首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
厌氧氨氧化(Anammox)技术是一种高效、低耗的自养型脱氮工艺。通过文献调研,介绍了厌氧氨氧化细菌的分类与相关功能基因,综述了通过部分亚硝化-厌氧氨氧化工艺处理低氨氮废水的控制参数,包括溶解氧、C/N、pH值、污泥龄等,反应器类型以及实际工程应用案例,表明厌氧氨氧化工艺应用于低氨氮废水处理具有广阔前景,并提出了亟需突破的关键技术难题,为采用厌氧氨氧化工艺处理城市低氨氮废水提供科学借鉴。  相似文献   

2.
乙酸钠和无机盐对部分亚硝化反应器运行性能的影响   总被引:2,自引:0,他引:2  
通过间歇试验和连续流反应器的运行试验,探索了实现部分亚硝化反应的控制条件,考察了乙酸钠和无机盐对部分亚硝化工艺效能的影响.结果表明,通过控制进水碱度、溶解氧和水力停留时间,可在气升式反应器中实现稳定的部分亚硝化,反应器出水适宜后续厌氧氨氧化反应器处理.乙酸钠对部分亚硝化反应器的运行性能有重大影响.添加乙酸钠后,反应器出水氨氮浓度不变,亚硝氮、硝氮和总氮浓度减小,且变化程度与所添加的有机物浓度呈正相关,乙酸钠引发反硝化是造成影响的主要原因.短期批次试验表明,在摩尔浓度相同的条件下,NaCl、KCl和Na2SO4对氨氧化活性的影响程度接近,盐浓度为150mmol·L-1时,氨氧化活性为未添加盐时的60%.连续流试验证明,通过逐渐提高盐浓度,部分亚硝化反应器能适应25g·L-1盐度的水质.当盐度大于27g·L-1时,出水水质不合要求.亚硝酸细菌对高盐度胁迫比硝酸细菌敏感.  相似文献   

3.
部分亚硝化-厌氧氨氧化(partial nitrification-anammox,PN/A)工艺低耗高效,被视为最有可能替代传统硝化-反硝化并成为实现污水处理厂(WWTP)能源自给的主流脱氮技术。基于PN/A主流脱氮工艺现存部分亚硝化不稳定、功能菌种富集难的瓶颈与挑战,总结了PN/A反应器的应用现状,重点综述了氨氧化细菌、厌氧氨氧化细菌的持留、富集方法,分析了亚硝酸盐氧化细菌的有效抑制策略,并针对现状问题提出未来发展建议,为主流PN/A工艺实现工程化、规模化提供科学参考。  相似文献   

4.
李祥  陈宗姮  黄勇  袁怡  刘忻  张大林 《环境科学》2015,36(11):4189-4194
利用已经启动并达到稳定运行的部分亚硝化-厌氧氨氧化联合工艺,研究了HCO-3对部分亚硝化-厌氧氨氧化联合工艺脱氮效能的影响.结果表明,当C/N比由2降低到0.17时,因HCO-3投加量的限制,亚硝化区和厌氧氨氧化区p H值大幅下降,从而导致各区域氮素转化效能受限.联合工艺的氮去除速率由1.3 kg·(m3·d)-1下降到0.40 kg·(m3·d)-1,下降幅度达到69.3%.在联合脱氮工艺运行过程中,降低HCO-3对亚硝化菌、厌氧氨氧化菌和硝化细菌活性的影响依次下降.当C/N比恢复到1时,联合工艺的脱氮效能很快恢复到1 kg·(m3·d)-1,说明短期内HCO-3限制对联合工艺氮素转化效能的影响能够快速恢复.通过拟合后发现,进水C/N比值与联合工艺脱氮效能存在明显的相关性.  相似文献   

