首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
利用线性回归、聚类分析及相关分析等统计方法对华南地区57个地面气象站的观测资料进行分析,探究近54年华南地区霾日数的时空变化特征及其气候成因.结果表明,年平均霾日数大值区主要分布在广东珠江三角洲(珠三角)地区和广西中东部.54年来霾日数呈现显著的上升趋势,而2008年后有所下降.霾日数的季节变化表现为冬季最多,其次是秋季和春季,夏季最少.2008年以后春、夏、秋3季霾日数有所下降,而冬季仍维持在较高水平.不同等级霾日数在近54年来均有不同程度的上升,霾污染不仅在日数上有明显的增加趋势,而且污染强度在加强.不同地区霾日数的快速增长时期不一样,污染严重和正常污染地区发生在20世纪90年代,而相对清洁地区发生在2000年以后.另外近10年污染严重和正常污染地区霾日数有所下降,但相对清洁地区仍维持快速的增长趋势.近54年华南地区年降水日数、年平均风速、大风日数和年小风日数等气候因子变化结果致使气溶胶粒子的湿沉降减弱,污染物扩散能力下降,霾天气生成概率增加.  相似文献   

2.
河北及周边地区霾污染特征的模拟研究   总被引:13,自引:10,他引:13  
应用MM5-Models-3/CMAQ空气质量模拟系统对河北及周边地区进行了区域尺度的模拟,并选取石家庄、邢台、北京、天津、太原、郑州6个代表性城市分析了该地区霾污染特征.首先,通过气象观测数据对2001—2010年10年间的霾天气进行了识别,就统计结果来看,该地区霾污染的季节变化非常显著,冬季最为严重,其次是夏秋季;5月份的发生频率则最低,其次是4月和6月.选取霾污染较为严重的2007年12月进行了模拟,在模拟时段内,霾日的平均PM2.5浓度是非霾日的1.6~3.1倍,霾的发生有很明显的区域同步性.霾日PM2.5的成分也有显著变化,硫酸盐、硝酸盐等二次颗粒物的百分比含量有明显的增加,说明该地区霾的出现与二次颗粒物的形成有非常密切的关系.  相似文献   

3.
利用陕西省地面气象观测站观测资料、中国国家统计局统计资料、美国NASA的MODIS气溶胶光学厚度(AOD)资料以及NCEP/NCAR月平均再分析资料,对1980~2016年陕西省冬季霾日数的时空变化特征及可能原因进行了分析,结果表明:(1)1980~2016年冬季陕西省平均霾日数为12d左右,并且伴有明显的年代际变化;其中1980~2012年冬季霾日数波动明显,1980~1993年偏多,1994~2012年偏少,2013年之后霾日数增加明显.(2)1980~2016年冬季陕西的霾日数有显著的区域差异.关中地区的霾日数最多,平均每年大于18d;陕南地区次之,年平均霾日数为10d左右;陕北地区最少,平均霾日数仅3d左右.陕北、关中、陕南3大区域冬季的霾日数均在2013年后出现了明显的增多.(3)2000~2016年冬季MODIS卫星监测的陕西AOD在关中咸阳、西安、渭南以及汉中南部和安康南部存在明显的高值区,大于0.4,其中关中气溶胶高值区域与关中地区霾日数大值区域有很好的对应关系.(4)2013~2016年冬季我国中东部的对流层低层的东风异常是向陕西关中地区输送气溶胶的有利条件,是霾天气的产生原因之一;2013~2016年陕西冬季对流层低层存在一个明显的位温梯度增大的区域,是不利于霾向高空扩散的大气层结条件,是霾日数明显增加的另一个原因.  相似文献   

