首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 515 毫秒
1.
赵艳辉  赵阳国  郭亮 《环境科学》2016,37(3):1156-1162
为探讨微生物燃料电池(microbial fuel cell,MFC)处理经预处理后剩余污泥的可行性以及不连续供电能力,采用双室MFC,以剩余污泥热处理上清液为基质进行启动和运行,通过改变电池阴极电子受体而导致电势差变化来监测其产电的运行稳定性.结果表明,反应器以氧气作为阴极电子受体148 h后启动成功,最大输出电压0.24 V,将阴极电子受体换为铁氰化钾时,能获得0.66 V的最大输出电压和4.21 W·m~(-3)的最大功率密度.当将阴极电子受体分别替换为氧气或者开路,又转换为铁氰化钾后,电池输出功率恢复迅速,电池对有机物去除效率基本不受影响,对化学需氧量(COD)、氨氮去除效率分别达70%和80%.本研究表明,利用预处理剩余污泥进行MFC处理和产电是可行的,可获得较高的功率密度,同时MFC可以实现不连续供电.  相似文献   

2.
为了提高剩余污泥降解效能和废水中六价铬还原效能,研究了CaO2对微生物燃料电池同步处理剩余污泥和六价铬废水的影响,考察了不同CaO2投加量下微生物燃料电池阳极剩余污泥的降解效能、阴极六价铬的还原效能及产电效能.结果表明,当阳极室CaO2投加量分别为0,0.1,0.2,0.4,0.6,0.8gCaO2/gVSS时,运行120h后,阴极六价铬还原率分别为73.38%,78.91%,99.47%,97.70%,97.04%,96.37%,运行30d后,阳极剩余污泥TCOD降解率分别为72.4%,76.9%,81.0%,78.2%,75.7%,74.2%.证明投加CaO2后,六价铬还原率和TCOD降解率都有提高.当投加量为0.2gCaO2/gVSS时处理效能最好,输出电压最大为1.15V.六价铬还原率提高了36.08%,TCOD降解率提高了11.88%.此外,投加CaO2后微生物燃料电池电化学活性有所提高,表明CaO2投加对电池电子传递过程有促进作用.结果说明CaO2有利于提高对微生物燃料电池同步处理剩余污泥和六价铬废水效能.  相似文献   

3.
采用剩余污泥厌氧发酵液为阳极燃料、铁氰化钾溶液为阴极电子受体,成功启动了双室微生物燃料电池(MFC).考察了厌氧发酵过程中剩余污泥上清液中各种挥发性脂肪酸(VFAs)含量的变化,研究分析了污泥厌氧发酵液燃料电池的产电过程、燃料消耗及电子供体. 结果表明,污泥厌氧发酵液中乙酸含量最高(约占总VFAs的50%),异戊酸和丙酸含量次之(分别约占总VFAs的18%及15%),正丁酸和异丁酸含量较少(均低于总VFAs的10%),正戊酸含量最低(低于总VFAs的1%);MFC实现了250h稳定电压输出(0.65±0.05V),库伦效率为9.09%;阳极总化学需氧量(TCOD)、溶解性化学需氧量(SCOD)、VFAs均呈现整体下降趋势, TCOD和SCOD的去除率分别为74.9%和86.4%; VFAs的完全消耗伴随着反应器产电性能迅速变差,表明VFAs是主要电子供体;在MFC产电过程中, VFAs的消耗与产生同时存在,消耗总体快于产生;各种VFAs消耗快慢依次为:乙酸>正丁酸>丙酸>正戊酸>异戊酸>异丁酸.  相似文献   

4.
采用剩余污泥为阳极底物,六价铬为阴极电子受体,构建双室微生物燃料电池(MFC).MFC启动成功后,考察阳极室污泥初始浓度和阴极室六价铬初始浓度对MFC产电性能及六价铬还原速率的影响.较高的污泥浓度(8~12g/L)对六价铬的还原速率影响均较小,且去除率均可达99%以上.污泥浓度为10g/L的MFC具有较高的产电性能,内阻为108Ω,最大功率密度输出为3621mW/m3.阴极室较高的Cr(VI)初始浓度可维持较长时间的高输出电压,但对阳极污泥降解并无明显影响.XPS测试结果表明,阴极Cr(VI)的还原产物为Cr(III),因电场作用被吸附在电极片上,使得阴极溶液中的总铬浓度降低.研究表明,剩余污泥为底物的微生物燃料电池可以在产电的同时实现剩余污泥的资源化及电镀废水的无害化.  相似文献   

