具应用前景的新型污水生物脱氮技术。短程反硝化(NO_3~--N→NO_2~--N)又可分为胞外碳源(即外源短程反硝化,或短程反硝化)和胞内碳源(即内源短程反硝化)2种电子供体驱动类型,但目前鲜有研究对2种新型短程反硝化及其耦合厌氧氨氧化的专题报道。文章首先对比了短程反硝化和内源短程反硝化工艺原理;其次从反应时间、COD/NO_3~--N比、碳源类型、温度和溶解氧等5个方面总结了2种工艺的影响因素;随后对国内外基于短程反硝化/内源短程反硝化耦合厌氧氨氧化的研究进展进行综述;最后结合当前的研究现状提出目前急需解决的问题并展望了短程反硝化/内源短程反硝化耦合厌氧氨氧化技术的发展方向。 相似文献
6.
研究了ANAMMOX耦合异养反硝化反应器的启动过程,考察了苯酚浓度对耦合反应器脱氮性能的影响.接种2L(占反应器有效容积的20%)挥发性悬浮固体(MLVSS)为6000mg/L的ANAMMOX颗粒污泥,在pH7.8、温度为25℃、HRT为1.5h的条件下经过86d的培养,ANAMMOX耦合异养反硝化启动成功.实验结果表明,在稳定运行阶段,NH4+-N、NO2--N和TN平均去除率分别为85.4%、86.1%和79.9%,TN平均容积负荷和TN平均去除负荷分别为2.63,2.10kg/(m3·d);ANAMMOX颗粒污泥外面包裹着苯酚反硝化菌;系统内异养反硝化与ANAMMOX存在协同和竞争关系.当苯酚浓度≥0.3mmol/L时,ANAMMOX菌的活性受到很大抑制,苯酚浓度的升高加剧了苯酚反硝化菌与ANAMMOX菌之间的竞争;从脱氮效果及系统稳定两方面综合考虑,当苯酚浓度为0.2mmol/L时,耦合效果最好,消耗的NH4+-N、NO2--N与生成的NO3--N之比为1:1.52:0.11. 相似文献
7.
温度对厌氧氨氧化与反硝化耦合脱氮除碳的影响 总被引:4,自引:0,他引:4
采用ASBR反应器,研究了温度对厌氧氨氧化与反硝化耦合反应的短期影响.试验结果表明:耦合反应的活化能要小于单纯厌氧氨氧化反应的活化能,厌氧氨氧化与反硝化耦合反应可在一定程度上缓解低温对单纯厌氧氨氧化反应造成的消极影响,温度降低对厌氧氨氧化反应的影响大于对反硝化反应的影响.温度与耦合反应最大比反应速率的关系符合Arrhenius方程,在25~35℃时,耦合反应活化能为49.56kJ/mol,小于厌氧氨氧化反应的活化能66.18kJ/mol,且厌氧氨氧化反应为主导反应,对脱氮的贡献率约为61.29%.9~25℃时耦合反应的活化能为74.91kJ/mol,小于此温度梯度下厌氧氨氧化的活化能106.40kJ/mol,反硝化反应对脱氮的贡献率随温度的降低逐渐升高,9℃时,反硝化反应成为主导反应,对脱氮的贡献率约为75.10%.温度低于25℃时,反应器的容积氮去除速率(NRR)会受温度的影响. 相似文献
8.
9.
为探究中国南方农田土壤氮迁移过程的反硝化与厌氧氨氧化(anaerobic ammonia oxidation,ANAMMOX)速率变化和脱氮贡献本研究采集宛山荡麦稻轮作区农田不同层深土壤及农田、沟道、河岸带和湖泊沉积物等不同土地利用类型土壤样品,分析其理化性质采用Illumina MiSeq测序和实时荧光定量PCR (quantitative real-time PCR,qPCR)技术探究土壤样品的微生物群落组成和功能基因丰度应用同位素培养实验测定各样品的潜在反硝化与厌氧氨氧化速率(以N2计,下同).结果表明,土壤反硝化速率与TOC、NH4+-N和NO3--N含量均显著正相关(P<0.05),与nirS、nirK及nosZ等功能基因丰度亦呈显著正相关(P <0.05).农田表层土壤反硝化速率为(11.51±1.04) nmol·(g·h)-1,显著高于农田其他土壤层以及其他土地利用类型(P <0.05),而农田土壤中厌氧氨氧化速率在20~... 相似文献
10.
为进一步提高脱氮效率,该文采用人工快渗(CRJ)系统作为厌氧氨氧化反应器,考察了有机物添加对氮素污染物转化及菌群结构的影响,探讨了厌氧氨氧化协同反硝化脱氮的可行性.结果 表明,通过逐步提高进水COD浓度至20 mg/L,可在49d内实现CRI系统厌氧氨氧化协同反硝化的快速启动,稳定运行期间TN平均去除率达到98.1%,相比未添加有机物时启动周期缩短了11d,TN平均去除率提高了7.3%.当进水COD浓度提高至25 mg/L时,厌氧氨氧化对脱氮的贡献率降低了27.2%,主要厌氧氨氧化功能菌属Candidatus Kuenenia的相对丰度降至12.42%,而反硝化功能菌属Flavobacterium的相对丰度升至11.16%,反硝化菌与厌氧氨氧化菌竞争反应基质而导致厌氧氨氧化活性被削弱,TN平均去除率下降了13.5%.因此,将进水有机物浓度控制在适宜范围时可有效改善厌氧氨氧化的脱氮性能. 相似文献
11.