5.
为了探讨进水碱度对低氨氮废水部分亚硝化过程的影响与机理,在控制碱度的条件下启动并运行SBR部分亚硝化反应器。结果表明,控制碱度/NH_4~+-N为3.67~4.05可成功实现低氨氮废水部分亚硝化反应器的启动和稳定运行,亚硝酸盐累积率90%。将稳定运行的SBR部分亚硝化反应器与厌氧氨氧化反应器串联运行,系统TN去除率为37.3%~84.3%。周期试验显示,当碱度值70 mg/L时,SBR部分亚硝化反应器NH_4~+-N转化速率介于2.81~5.67 mg/(L·h),当碱度减小至70 mg/L,NH_4~+-N转化速率明显下降,当碱度60 mg/L时,亚硝化反应停止。机理分析表明,以HCO_3~-盐为碱度物质时,碱度值70 mg/L可导致系统无机碳源匮乏,这是影响NH_4~+-N转化速率和控制亚硝化反应进程的主要原因。  相似文献   

6.
采用SBR反应器建立了一套通过特定pH终值调控曝气停止点,以实现稳定部分亚硝化的策略,整个运行过程分为3个阶段,阶段Ⅰ启动亚硝化,阶段Ⅱ在稳定亚硝化的同时探索pH终值的设定规律,阶段Ⅲ采用pH终值设定规律实现稳定部分亚硝化,通过跨越夏、冬季(7~35℃)共148d的运行,考察SBR系统内有机物、氮素的转化规律,并分析不同温度(23、18、13℃)对部分亚硝化反应过程的影响.结果表明,在低DO(0.2~0.4mg/L)和MLSS为4000mg/L的条件下,控制pH终值为(7.73±0.02),使出水FA在0.5~1.2mg/L,可稳定部分亚硝化期间的出水NO2--N/NH4+-N值在1~1.4之间,出水亚硝积累率(NAR)维持在85%以上,有机物去除率在60%以上.比氨氧化速率、比亚硝态氮氧化速率、比COD去除速率均随温度下降而降低,但降低趋势较缓,且反应均能稳定完成.  相似文献   

7.
采用反硝化-沸石曝气生物滤池(ZBAF)部分亚硝化及氧氨氧化组合工艺处理老龄垃圾渗滤液,探究ZBAF部分亚硝化特性以及组合工艺的脱氮除碳性能.结果表明通过游离氨(FA)对亚硝酸盐氧化菌(NOB)的选择性抑制ZBAF可以实现老龄垃圾渗滤液稳定高效部分亚硝化,平均亚硝氮积累率(NAR)为93.8%亚硝氮产率(NPR)最高达1.659 kg·(m3·d-1;在进水中投加葡萄糖700mg·L-1后,当回流比为2.0 HRT为2.2 d时,由于反硝化与厌氧氨氧化的协同作用,组合工艺脱氮效果最佳,平均氨氮去除率(ARE)、总氮去除率(NRE)和总氮去除负荷(NRR)分别达97.2%、90.0%和0.585 kg·(m3·d)-1,平均COD去除率为45.3%其中厌氧氨氧化平均NRRANA为1.060 kg·(m3·d)-1最高达1.268 kg·(m3·d)-1.利用高通量测序技术...  相似文献   

8.
一体式部分亚硝化-厌氧氨氧化(CPNA)工艺的脱氮性能常因亚硝酸盐氧化菌(NOB)大量增殖导致的N03--N积累而恶化.本研究通过连续试验考察长期低剂量投加羟胺(NH2OH)对CPNA工艺原位恢复及其长期运行稳定性的影响.结果表明,低剂量投加NH2OH(1.5 mg?L-1)可快速原位恢复CPNA工艺,TN去除率在45...  相似文献   