4.
1960~2013年我国霾污染的时空变化   总被引:2,自引:6,他引:2  
符传博  唐家翔  丹利  何媛 《环境科学》2016,37(9):3237-3248
利用近54年(1960~2013年)我国霾日以及一些相关气象要素的观测资料,采用气候倾向估计、聚类分析、累积距平和突变检验等多种方法,分析了我国霾日数变化特征.结果表明:我国的霾污染主要发生在中东部和南部,尤以北京、山西中部和南部、河南局部地区、长江三角洲和珠江三角洲等地最为严重,我国西部和东北部地区相对较少.霾日发生的频率总体呈增加的趋势,而且与能源消耗总量有很好的正相关关系.我国霾日数的增加除了依赖于污染源排放加剧外,不利的气候条件加剧了霾天气的发生.近54年降水日数、平均风速、日照时数和相对湿度与霾日数的相关系数分别为-0.653、-0.635、-0.462和-0.699,远远超出了99.9%的信度检验标准.聚类分析表明,上升极显著、上升显著和上升明显的站点年平均霾日数近年来均有加速上升的趋势,其累积距平的变化趋势为下降-平缓-上升型.轻微上升站点上升时期为20世纪60年代至70年代末与2000年之后,累积距平为多波动型.轻微下降与下降明显的站点快速上升时期为60年代至70年代末,随后均有不同程度的下降,累积距平呈上升-平缓-下降型,且在1992~1993年间霾日数发生了由多到少的突变.  相似文献   

5.
杭州市区大气气溶胶吸收系数观测研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用2011年6~8月和2011年12月~2012年2月杭州国家基准气候站内黑碳及气象观测资料,分析了杭州市区气溶胶吸收系数的变化特征.结果表明,杭州市区气溶胶吸收系数冬季[(42.3±17.7)Mm-1]要高于夏季[(35.8±10.5)Mm-1],且冬季气溶胶吸收系数变化较为剧烈.在边界层变化以及人类活动的共同影响下,气溶胶吸收系数呈现明显的双峰型日变化特征,峰值出现在07:00~09:00,谷值出现在14:00,次峰值出现在19:00~20:00.通过拟合小时平均值最大出现频率得出该地区气溶胶吸收系数本底值为24.7Mm-1.霾时气溶胶吸收系数要高于非霾时,随着霾污染的加重,气溶胶吸收系数呈现阶梯上升趋势.霾期间气溶胶吸收系数的增加是造成能见度下降的重要原因之一.  相似文献   

6.
合肥市霾天气变化特征及其影响因子   总被引:16,自引:2,他引:14  
分别应用费希尔最优分割法和后向轨迹-聚类分析的方法分析了1965~2005年间合肥霾天气的气候变化特征,以及合肥霾天气发生频率与不同高度输送条件的关系.同时应用2001~2005年的资料分析了合肥霾的月、季分布特征及其与地面气象要素的关系.合肥各月平均霾日数呈W型分布,1月最多,8月最少,秋冬两季占全年霾日数的70%以上.41年来霾日数总体呈上升趋势,期间发生了3次跃变,分别在1978、1992和2005年,与我国社会经济发展的各个阶段相一致.霾的发生频率与边界层中上部气团来向关系不大,但与其移动速度关系密切.近地面不同来向的气团对应霾的发生频率明显不同,霾易于出现的气团在春、夏、冬季主要来自偏东方向,秋季主要为本地气团以及来自偏北方向的气团.小风、高湿和偏东风是产生霾的有利条件.随着空气污染加重,霾的出现频率升高,当空气质量为中度污染时,霾的出现频率达到75%;高质量浓度的PM10并不意味着有霾出现,反之亦然.  相似文献   