有机物对厌氧氨氧化生物膜反应器脱氮效能及微生物群落的影响 总被引:2,自引:0,他引:2
为考察有机物对厌氧氨氧化生物膜反应器脱氮效能的影响,采用MPN(most probable number)法和高通量测序技术,结合处理效果数据,对比分析了有无有机物影响下生物膜中微生物群落差异.试验表明:在进水有机物(COD)为30和60 mg·L-1作用下,总氮去除率与进水COD为0 mg·L-1时的84.10%相比较分别提高了5.08%和10.41%;COD为90 mg·L-1时,总氮去除率降至89.05%.由MPN法和高通量测序结果可知,相对于无有机物,60 mg·L-1有机物使反应器中反硝化菌数量增加,浮霉菌门和变形菌门丰度明显提高,且微生物群落更加丰富.有机物能影响反应器中厌氧氨氧化、反硝化脱氮效能及微生物菌落丰度,适宜的有机物浓度可使厌氧氨氧化与反硝化作用有效耦合,提高反应器的脱氮效能.本研究可为厌氧氨氧化生物膜反应器处理含有机物的实际污水提供参考价值. 相似文献
12.
有机物对ANAMMOX反应器运行性能的影响 总被引:4,自引:0,他引:4
研究了有机物对ANAMMOX反应器运行性能的影响.在没有有机物的条件下,进水基质(氨氮和亚硝氮)浓度为70~280 mg·L-1,容积总氮负荷为0.29~0.72 kg·m-3·d-1,氨氮去除率86.0%~99.7%,亚硝氮去除率88.7%~99.3%.添加有机物(酵母膏100 mg·L-1)后,ANAMMOX反应器运行性能与容积总氮负荷有关.容积总氮负荷低于0.43 kg·m-3·d-1时,有机物对ANAMMOX反应器运行性能的影响较小,氨氮和亚硝氮去除率保持在94%以上;但当容积总氮负荷为0.72 kg·m-3·d-1时,有机物对ANAMMOX反应器运行性能产生严重影响,氨氮和亚硝氮去除率降至75%以下.停止添加有机物并降低容积总氮负荷,可在短期内消除有机物对ANAMMOX反应器运行性能的影响. 相似文献
13.
采用UASB连续流反应器,研究了不同有机物浓度对厌氧氨氧化的脱氮性能及微生物群落结构的长期影响,结果表明,在COD浓度分别为0,20,40,60和80mg/L时,40mg/L COD浓度条件下对厌氧氨氧化反应的促进程度最大,TN和COD去除率稳定在88.5%和75.3%.在低浓度COD(20mg/L)条件下,厌氧氨氧化反应受影响程度不明显,而COD为60和80mg/L时,系统脱氮性能受到不同程度的抑制.通过高通量测序技术对不同COD浓度下的微生物群落结构进行分析,结果表明不同COD浓度下,绿曲挠菌门(Chloroflexi)、浮霉菌门(Planctomycetes)、变形菌门(Proteobacteria)和放线菌门(Actinobacteria)等占据主导,且随着COD浓度从0增至80mg/L,浮霉菌门相对丰度从24.60%降至7.70%,其中的Candidatus Brocadia属降幅最大,丰度从12.14%减至3.63%,变形菌门相对丰度从15.40%增至36.30%,其中Bdelloribrio菌属的增幅最大,丰度从0.01%增至8.39%. 相似文献
14.
15.
一株异养硝化好氧反硝化菌的筛选鉴定及其脱氮特性 总被引:6,自引:1,他引:6
从长期施用农家肥的土壤中筛选出一株异养硝化好氧反硝化菌SQ2,经形态学和16S rRNA同源性分析,初步确定该菌株为不动杆菌Acinetobacter sp..实验研究了菌株SQ2对氨氮、硝酸盐和亚硝酸盐的去除特性,通过改变碳氮比、pH、接种量、碳源、温度和转速考察了菌株异养硝化条件,并探究了菌株耐高氨氮特性.结果表明,在28℃、180 r·min~(-1)好氧条件下,菌株SQ2对氨氮、亚硝态氮和硝态氮去除率分别达到100%、99.6%和96.9%,异养硝化体系中氮源降解速率、COD去除速率及菌株生长量均要高于好氧反硝化体系.菌株SQ2异养硝化最适条件为:碳氮比为12,pH为7~9,接种量为5%,碳源为琥珀酸钠,温度为28℃,转速为180~220 r·min~(-1).菌株SQ2具有良好的耐高氨氮特性,对实际高氨氮猪场废水脱氮效果良好,在高氨氮污水等生物处理方面具有良好的应用前景. 相似文献
16.