9.
部分亚硝化-厌氧氨氧化工艺为解决人工快渗(CRI)系统TN去除率低的问题提供了新方法,而部分亚硝化是实现该工艺的先决条件。为此研究了CRI系统通过饥饿协同p H调控策略启动部分亚硝化的可行性,并分析了部分亚硝化稳定运行期间各滤料层的菌群结构特征。结果表明,CRI系统在饥饿15 d后出现明显的NO_2~--N积累现象,恢复进水8 d后NO_2~--N积累率稳定在65%左右,此时将进水pH提高到8.7,NO_2~--N的积累率可跃升到90%以上,NO_2~--N和NH4+-N的出水浓度比稳定在1.21~1.33,部分亚硝化获得成功启动,能为厌氧氨氧化提供适宜的进水条件。采用16S rRNA高通量测序技术从各滤料层共检测到39个菌门、113个菌纲、281个菌属,其中检出的氨氧化菌属主要包括Nitrosomonas、Nitrosovibrio和Nitrosopumilus,该类菌属中Nitrosomonas占绝对优势,其相对丰度为5.33%~7.25%,而检出的亚硝酸氧化菌属仅有Nitrospira,其相对丰度仅相当于氨氧化菌属的2.53%~6.34%,氨氧化菌的有效富集为部分亚硝化的启动提供了基础。  相似文献   

10.
采用SBR-ASBR组合工艺处理实际生活污水,SBR中考察缺氧/好氧时间比及温度对部分亚硝化(partial nitritation,PN)的作用,ASBR中研究COD/NO2--N(C/N)对厌氧氨氧化(anaerobic ammonium oxidation,ANAMMOX)协同反硝化脱氮除碳的影响.①控制温度为25℃,在缺氧/好氧时间比为30 min:30 min,单周期交替3次时,NO2--N积累率(NiAR)于第22 d为98.06%,比亚硝态氮产生速率(SNiPR,以N/VSS计)为0.28g·(g·d)-1,同步硝化反硝化去除的TN和COD分别为12.29 mg·L-1和110.36mg·L-1.②在缺氧/好氧时间比为30 min:30 min下,温度为15℃时,丝状菌大量繁殖,污泥活性和沉降性变差;温度为30℃时,NH4+-N转化为NO2--N比例为86.83%,造成出水NH4+-N浓度过低,不能为厌氧氨氧化提供合适基质浓度;温度为25℃时,出水NH4+-N和NO2--N浓度分别为31.58 mg·L-1和35.04mg·L-1,匹配厌氧氨氧化基质比.③组合工艺脱氮性能良好,出水TN、NH4+-N和COD浓度分别稳定在13.13、4.83和69.96mg·L-1,去除率分别为83.10%、93.64%和75.11%.调节ASBR进水C/N为2.5、2.0和1.5时,C/N为2.0时厌氧氨氧化协同反硝化脱氮除碳性能最佳,出水NH4+-N、NO2--N、NO3--N和COD分别为0.09、0.25、1.04和32.73mg·L-1.  相似文献   

11.
SBR法交替缺氧好氧模式下短程硝化效率的优化   总被引:9,自引:0,他引:9  
采用SBR法以实际生活污水为研究对象,通过交替缺氧好氧的运行模式实现了短程硝化的快速启动.在不同的缺/好氧时间比条件下考察了短程硝化的启动时间、污染物处理效果以及氨利用速率的变化.结果表明,在缺氧/好氧时间比为1:1和2:1条件下,分别用了31,55d使得两系统的亚硝酸盐积累率达到90%,短程状态稳定.氨氮去除率达到95%以上,COD出水在50mg/L以下,总氮去除率提高20%,污染物的去除效率有所提高.由全程到短程的转变期间,系统氨利用速率分别提高了67.5%和89.8%,同时提高了短程硝化的效率.期间,污泥沉降性较好,污泥容积指数稳定在60~80mL/g.  相似文献   

12.
本研究进水模拟了污泥消化液、晚期垃圾渗滤液等高氨氮低碱度低碳氮比的废水,在碱度缺乏(不足以实现完全短程硝化)条件下获得了稳定的半短程硝化,并通过曝气量和污泥浓度(MLSS)双因素调控,实现了半短程硝化的高效经济运行.研究表明,进水碱度缺乏条件下短程硝化体系出水亚硝氮/氨氮浓度比值y与进水HCO3-∶NH4+物质的量的比...  相似文献   

