首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
通过摇瓶实验,在Mg2+分别为48,4.8mg/L,其他元素组成与9K液体培养基一致的体系中,采用氧化亚铁硫杆菌A.ferrooxidans催化合成次生铁矿物.考察了Mg2+含量对生物合成次生铁矿物体系pH值、氧化还原电位(ORP)、Fe2+氧化率、总Fe沉淀率、次生铁矿物矿相及矿物晶体尺寸的影响.结果表明,经过48h培养,Mg2+浓度为48,4.8mg/L生物成矿体系pH值分别从原来的2.50降低至2.30,2.19,ORP分别从初始259mV增加至269mV,276mV.两体系Fe2+氧化率培养至第48h均达到100%,然而两体系总Fe沉淀率及矿物形态及却不尽相同.Mg2+浓度为48mg/L生物成矿体系,总Fe沉淀率为23.7%,次生矿物紧密粘附于三角瓶底部.而Mg2+浓度为4.8mg/L生物成矿体系,总Fe沉淀率达到32.2%,次生矿物却均匀分散于溶液中.两体系合成次生铁矿物均为黄铁矾与施氏矿物共存的混合物,Mg2+含量4.8mg/L体系合成黄铁矾单个晶体长度(~1.60μm)约为Mg2+含量48mg/L体系的1.2倍.  相似文献   

2.
通过摇瓶实验,在Mg2+分别为48,4.8mg/L,其他元素组成与9K液体培养基一致的体系中,采用氧化亚铁硫杆菌A. ferrooxidans催化合成次生铁矿物.考察了Mg2+含量对生物合成次生铁矿物体系pH值、氧化还原电位(ORP)、Fe2+氧化率、总Fe沉淀率、次生铁矿物矿相及矿物晶体尺寸的影响.结果表明,经过48h培养,Mg2+浓度为48,4.8mg/L生物成矿体系pH值分别从原来的2.50降低至2.30,2.19,ORP分别从初始259mV增加至269mV,276mV.两体系Fe2+氧化率培养至第48h均达到100%,然而两体系总Fe沉淀率及矿物形态及却不尽相同.Mg2+浓度为48mg/L生物成矿体系,总Fe沉淀率为23.7%,次生矿物紧密粘附于三角瓶底部.而Mg2+浓度为4.8mg/L生物成矿体系,总Fe沉淀率达到32.2%,次生矿物却均匀分散于溶液中.两体系合成次生铁矿物均为黄铁矾与施氏矿物共存的混合物,Mg2+含量4.8mg/L体系合成黄铁矾单个晶体长度(~1.60μm)约为Mg2+含量48mg/L体系的1.2倍.  相似文献   

3.
探析培养转速与镁离子浓度对氧化亚铁硫杆菌生物合成次生铁矿物的影响对酸性矿山废水(AMD)治理具有一定的工程指导意义.本研究通过摇瓶实验,研究了Mg2+浓度分别为48与4.8 mg·L-1,其它元素组成与富含Fe与SO2-4的9K液体培养基一致的体系在180 r·min-1与100 r·min-1转速条件下氧化亚铁硫杆菌催化合成次生铁矿物过程.考察了不同次生铁矿物合成体系pH、Fe2+氧化率、总Fe沉淀率及次生铁矿物矿相等相关指标.研究结果表明,在180 r·min-1的培养条件下,Mg2+浓度分别为4.8与48 mg·L-1两体系培养48 h后,pH从原始的2.50分别降低至2.07与2.12,Fe2+均可在48 h内实现完全氧化.Fe2+完全氧化时,Mg2+浓度为4.8 mg·L-1体系总Fe沉淀率为37.4%,合成的次生铁矿物均匀分散于溶液中,而Mg2+浓度为48 mg·L-1体系中,总铁沉淀率仅为31.7%,且70%的矿物牢固粘附于摇瓶底部.培养转速为100 r·min-1时,Mg2+浓度分别为4.8与48 mg·L-1两体系经过72 h培养后,pH均从原始的2.50降低至2.21与2.17.Fe2+需要72 h才能被完全氧化,两体系总Fe沉淀率分别仅为21.3%与23.0%,产生的次生铁矿物几乎全部牢固粘附于摇瓶底部.本研究所有体系产生的次生铁矿物均为黄铁矾与施氏矿物的混合物.研究结果可为生物合成次生铁矿物工艺的优化及其在酸性矿山废水治理领域的有效应用提供必要的参数支撑.  相似文献   