7.
根据陕西省气候特征及地形,将陕西省分为关中、陕南和陕北3个子区,并定义了区域性霾日及持续性区域性霾事件.基于气象、环保及遥感资料,分析了陕西省区域性霾日及相应的气溶胶污染的时空分布特征.结果表明,陕西冬季各子区区域性霾日有显著差异,关中地区区域性霾日最多,平均每年冬季大于21 d,陕南地区为6 d,陕北地区大于1 d.关中每年冬季均会出现持续性区域性霾事件.关中区域性霾日区域平均风速普遍小于5 m·s-1,陕南区域性霾日区域平均风速普遍小于4 m·s-1.区域性霾日出现时气溶胶光学厚度(AOD)明显增大,部分地区大于0.9,关中、陕南和陕北出现区域性霾日时,区域平均空气质量指数(AQI)几乎均大于100.根据激光雷达探测数据,近地层500 m以下区域性霾日的平均消光系数是冬季平均值的2~3倍.关中出现区域性霾日的背景环流以斯堪的纳维亚半岛正异常中心,乌拉尔山东部位势高度负异常和东亚地区正异常所组成的正位相斯堪的纳维亚环流型为主要特征,近地面存在东南风异常.相比2017年,2018年冬季偏强的东南风异常为陕西省区域性霾日增多提供了有利的气象条件...  相似文献   

8.
利用江西省1960~2016年82个气象站水平能见度、相对湿度和天气现象等资料,重建了江西省霾日序列,分析了江西省霾日数的年际变化特征,并通过霾日数与降水日数、大风日数和静风日数的相关关系,探讨了不同季节霾日数年际变化的气候成因.结果表明:1960~2016年江西省霾日数表现为在1970s有明显偏高、1980年后显著增加趋势(0.53d/a),赣北地区霾日多且增加速率快.四季霾日数均有增加,其中秋季贡献最大(0.21d/a,P<0.001),春季其次(0.12d/a,P<0.001),冬季霾日数最多,但年际趋势并不显著(0.10d/a,P>0.05),夏季年均霾日数较低,增加幅度最小(0.09d/a,P<0.001).过去几十年降水日数减少(-0.26d/a,P>0.05)导致大气湿沉降能力减弱,以及大风日数减少(-0.33d/a,P<0.01)和静风日数增加(1.73d/a,P<0.01)导致大气扩散能力降低,为江西省霾日增加提供了有利气候背景.但主要气候成因因季节不同:春季霾日数增加的主要气候成因是大风日数减少(r=-0.48,P<0.01),与其他要素的关系不显著;夏季亦与大风日数减少显著相关(r=-0.50,P<0.01),同时与静风日数增加显著相关(r=0.37,P<0.05);秋季受大风日数减少、静风日数增加以及降水日数减少共同影响,导致秋季霾日增加速率最快;冬季霾日数仅与降水日数显著相关(r=-0.36,P<0.05),但由于冬季降水日数变化趋势不明显(-0.26d/a,P>0.05),冬季霾日数变化不显著.  相似文献   

9.
长江三角洲城市群霾的演变特征及影响因素研究   总被引:1,自引:0,他引:1       下载免费PDF全文
史军  崔林丽 《中国环境科学》2013,33(12):2113-2122
重建了长江三角洲1961~2007年霾气候数据序列,分析了霾日数的时空变化特征及城乡差异,并探讨了大气污染以及地面和近地层气象条件对霾发生的影响.结果表明,利用湿度—能见度指数参与霾气候序列重建的方法具有一定的合理性和科学性.过去47a间,长江三角洲霾日数总体上呈逐渐增多的趋势,并且四季霾日数都增加.空间上,整个长江三角洲霾日数基本上都呈增加趋势,并以杭州和南京增加最多.近30a来长江三角洲大城市、中等城市和城镇乡村站间霾日数变化具有明显差异.地面气象要素中风速和最长连续无降水日数与霾发生具有较好的对应关系.在霾天气过程和对应的清洁过程,近地层温度、位势高度和风场也都具有明显的差异.长江三角洲霾变化趋势与我国京津冀、珠江三角洲等地的变化一致.区域大气污染物排放量的增加,尤其是细颗粒物的增加是霾出现频率增加的可能原因,全球气候变化以及区域城市化造成的气象条件改变也有利于霾日的增加.  相似文献   