13.
为强化城市污水短程硝化-厌氧氨氧化(SPNA)系统脱氮性能与稳定性,在间歇曝气条件下研究投加外源全程硝化污泥对城市污水SPNA系统的影响及机理.结果显示,空白组(SBR3)总氮去除率由35.5%升高至66.3%,短周期分批次投加外源全程硝化污泥(SBR2,投加周期为5d,投加比为2.5%)与长周期分批次投加(SBR1,投加周期为20d,投加比为10%)的SPNA系统总氮去除率分别由31.7%和36.5%升高至76.3%和67.2%,这表明,投加全程硝化污泥有利于提高SPNA系统的脱氮性能,且当投加总量相同时,短周期分批次投加的效果优于长周期分批次投加.功能菌活性结果与脱氮效果一致,SBR1~SBR3的厌氧氨氧化菌(AnAOB)最大活性分别由3.43mg-N/(L·h)升高至7.66,8.19和7.31mg-N/(L·h),氨氧化细菌(AOB)与亚硝酸盐氧化菌(NOB)活性比分别为8.79,9.83和8.78.在间歇曝气条件下投加全程硝化污泥,可选择性抑制NOB、富集AOB,提高AOB与NOB的活性比,利于稳定短程硝化效果,为AnAOB提供稳定的基质,且短周期分批次投加可降低外源硝化污泥...  相似文献   

14.
短程硝化的生化机理及其动力学   总被引:9,自引:1,他引:8  
短程硝化的生化反应机理和动力学是生物脱氮技术的理论基础,同时也是生物脱氮工艺设计、运行科学化和合理化的重要依据.基于短程硝化的生化机理、氨氧化菌的电子传递(能量产生)模式,从微生物学和化学计量学两个方面详细论述了短程硝化一系列复杂的生化反应过程.由此可知,短程硝化是一个涉及多种酶及多种中间产物,并伴随着电子(能量)传递的复杂生化反应过程,是基质(NH4 -N)利用(产能代谢)和微生物(氨氧化菌)增殖(合成代谢)两类反应的综合,因此,研究氨氮比利用速率和氨氧化菌比增殖速率动力学则是对短程硝化反应的深层次研讨.并建议采用积分法和微分法来确定动力学参数μnmax、KN、vnmax.  相似文献   

15.
短程硝化过程是短程生物脱氮工艺中的限速步骤,在保证稳定亚硝化率的前提下,提高曝气量能够提高好氧氨氧化菌的活性,进而提高氨氧化速率.本文在序批式反应器中,通过改变曝气量,在高溶解氧条件下,考察不同曝气量对短程硝化的性能及微生物的影响.结果表明,随着曝气量的增大,氨氧化速率不断升高.单位体积曝气量为0.8、1.7、3.3、5.0 L·min-1·L-1时,氨氧化率维持在50%左右,亚硝酸盐氮积累率稳定在99%以上,平均氨氧化速率分别为0.88、0.96、1.29和1.32 mg·L-1·min-1.高通量测序分析表明,不同曝气量条件下,反应器中好氧氨氧化菌的优势菌属均为Nitrosomonas,而亚硝酸盐氧化菌都被有效抑制,Nitrospira丰度很低.此外,检出AcidovoraxDenitratisomaHyphomicrobiumIgnavibacterium等多种反硝化细菌,这些反硝化菌能够与好氧氨氧化菌共同作用,使系统发生少量内源同步硝化反硝化.综合考虑曝气能耗和反应速率,曝气量为3.3 L·min-1·L-1时,可实现控制短程硝化工艺的低耗高效运行.  相似文献   

16.
城市污水连续流半亚硝化实现维持机理与工艺创新研究   总被引:3,自引:0,他引:3  
常温(20~29℃)限氧条件下(DO0.2mg·mL-1),以城市污水A/O除磷工艺处理出水为原水,在推流式好氧反应器中,考察了城市污水连续流半亚硝化实现维持的内在机制与影响因素,开发了一套新型半亚硝化工艺运行模式.试验结果表明,接种污泥性质、反应器污泥浓度(MLSS)和单级反应器好氧/缺氧交替内循环的运行方式是城市污水实现维持半亚硝化的关键影响因素.随着回流比的加大,亚硝氮累积率持续稳定上升,试验获得亚硝氮累积率平均为85%,最高达到96%.长期在低DO条件下运行,污泥沉降性能良好,SVI值在70~110mL.g-1.半亚硝化工艺出水NO2--N/NH4+-N平均为1.0,可为城市污水的厌氧氨氧化(ANAMMOX)提供合适的进水基质.试验后期,总氮(TN)去除率达到50%,批量实验证实去除途经为厌氧氨氧化,这一试验结果为开发低氨氮城市污水同步半亚硝化-厌氧氨氧化工艺提供了研究基础.  相似文献   