4.
生物成因次生铁矿物的高效合成对处理以富铁富硫酸盐为典型环境特征的酸性矿山废水具有重要的工程指导意义.本研究通过细菌培养实验,在富铁富硫酸盐环境(改进型9K液体培养基)中,考察了KOH对嗜酸性氧化亚铁硫杆菌(A.ferrooxidans)催化合成次生铁矿物过程中体系p H、Fe2+氧化率、总Fe沉淀率及次生铁矿物矿相的影响.结果表明,A.ferrooxidans在改进型9K培养基(对照处理)中培养72 h后,p H从原始的2.50下降至2.34,而在对照处理分别加入3.3、6.7与13.4 mmol·L-1KOH的处理体系中培养72 h后,p H却分别降低至2.27、2.15与2.10.同时,KOH的加入能够在一定程度上加速Fe2+的氧化速率及总Fe的沉淀效率.例如,培养至24 h,加入3.3、6.7和13.4 mmol·L-1KOH的处理体系较对照体系Fe2+氧化率分别提高了12.1%、20.3%和23.2%.培养至72 h,加入3.3、6.7和13.4 mmol·L-1KOH的处理体系较对照体系总Fe沉淀率分别增加了26.0%、60.4%和71.8%.通过分析加入6.7 mmol·L-1KOH或3.3 mmol·L-1K2SO4处理体系上述参数的变化情况,可以得出,KOH加速体系酸化、提高Fe2+氧化率及总Fe沉淀率是K+与OH-联合作用所致.本研究不同体系所得次生铁矿物均为黄铁矾与施氏矿物共存的混合物,然而,KOH引入的K+或OH-均有利于体系无定型施氏矿物向晶型黄铁矾类矿物转化.研究结果可为次生铁矿物生物合成及其在酸性矿山废水治理领域的应用提供必要的参数支撑.  相似文献   

5.
氧化亚铁硫杆菌(A.ferrooxidans)生物氧化Fe2+与石灰中和相耦合是一种具有发展潜力的酸性矿山废水处理工艺.在Fe2+生物氧化段提高Fe2+氧化与总Fe沉淀效率是调控此类废水高效处理的关键步骤,且该阶段常伴有黄铁矾等次生铁矿物的合成.本研究通过摇瓶实验,在p H约2.50的K2SO4(8 mmol·L-1)-Fe SO4(160 mmol·L-1)-H2O酸性硫酸盐体系中按约3×105cells·m L-1的浓度接入A.ferrooxidans,在15℃和30℃两个温度水平下,探究附着微生物的黄钾铁矾回流对体系Fe2+生物氧化与总Fe沉淀行为的影响.结果表明,15℃条件下培养至144h,体系p H变化至2.40,Fe2+氧化率和总Fe沉淀率分别仅为46.7%和12.2%.当体系接入附着微生物黄钾铁矾10 g·L-1时,体系Fe2+在132h即可完全氧化.144 h时,体系p H降低至2.24,总铁沉淀率为25.3%.30℃条件下体系Fe2+在72 h完全氧化,p H变化至1.89,总Fe沉淀率为34.3%.当体系接入回流的黄钾铁矾10 g·L-1时,体系Fe2+完全氧化时间缩短至60 h,p H降低至1.85,总Fe沉淀率为37.3%.本研究不同处理体系所得次生铁矿物均为黄钾铁矾,附着微生物黄铁矾回流对15℃环境所得黄钾铁矾形貌影响不大,均为粘附紧密、表面光滑的晶体形貌.而30℃环境中,附着微生物黄铁矾回流却使得原本较为分散、晶型棱角明显的黄铁矾晶体结构变得紧密而光滑.本研究结果可为酸性矿山废水处理提供一定的参数支撑.  相似文献   