5.
葡萄糖和硝基苯为混合燃料时MFC的产电特性研究   总被引:2,自引:2,他引:0  
通过构建双极室微生物燃料电池(microbial fuel cell,MFC),以铁氰化钾溶液为阴极电子受体,以硝基苯(nitrobenzene,NB)和葡萄糖为混合燃料,研究MFC的产电特性和NB的降解情况.结果表明,在外阻为1000Ω的条件下,随着NB初始浓度的增加,双极室MFC的产电特性明显受到抑制.当葡萄糖浓度为1000mg/L,NB初始浓度分别为0、50、150、250mg/L时,MFC的运行周期逐渐缩短,分别为55.7、51.6、45.9、32.2h;最大输出电压分别为670、597、507、489mV;最大体积功率密度分别为28.57、20.42、9.29、8.47W/m3;电荷量分别为65.10、43.50、35.48、30.32C.MFC利用NB和葡萄糖为混合燃料,可以在稳定地输出电能的同时实现有机物高效降解,MFC对NB去除率高达100%,对COD的去除率达到87%~98%.但以250mg/LNB为单一燃料时,MFC无明显产电现象.DGGE图谱表明NB的加入改变了MFC阳极电极上微生物的群落结构.  相似文献   

6.
以剩余污泥为接种液和基质,探讨了添加生物表面活性剂(鼠李糖脂/TSS,0.3 g·g-1)对单室剩余污泥微生物燃料电池(SSMFC)产电特性及剩余污泥减量化的影响.结果表明,在一个运行周期中,对照组的产电周期为20 d,最大功率密度为236.8 mW·m-2,库仑效率为5.7%,TCOD去除率为28.6%,TSS去除率为28.9%,VSS去除率为33.4%,而实验组产电周期达到35 d,库伦效率为11.8%,最大输出功率密度为516.7 mW·m-2,较对照组增加了118.2%,TCOD、TSS、VSS去除率分别为58.5%、56.7%和66.3%,较对照组分别提高了104.5%、96.2%和98.5%.随着系统的运行,对照组和实验组系统输出电压均是先稳定一段时间后逐渐降低,污泥中SCOD、蛋白质和溶解性糖浓度均呈先上升再下降趋势.采用向剩余污泥中投加鼠李糖脂的方法可以增强SSMFC的产电效率,同时能显著增强剩余污泥减量化效果.  相似文献   

7.
以吲哚为燃料的微生物燃料电池降解和产电特性   总被引:4,自引:1,他引:3       下载免费PDF全文
以铁氰化钾为电子受体,在两极阴阳室内使用碳毛刷纤维为电极材料构建了循环式微生物燃料电池(MFC),研究了以吲哚为单一燃料和吲哚+葡萄糖为混合燃料条件下MFC的产电特性以及对吲哚和COD的去除效果.结果表明,以1000mg/L葡萄糖+250mg/L吲哚为混合燃料时,MFC的最高电压和最大功率密度分别为660mV和51.2W/m3(阳极),MFC运行10h对吲哚和COD的去除率分别为100%和89.5%;分别以250,500mg/L吲哚为单一燃料时,MFC的平均最高电压分别为115,118mV,最大功率密度分别为2.1,2.3W/m3(阳极).在MFC中,250,500mg/L吲哚被完全降解的时间分别为6,30h.MFC能够利用吲哚为燃料,在实现高效降解吲哚的同时对外产生电能,可用于处理含有毒且难降解有机物的焦化工业废水.  相似文献   

8.
三种预处理方法对污泥的破解效果   总被引:4,自引:0,他引:4       下载免费PDF全文
运用热水解、超声波和微波等3 种方法预处理污水剩余污泥,通过测定污泥pH 值、可溶性蛋白质、总糖和可溶解性化学需氧量(SCOD)等指标考察其对污泥破解效果的影响.结果表明,在各种预处理中,污泥pH 值变化不显著.污泥破解效果随处理强度的增加而增强.超声波ED=2W/L,t =10min 条件时,污泥的破解效果最好,可溶解性蛋白质、总糖和SCOD 浓度分别为1013.6,512.6,4184 mg/L;SCOD/TCOD 值较原始污泥升高了41.73%.从实际应用和运行成本考虑,长时间而低强度的处理都能够达到较为理想的破解效果,即热处理(t=75min,T=45℃),超声波处理(t =10min,ED=0.5W/L),微波处理(t =300s, p =70W). 在能耗相同的条件下,破解效果为超声波>微波>热水解.  相似文献   