17.
不同短程硝化系统中微生物群落结构的对比分析   总被引:4,自引:0,他引:4  
为探讨有机碳源对短程硝化系统中微生物群落结构的影响,采用构建克隆文库的方法对模拟无机城市生活污水和模拟实际城市生活污水短程硝化系统中的微生物群落结构进行对比分析.实验结果表明,变形菌门(Proteobacteria)和未培养菌(uncultured bacterium)是两系统中的优势菌群.两系统中的菌群结构存在差异,但优势菌群及其所占比例相似.两系统中的主要脱氮菌类群也相似,但由于有机碳源浓度的不同其菌属及比例有所差异.无机短程硝化系统中的脱氮菌群包括亚硝化单胞菌属(Nitrosomonas)、硝化螺菌属(Nitrospira)和Denitratisoma,其中自养硝化菌的比例高于其在有机短程硝化系统中的比例,但仍低于异养菌在该系统中的比例.有机短程硝化系统中的脱氮菌群主要包括β-Proteobacteria中的一些反硝化细菌和亚硝化单胞菌属(Nitrosomonas),其中亚硝化单胞菌属(Nitrosomonas)的含量很少.  相似文献   

18.
实验采用生物膜-活性污泥复合工艺(IFAS),探究了不同进水NH4+-N负荷以及游离氨(FA)浓度下的好氧氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)的动力学特性,考察了不同微生物聚集体(悬浮污泥和载体生物膜)对于NH4+-N去除的贡献,同时对其中的生物吸附和生物降解进行定量分析.利用荧光原位杂交(FISH)技术观察了总菌、AOB和NOB的数量以及空间结构的变化.结果表明,随着进水NH4+-N浓度逐渐升高,出水NO3--N浓度逐渐下降,NO2--N得到大量积累,当进水NH4+-N浓度为480mg/L时,NH4+-N去除率和亚硝酸盐氮积累率(NAR)分别稳定在95%和80%以上,而FA由(2.77±0.07)mg/L增加至(16.35±0.3)mg/L时,NAR由9.42%增加至83.31%,实现了对NOB的抑制.在NH4+-N的去除过程中生物吸附和微生物降解分别占NH4+-N去除量的3.4%和88.1%,悬浮污泥和生物膜中AOB占比分别由27.4%和10.3%增加至41.3%和18.1%,表明悬浮污泥比生物膜更有利实现对于AOB的富集.  相似文献   

19.
颗粒活性炭诱导亚硝化污泥快速颗粒化   总被引:2,自引:0,他引:2  
采用两组平行SBR反应器,R1反应器投加颗粒活性炭,R2反应器不投加,其他运行参数保持一致.在常规生活污水中投加氨氮作为进水,研究颗粒活性炭对亚硝化颗粒污泥形成的影响.结果表明,在颗粒形成初期,投加的颗粒活性炭作为初始晶核,节约了小颗粒的形成时间,R1反应器仅22d便实现污泥颗粒化,而R2反应器运行38d才形成颗粒;同时,在整个运行阶段,R1反应器中的胞外聚合物(EPS)含量,尤其是其中的蛋白质(protein, PN)含量,明显高于R2反应器的,进一步证实颗粒活性炭的投加有利于亚硝化颗粒污泥的快速形成.除此之外,R1反应器中的氨氧化率和亚硝化率相对较高,且波动幅度小,表明颗粒活性炭的投加有助于维持亚硝化颗粒污泥处理效果的稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号