6.
探究富铁酸性硫酸盐体系次生铁矿物附着包裹硫杆菌的Fe~(2+)氧化活性,对揭示次生铁矿物调控酸性矿山废水形成过程具有指导意义.本研究首先采用摇瓶实验合成次生铁矿物—施氏矿物,然后将脱水后的0.1、0.2、0.3及0.4 g施氏矿物直接或溶解后加入到pH为2.50的富铁酸性硫酸盐体系(改进型9K液体培养基)中进行Fe~(2+)氧化,分析体系pH、Fe~(2+)氧化率、次生铁矿物产生量等相关指标.研究表明,氧化亚铁硫杆菌在脱水施氏矿物的附着包裹量为2×10~8cells·g~(-1).0.1、0.2、0.3及0.4 g施氏矿物直接加入体系经过108 h培养,pH分别下降至2.28、2.25、2.24及2.22;Fe~(2+)氧化速率随着施氏矿物加入量的增加而增加,且各体系Fe~(2+)氧化率在108 h均达到100%,此时次生铁矿物产生量分别是3.05、3.30、3.61与3.70 g·L~(-1).然而,0.1、0.2、0.3及0.4 g施氏矿物溶解后进入的相应体系经过108 h培养后,pH分别下降至2.19、2.18、2.10及2.02;Fe~(2+)氧化速率随着施氏矿物溶解量的增加而增加,各体系Fe~(2+)氧化率在96 h均达到100%,各体系次生铁矿物在108 h时的产生量分别是6.16、6.44、6.76与7.89 g·L~(-1).可见,施氏矿物对硫杆菌的吸附包裹作用致使体系Fe~(2+)氧化效率降低,次生铁矿物合成量减少,酸化程度减弱.  相似文献   

7.
嗜酸性氧化亚铁硫杆菌(A.ferrooxidans)促进次生铁矿物形成的现象在酸性煤矿废水(ACMD)的治理领域具有重要意义.本研究探索了A. ferrooxidans接种密度在酸性硫酸盐环境(9K培养基)中对Fe2+氧化率、总Fe沉淀率及矿物产生量的影响,同时考察了矿物合成体系矿相的变化情况.结果表明,当体系A. ferrooxidans接种密度为0.27×106~5.40×107 cells·mL-1时,溶液中Fe2+需60~12 h氧化完全.培养至60 h,上述体系总Fe沉淀率分别达到10.7%~35.9%.不同接种体系Fe2+同时氧化完全时,沉淀单位质量Fe而转化的次生铁矿物量随着接种密度的增加而增大.例如,A. ferrooxidans接种密度分别为1.35×106、2.70×106、8.10×106和1.62×107 cells·mL-1的处理在Fe2+同时完全氧化时刻,Fe沉淀率分别为17.6%、20.0%、24.1% 和26.5%,且沉淀1 g Fe转化的次生铁矿物量分别为2.04、2.10、2.17与2.27 g.结晶度较差的施氏矿物是次生铁矿物合成初期产生的唯一矿相,Fe2+完全氧化时,矿物相为施氏矿物与结晶度好的黄铁矾矿物的混合物.  相似文献   