10.
采用COST733软件将北京地区2007~2016年的大气环流总体分为T1~T9种类型,研究其与霾日的关联性,并结合PM2.5和臭氧地面观测,分析不同天气型对应的污染特征及气象参数分布规律.2007~2016年霾日发生概率21.5%,T4和T9型下霾日最多,T5和T8型最不利于霾日发生.9类天气型下霾日变化具有阶段性,2007~2012年(阶段一)霾日少且年际差异小,2013~2016年(阶段二)霾日增多.对9类天气型下霾日PM2.5及臭氧变化进行分析,T1、T3、T4和T9型霾日多出现在秋冬季,PM2.5日变化为逐时增加态势,4类天气型在第一阶段的白天有浓度波动增长形成的小峰值,但第二阶段减弱消失.大部分天气型的霾日,阶段二的PM2.5浓度较阶段一降低,T7和T9型表现为增加,增幅分别为23.7%和3.9%.所有天气型霾日的臭氧日变化均为单峰型,峰值出现在下午,臭氧日均浓度最高为T8型.此外,阶段二与阶段一相比,T3、T5和T6型臭氧平均浓度增加,其中T5型增幅达到49.8%.将霾日与近地面气象要素关联分析,平均气温、风向、风速可以较好的解释臭氧浓度变化,而PM2.5的变化特征不仅与气象要素相关,在一定程度上也体现了污染排放及区域联动减排的贡献,需两者结合才能更好探究PM2.5浓度整体特征及细节变化.  相似文献   

11.
孙彧  马振峰  刘佳  卿清涛  孙蕊 《环境科学学报》2016,36(11):3913-3921
根据近34年(1981—2014年)156个四川地面站的地面观测资料,对比分析了在3种霾日判别方法下霾日的空间分布、季节变化、年代际变化特征以及气候趋势系数的分布特征.利用Morlet小波分析法比较了霾日的周期变化特点.结果表明:1原始观测霾日集中于四川盆地的北部;方法一霾日集中于盆地中南部和东部;方法二霾日集中于盆地地区,无代表高值区;方法三分布类似于方法一.2在季节变化上:不同判别方法下霾日的季节变化类似,秋冬霾日多于春夏.3霾日年代际变化明显.原始观测霾日2013年始出现突增;方法二霾日从2001年始有明显增长;方法一与方法三的年代际变化特征相似.4气候趋势系数上:原始观测变化特征不明显;方法一的系数呈现出南北反向变化;方法二与方法一的分布相似;方法三中系数的正负值区较为集中.5小波变化上:原始观测中霾日无明显周期变化,判别方法一、二、三均有各自的周期变化特点.  相似文献   

12.
The purpose of this study is to analyze the climatic characteristics and long-term spatial and temporal variations of haze occurrence in China. The impact factors of haze trends are also discussed. Meteorological data from 1961 to 2012 and daily PM10 concentrations from 2003 to 2012 were employed in this study. The results indicate that the annual-average hazy days at all stations have been increasing rapidly from 4 days in 1961 to 18 days in 2012. The maximum number of haze days occur in winter (41.1%) while the minimum occur in summer (10.4%). During 1961-2012, the high occurrence areas of haze shifted from central to south and east regions of China. The Beijing-Tianjin-Hebei (Jing-Jin-Ji) region, Shanxi, Shaanxi, and Henan Province are the high occurrence areas for haze, while the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) have become regions with high haze occurrences in the last 25 years. Temperature and pressure are positively correlated with the number of haze days. However, wind, relative humidity, precipitation, and sunshine duration are negatively correlated with the number of haze days. The key meteorological factors affecting the formation and dissipation of haze vary for high and low altitudes, and are closely related to anthropogenic activities. In recent years, anthropogenic activities have played a more important role in haze occurrences compared with meteorological factors.  相似文献   