苯酚对厌氧氨氧化污泥脱氮效能长短期影响 总被引:1,自引:4,他引:1
通过接种厌氧氨氧化(ANAMMOX)污泥,研究了苯酚浓度对ANAMMOX污泥脱氮效能长短期影响.短期结果表明,随着苯酚浓度的增大,氮去除率快速下降.当苯酚浓度大于600 mg·L-1时,NH+4-N的去除率降低到6%以下,TN的去除率只有10%左右.长期实验结果表明,当苯酚浓度小于100 mg·L-1时,NH+4-N的去除率都能达到99%以上,说明低浓度苯酚对ANAMMOX菌有一个驯化的过程.当苯酚浓度高于400 mg·L-1时,NH+4-N的去除率只有23.59%,TN去除率只有50.3%,ANAMMOX污泥抑制明显,与短期结果相同.此时反硝化菌活性明显高于ANAMMOX菌,说明苯酚可作为有机碳源诱发体系中发生反硝化反应,最终导致反硝化菌在体系中占据主导地位.但高浓度(1 000 mg·L-1)苯酚对反硝化菌也具有抑制作用.通过拟合得到苯酚对ANAMMOX半抑制有效浓度(IC50)为71.57 mg·L-1.经过18 d的恢复后,NH+4-N去除率基本恢复,但氮素之间的转化计量式发生了改变,ρ(NH+4-N)去除/ρ(NO-2-N)去除/ρ(NO-3-N)生成为1∶0.86∶0.2.研究结果表明,将苯酚控制在合理范围内可以使反应器达到同步脱氮除酚的效果. 相似文献
17.
采用厌氧折流板反应器(ABR)为研究对象,以一定COD、NH+4-N和NO-2-N比例增加进水基质浓度,以明确基质负荷提高对ABR厌氧氨氧化和反硝化协同体系脱氮除碳的影响,并通过基质去除模型获得反应器对基质的耐受程度.研究表明,ABR反应器能够实现厌氧氨氧化反硝化耦合脱氮除碳,当进水基质COD、NO-2-N和NH+4-N浓度从220、168和60 mg·L~(-1)提高至420、270和110 mg·L~(-1)时,反应器脱氮效能下降,COD、NO-2-N、NH+4-N和TN去除率分别为97%、94%、30%和78%,厌氧氨氧化对TN去除的贡献率从43.08%骤降至16.49%,反硝化脱氮贡献率从53.81%增至82.07%.动力学模型拟合发现,Stover-Kincannon模型(R2=0.937,TN;R2=0.975,COD)较一级基质去除模型(R2=0.314,TN;R2=0.016,COD)更适合评价反应器对基质的承受力;Stover-Kincannon模型表明,反应器对TN和COD的最大基质利用率分别为1.43 g·L-1·d-1和3.33 g·L-1·d-1,饱和常数(KB)分别为1.2和3.79,研究认为ABR协同脱氮除碳体系理论上还有继续提升基质负荷的潜力. 相似文献
18.
从生物陶粒反应器中分离得到2株异养硝化细菌ZW2和ZW5,对2菌株的生理生化实验以及16S rDNA序列分析,确定菌株ZW2和ZW5分别为假单胞菌(Pseudomonas sp.)和粪产碱杆菌(Alcaligenes faecalis),并对其硝化性能和脱氮能力进行了研究.结果表明,2株细菌能在利用有机物的同时进行硝化和脱氮作用.经过60h的培养,ZW2和ZW5对氮素的去除率可以分别达到43.90%和48.52%,对COD的去除率分别为67.48%和78.21%.在此过程中,亚硝酸盐浓度一直保持在微量水平,硝酸盐稍有积累,说明2株异养硝化细菌同时也具有好氧反硝化功能. 相似文献
19.
海水异养硝化-好氧反硝化芽孢杆菌SLWX2的筛选及脱氮特性 总被引:1,自引:3,他引:1
从分离自刺参养殖环境的7株候选菌株中筛选出1株具有较强异养硝化和好氧反硝化能力的菌株SLWX_2,通过形态学特征、生理生化特性和16S rRNA基因测序分析鉴定其为花津滩芽孢杆菌(Bacillus hwajinpoensis).该菌株脱氮特性研究结果表明,SLWX_224 h对氨氮、亚硝酸氮和硝酸氮的去除率分别达到100%、99.5%和85.6%;当3种无机氮源同时存在时,菌株优先利用氨氮,再利用NO_2~--N和NO_3~--N,72 h 3种无机氮的质量浓度均降至0.013 mg·L~(-1)以下,表明该菌株能同时进行异养硝化和好氧反硝化完成脱氮;在氨氮负荷500 mg·L~(-1)、亚硝酸氮负荷100 mg·L·~(-1)和硝酸氮负荷200 mg·L~(-1)范围内,该菌的脱氮能力不受明显抑制,对3种形态的氮均有良好去除效果,96 h最多可去除180 mg NH_4~+-N、30 mg NO_2~--N和120 mg NO_3~--N,并且在硝化过程中没有亚硝酸氮积累.该菌株在海水养殖和高盐高氮工业废水的脱氮处理方面具有更大潜力. 相似文献