8.
通过摇瓶试验模拟富铁富硫酸盐环境,研究了在0.03%(空气中CO2含量),3%,6%,9%和12%浓度的CO2条件下对Acidithiobacillus ferrooxidans活性及次生铁矿物形成的影响,并分析了pH值,Fe2+氧化率及氧化速率,总Fe沉淀率以及次生铁矿物矿相等相关指标.结果表明,CO2浓度为3%时,菌氧化Fe2+能力最强,72h时Fe2+氧化率达到100%,试验结束时总Fe沉淀率最高,为42.8%.随着CO2浓度增加,各体系A. ferrooxidans活性受到抑制.不同CO2浓度体系最终获得矿物均为黄铁矾类矿物混合少量施氏矿物.适当提高CO2浓度,有助于提高A. ferrooxidans活性,并促进水解成矿增加矿物产量.本研究为酸性矿山废水的治理提供理论依据.  相似文献   

9.
研究了初始pH值、Fe2+浓度、Fe/NH4+物质的量比对嗜酸性氧化亚铁硫杆菌(A.ferrooxidans)体系中Fe2+氧化率、总Fe沉淀率、次生铁矿物矿相的影响,并比较矿物对AMD中Cr(VI)、As(Ⅲ)的去除效果.结果表明,当NH4+浓度在A.ferrooxidans耐受范围内时,Fe2+氧化及总Fe沉淀去除效果不受影响,表现在160,80,20mmol/L的Fe2+分别在72,48,24h内被完全氧化,培养至终点时(96h)平均总Fe沉淀率分别为24.03%,19.46%,8.13%.在Fe2+=160mmol/L体系中,Fe/NH4+=2.0、pH=2.6处理获得纯净施氏矿物;而当Fe/NH4+≤1.0、pH≤2.3时,次生铁矿物的合成途径开始向黄铵铁矾转移.Fe/NH4+=2.0的各酸性体系合成矿物对Cr(VI)、As(Ⅲ)去除能力存在显著差异,依次为pH=2.6 > pH=2.3 > pH=2.0.分析表明,次生铁矿物的表观结构和比表面积是影响有毒元素去除效果的主要原因.  相似文献   

10.
采用氧化亚铁硫杆菌催化合成铁硫酸盐次生矿物,研究不同L-色氨酸添加浓度对矿物合成体系pH、氧化还原电位(ORP)、Fe2+氧化率、总Fe沉淀率,以及次生矿物产量、化学组成及矿物相的影响.结果表明,随着体系色氨酸浓度的增加,pH降低幅度越小,ORP上升越不明显.色氨酸对铁硫酸盐次生矿物合成的影响依赖于其浓度,当色氨酸浓度低于1.67 g·L-1时,色氨酸对铁硫酸盐次生矿物的形成起促进作用,表现为总Fe沉淀率及矿物产量随着色氨酸浓度升高而增加.而当色氨酸浓度升高至6.67 g·L-1时,Fe2+氧化率、总Fe沉淀率和矿物产量远低于对照组,表明高浓度色氨酸会抑制铁硫酸盐次生矿物的形成.次生矿物内Fe/S比介于施氏矿物和黄钾铁矾的理论值之间,表明不同合成体系所得次生矿物均为黄钾铁矾和施氏矿物的混合物.矿物学特征分析表明,随着色氨酸浓度的升高,矿物的合成表现为黄钾铁矾向施氏矿物转移.  相似文献   

11.
酸性矿山废水(AMD)具有酸度高并含有大量可溶性Fe、硫酸根及重(类)金属的特点,采用生物矿化方法促使AMD中Fe向羟基硫酸铁次生矿物转变,对AMD后期石灰中和减少氢氧化铁和废石膏的产生,提高中和效率具有实际意义.通过模拟酸性矿山废水,考察了Cl-、NO3-、PO43-3种阴离子对嗜酸性氧化亚铁硫杆菌(A.ferrooxidans)体系中pH值、Fe2+氧化率、总Fe沉淀率、次生铁矿物矿相的影响.结果表明,高浓度阴离子对A.ferrooxidans氧化Fe2+能力具有抑制作用.A.ferrooxidans对阴离子的耐受性依次为PO43- > NO3- > Cl-.阴离子浓度在A.ferrooxidans耐受范围内时,其对Fe2+的生物氧化速率基本没有影响.但高浓度阴离子会通过抑制A.ferrooxidans的氧化活性,从而间接影响Fe3+的水解成矿过程,导致培养终点时总Fe沉淀率降低和次生铁矿物产量减少.受Fe3+供应速率降低的影响,次生铁矿物的合成途径易向施氏矿物转变.  相似文献   