13.
沈阳地区霾与雾的观测研究   总被引:9,自引:4,他引:5  
利用2009年6月1日-2010年5月31日沈阳大气成分站能见度和大气细粒子的小时观测数据,结合沈阳自动气象站相对湿度的小时观测数据以及天气现象资料,根据<霾的观测和预报等级>和雾的定义,从沈阳1年的资料中判识出霾与雾的出现时次,对沈阳霾与雾的时间变化特征进行初步探讨.结果表明:沈阳全年霾和雾的出现时次分别占总观测时次...  相似文献   

14.
利用2010~2013年逐时霾、能见度和空气质量监测数据,分析了深圳霾天气的变化特征、霾与空气质量和气象条件的关系.结果表明:深圳市霾日数总体呈现增多增强趋势,2009年开始明显下降;霾日数呈“V”型月变化:即秋冬季多、春夏季少,秋冬季多发持续时间长、影响严重的霾过程,春夏季多发持续时间短的霾过程; 霾常伴有污染发生(35%),污染以轻度污染为主;霾时首要污染物PM2.5最多、其次O3,这说明PM2.5是造成深圳霾的主因,且深圳光化学污染严重. 霾时PM2.5、PM10 和O3季节变化明显,冬春季首要污染物以PM2.5为主(75%以上),夏秋季O3和PM2.5为主;分析还发现,风、相对湿度与霾密切相关,风速越弱,湿度越大, 越利于霾出现和发展.约80%的中重度霾出现在风速<2m/s,相对湿度70%~90%的情况下.  相似文献   

15.
利用广东省86个地面观测站1980~2014年逐日能见度、相对湿度资料,在对“区域灰霾过程”与“单站灰霾过程”进行定义的基础上,分区域诊断典型灰霾天气过程(即连续三站3d及以上出现灰霾日的天气过程),并对其长期变化趋势及特征进行分析.结果表明:广东省的灰霾过程主要出现在珠江三角洲、粤北及粤东个别地区,并以珠江口以西的珠江三角西侧最为严重.“区域灰霾过程”以日平均能见度在5~10km之间的过程为主,没有出现过日平均能见度低于2km的重度灰霾过程.各“区域灰霾过程”的特征有所差异:首先是各“区域灰霾过程”出现峰值的时间略有差异.尽管灰霾过程均主要出现在10月~翌年4月,但粤北和粤东、西两翼最多出现在冬季(12月~翌年1月)、春季次之,而珠江三角洲地区则最多出现在春季(3~4月)、冬季次之.其次是各“区域灰霾过程”变化趋势的差异.珠江三角洲地区和粤北地区灰霾过程变化趋势比较相似,在2008年以前总体呈增多趋势,珠江三角洲地区增势最为显著的时段是2000~2008年,而粤北地区则是1991~2011年;粤西地区灰霾过程在2000年以前变化都比较平稳,2004年开始快速增多;粤东地区的灰霾过程近35年来虽有小的波动,但总体变化不大,呈稳中略减的趋势.利用M-K法和滑动t检验的突变分析表明,珠江三角洲地区灰霾过程的增多是一种不连续的突变现象,发生突变的时间点是1986年;粤北地区灰霾过程则在1992~1994年出现了突发性增多的现象;粤西地区灰霾过程也在2001年发生了突变.  相似文献   

16.
2003~2014年东北三省气溶胶光学厚度变化分析   总被引:4,自引:5,他引:4  
利用2003~2014年MODIS-Aqua气溶胶光学厚度(AOD)产品、DMSP卫星夜间灯光时间资料和基本气象资料,分析我国东北三省(辽宁、吉林、黑龙江)大气气溶胶光学厚度年际变化及季节变化的空间分布特征.结果表明,东北三省多年平均AOD空间分布存在由大连、沈阳、长春和哈尔滨等城市构成的一个高值带,呈东北-西南走向,多年平均AOD值为0.4~0.8;东北三省植被覆盖率较高的东部和北部是AOD的低值区,多年平均AOD小于0.3;东北三省AOD季节变化为AOD春季到夏季升高,秋季下降,冬季再次升高.东北三省AOD年际变化特征为大部分低值地区呈减小趋势,但以沈阳、长春和哈尔滨为轴线的东北-西南走向的高值区域呈增大趋势,反映了近10多年出现的空气质量两极分化趋势.此外研究了东北三省年均AOD在强、弱西北太平洋夏季风年时的空间分布差异,受地面风场影响,AOD在强季风年时较弱季风年偏低.  相似文献   