9.
高浓度苯酚的MFC降解及产电性能   总被引:4,自引:1,他引:3  
以铁氰化钾溶液作为电子受体,在阴阳两极室中分别填充石墨颗粒的基础上构建了填料型微生物燃料电池(Microbial Fuel cell,MFC),研究了苯酚为单一燃料和苯酚 葡萄糖为混合燃料条件下MFC的产电特性以及对苯酚和COD的去除效果.在1OOOΩ外电阻条件下,1000mg·L-1苯酚为单一燃料运行时,MFC在苯酚去除率达到约90%时输出电压达到最大值,最大输出电压为540mV,产电曲线存在单一极大值;以1000 mg·L-1苯酚 500 mg·L-1葡萄糖为混合燃料运行时,最大输出电压可达657mV,产电曲线存在2个峰值,第1峰值和第2峰值出现时对应的苯酚去除率分别约为20%和90%.混合燃料运行条件下,前后2个产电峰值出现时MFC的最大体积(面积)功率密度分别为28.3w·m-3(342.OmW·m-2)和12.6 w·m-3(152.2mW·m-2),内阻分别为194Ω和246Ω.在2种燃料情形下,MFC对苯酚和COD的去除率均可在60h之内分别达到95%和90%以上.试验结果表明,MFC能够利用高浓度苯酚作为燃料,在实现高效降解的同时稳定地向外输出电能,这为酚类难降解有机物的高效低耗处理提供了新的研究思路.  相似文献   

10.
李学军  梁英  黄国平  郑双飞 《环境工程》2013,(Z1):522-526,516
以SCOD/TCOD(可溶性COD/总COD)、毛细吸水时间(CST)为主要考察指标,研究了微波、碱及其联合技术预水解市政污泥的效果。结果表明,采用不同微波功率单独处理时,相对于原污泥,SCOD/TCOD均有显著提高,在高火档(功率为863 W)下,当处理时间为2 min,可由原污泥的1.40%增加到28.66%,且对应的CST相对原污泥亦有明显下降,即该处理既有利于污泥中不溶性COD转化为SCOD,亦可改善污泥的脱水性能。碱单独预处理污泥可使污泥的SCOD/TCOD从未处理的2.68%提高至25.83%,但毛细吸水时间亦显著增加,增加至原污泥的14倍,碱处理虽然可增加污泥中COD的溶出,但不利于污泥的脱水。而碱-微波(先碱后微波处理)联合预处理可使SCOD/TCOD从原污泥的1.23%增加至34.95%,优于碱或微波单独处理或者微波-碱联合处理效果,但不利于改善污泥的脱水性能。  相似文献   

11.
采用单室无膜悬浮阴极微生物燃料电池(MFC),对比分析了不同处理方式的污泥(直接污泥、微波预处理污泥和酶强化水解污泥)为燃料时MFC产电特性、污泥减量化效果和能源效率.研究表明,酶强化污泥为燃料的MFC(ESMFC)产电周期最长(41d),功率密度最大(775.21mW/m2),但库仑效率(CE)仅10.58%.采用微波污泥为燃料的MFC(MSMFC)CE最高(84.6%),而产电周期(30d)和功率密度(343.41mW/m2)居中.采用直接污泥为燃料的MFC(SMFC)产电周期(15d)、功率密度(294.53mW/m2)和CE(5.8%)均最小.采用直接污泥为燃料的MFC中TCOD去除率为26.2%,VSS去除率为32.5%.采用污泥预处理手段有利于促进污泥减量化,MSMFC和ESMFC中TCOD去除率分别增加到58.5%和63.2%,VSS去除率分别增加到73.9%和77.1%.  相似文献   