12.
氧化亚铁硫杆菌(A.ferrooxidans)介导的生物矿化方法促使可溶性Fe向次生铁矿物转变对酸性矿山废水(AMD)治理具有重要意义.化能自养菌A.ferrooxidans易受水流冲击而流失,常采用固定化方式来提高菌密度,从而保证较高的Fe2+氧化和成矿速率以满足实际需要.本研究在相同初始条件下(pH=2.30、Fe2+浓度4.48g/L、A.ferrooxidans密度8×106cells/mL)生物合成固定有A.ferrooxidans的施氏矿物、黄钾铁矾和黄铵铁矾,比较矿物溶解前(固定态)和溶解后(游离态)A.ferrooxidans的Fe2+氧化性能,并分析各矿物对A.ferrooxidans的固定能力.结果表明,生物成因次生铁矿物干重排序为施氏矿物(0.24g) < 黄铵铁矾(0.35g) < 黄钾铁矾(0.67g),但矿物固定A.ferrooxidans的能力却依次为施氏矿物 > 黄铵铁矾 > 黄钾铁矾.以游离态A.ferrooxidans的Fe2+氧化速率作为参比,推算出本研究所得施氏矿物、黄铵铁矾、黄钾铁矾固定A.ferrooxidans的有效生物量依次为5.33×107~ 5.33×108,5.72×106~5.72×107,6.35×106cells/g(干基).次生铁矿物载体有效生物量不仅直接影响AMD体系中Fe2+氧化速度,也间接决定了总Fe的矿化去除效果.  相似文献   

13.
酸性矿山废水(AMD)具有酸度高并含有大量可溶性Fe、硫酸根及重(类)金属的特点,采用生物矿化法促使AMD中Fe向羟基硫酸铁次生矿物转变,对AMD后期石灰中和减少氢氧化铁和废石膏的产生,提高中和效率具有实际意义.本研究模拟AMD,考察了初始pH、Fe~(2+)浓度、Fe/Na摩尔比对嗜酸性氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)体系中Fe~(2+)氧化率、总Fe沉淀率、次生铁矿物矿相的影响.结果表明,高浓度Na~+会抑制A.ferrooxidans的氧化能力,当Na~+浓度在A.ferrooxidans耐受范围内时,其不影响Fe~(2+)氧化及总Fe沉淀去除效果,表现在160、80、20 mmol·L~(-1)的Fe~(2+)分别在72、48、48 h内被完全氧化,培养至终点时平均总Fe沉淀率分别为20.04%、16.43%、0.99%.此外,在Fe~(2+)浓度为160mmol·L~(-1)体系中,当Fe/Na摩尔比为1.0、2.0时,pH为2.0~2.6时获得次生铁矿物均为纯净施氏矿物.而当Fe/Na摩尔比降至0.5时,次生铁矿物的合成途径开始向黄钠铁矾转移,且其特征衍射峰随着Na~+浓度提高而愈加显著.本研究结果可为生物合成次生铁矿物工艺的优化及其在AMD治理领域的有效应用提供必要的参数支撑.  相似文献   

14.
利用嗜酸性氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans,简称A.ferrooxidans)休止细胞促进FeSO4形成的施氏矿物具有纯度高比表面积大的特点,对去除水环境中有毒重(类)金属有重要作用.为提供施氏矿物规模化生产优化参数,本研究通过摇瓶试验探讨了休止细胞保存时间对其活力的影响,以...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号