17.
安徽省持续性区域霾污染的时空分布特征   总被引:1,自引:0,他引:1  
根据天气和气候特征,将安徽省分为沿淮淮北、江淮之间和沿江江南3个子区,并定义了持续性区域性霾过程.基于气象、环保及遥感资料,分析了安徽省持续性区域性霾过程及相应的气溶胶污染的时空分布特征.结果表明,江淮之间和沿江江南区域性霾日数自1980年开始总体呈增多趋势,沿淮淮北2000年开始增加趋势明显;1980年以来,城市持续性霾过程呈增多趋势,但城市之间差异较大;2000年之后持续性区域性霾过程明显增多,最长过程可达10d以上.62%以上的持续性区域性霾过程出现在冬季;江淮之间次数最多,沿江江南次数最少.区域性霾天气常对应着大范围的高湿、小风情况,并伴随着高浓度气溶胶污染,其光学厚度大于0.9,约是晴空天的2.3倍,气溶胶主要集中在400m以下,如近地面区域性霾天的消光系数是普通霾天的2~2.5倍,晴空天的3~5倍;地面PM2.5污染而言,区域性霾天至少有一个或以上的城市AQI会达到轻度以上污染等级的概率超过了75%.  相似文献   

18.
南京大气PM2.5中碳组分观测分析   总被引:16,自引:1,他引:16       下载免费PDF全文
为了解南京地区大气细颗粒物及化学成分在灰霾期间的污染水平及可能来源,于2007年6月至2008年5月,采集PM2.5样品,并测定了其中有机碳(OC)和元素碳(EC)的含量.并考察了有机碳和元素碳的季节变化特征,比较分析了南京地区灰霾与非灰霾期间含碳气溶胶的污染特征.结果显示,南京大气中PM2.5、OC和EC浓度变化范围分别是12.1~287.1,2.6~47.0和1.0~33.6mg/m3,其中夏季PM2.5(109.6mg/m3)和OC(20.8mg/m3)的值在四个季度中最高,呈现出夏季>秋季>冬季>春季的季节变化特征;EC则具有秋季>春季>冬季>夏季的季节变化特征. 霾日的OC、EC、总碳含量(TC)浓度及OC与EC比值分别是非霾日的2.0、1.8、1.9和1.7倍.后向轨迹分析表明,在有利的天气背景下,具有丰富水汽和污染物的混合气团最易使南京产生霾天气.  相似文献   

19.
利用中山市2000~2014年气象资料及2013~2014年环境监测站资料,分析中山市霾特征及气象影响因子,结果表明,中山市霾日数年际变化明显,最少为11d,出现在2005年;最多为134d,出现在2008年.霾天气主要发生在秋冬季节,霾日数最多的月份是1月,平均为10.5d.霾日PM2.5的平均浓度是非霾日的2.26倍,PM2.5是霾天气的重要污染物.中山市霾日典型天气形势有7种:大陆高压型、海上高压型、均压场型、冷锋前部型、台风外围下沉气流型、槽前脊后型、低压槽型.其中以大陆高压型占比例最高,为52.03%,冷锋前部型造成的能见度最低.气流轨迹聚类分析表明,影响中山的气流轨迹有7类,主要来源于东北方向的大陆和偏东方向的沿海;在东北方向气流轨迹影响下,污染物浓度较高;在东部沿海的气流轨迹下,能见度较低,表明中山市的霾天气受区域传输影响显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号