12.
孙杏  胡凯  雷晨雨  陈卫 《环境工程》2021,39(4):147-155
针对微生物电解池(MEC)处理剩余污泥时水解速率慢、有机质降解率低的问题,采用冻融破解预处理剩余污泥,探讨了冻融对污泥泥质的影响及对后续MEC处理效能的强化作用.结果 表明:冻融处理可以有效促进污泥絮体解散、细胞破裂及有机物溶出,在-18℃冷冻72 h,26℃融解3h后,污泥SCOD增加了2.58倍.以冻融污泥为底物的...  相似文献   

13.
剩余污泥为底物的微生物燃料电池处理含铜废水   总被引:3,自引:3,他引:3  
以剩余污泥作为阳极底物,CuSO4溶液为阴极溶液构建了双室有膜微生物燃料电池(microbial fuel cell,MFC),研究了MFC的启动,污泥的降解,Cu2+的去除和阴极还原产物的性质.结果表明,Cu2+可作MFC的阴极电子受体,在外电路电阻为1 000 Ω,Cu2+浓度为6 400 mg/L的条件下获得的稳...  相似文献   

14.
王林  吴可  王成业  李燕 《中国环境科学》2022,42(6):2638-2646
微生物燃料电池(microbial fuel cell,MFC)阴极的氧化还原反应能力对MFC的产电性能起着至关重要的作用,因此,本研究制备了铁酸锰/活性炭(MnFe2O4/AC)并对其进行材料学表征,研究其作为MFC空气阴极催化剂时产电和污水处理效果.研究表明,MnFe2O4和AC物质的量比为1:3时MFC电功率密度最高,达302.7mW/m².在峰值电压附近维持时间长达200h,维持时间是传统Pt/C催化剂MFC的4倍,库伦效率达到17.45%.在催化剂重复利用实验中发现,在相同的运行时间内,采用Pt/C催化剂的MFC电压下降明显,而采用MnFe2O4/AC催化剂的MFC电压基本保持稳定,证明了MnFe2O4/AC催化剂良好的循环稳定性.污水处理效果方面,MnFe2O4和AC物质的量比为1:3时处理效果最好,COD去除率达74.66%.因此,MnFe2O4/AC催化剂制备简单、价格低廉、电化学性能稳定,在提高MFC产电持久性方面具有实际意义.  相似文献   

15.
为探究MFC(microbial fuel cells,微生物燃料电池)对人工湿地(constructed wetland,CW)堵塞物EPS(extracellular polymeric substances,胞外聚合物)组分的处理效果和产电性能,构建双室MFC,设置闭路组(closed circuit MFC,MFC-C)和开路组(open circuit MFC,MFC-O)对EPS中的主要组分〔PN(protein,蛋白质)和PS(polysaccharide,多糖)〕及人工湿地堵塞物进行处理,分析底物类型、底物浓度和外阻(Rex)对MFC系统产电性能的影响及系统对底物的处理效果.结果表明:①MFC系统的产电性能受底物类型、底物浓度及Rex的影响较大,底物浓度增加1.5倍(由200 mg/L增至500 mg/L)时,MFC系统最大电压(Vmax)增加5.8%(PN),最大功率密度(Pmax)分别增加188.30%(PN)和124.21%(PS);保持底物类型和底物浓度不变,Rex增加9倍(由100 Ω增至1 000 Ω)时,MFC的Vmax分别增加110.26%(PN)和92.81%(PS),Pmax分别增加109.19%(PN)和7.51%(PS).②PN可全部被阳极微生物利用,但同时阳极微生物会分泌PS,底物浓度增加1.5倍时,出水中ρ(PS)分别增加107.85%(MFC-C)和78.55%(MFC-O);Rex增加9倍时,ρ(PS)分别增加415.85%(MFC-C)和294.29%(MFC-O);底物为PN时,出水中ρ(PS)均表现为MFC-C < MFC-O,说明MFC形成的微弱电场在一定程度上可抑制PS的分泌.③人工湿地堵塞物可作为MFC的底物,随着投加量的增加(除堵塞物投加量为0.500 g/L外),Vmax(约750 mV)变化不大,但电压稳定时间随投加量的增加而略有延长;堵塞物投加量为6.667 g/L时,MFC的Pmax为12.25 mW/m2,内阻(Rint)为1 112.5 Ω,MFC产电性能下降.研究显示,人工湿地堵塞物EPS可以作为MFC的阳极底物并同步实现能源回收.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号