首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Mody K  Unsicker SB  Linsenmair KE 《Ecology》2007,88(4):1012-1020
Generalist insect herbivores may profit by feeding on a mixture of plant species that differ in nutritional quality. Herbivore performance can also be affected by intraspecific host plant variation. However, it is unknown whether conspecific plant individuals differ sufficiently to promote diet-mixing behavior in specialist herbivores. We experimentally tested this "specialist diet-mixing hypothesis" for specialist caterpillars (Chrysopsyche imparilis, Lasiocampidae) in a West African savanna. The caterpillars switched regularly between host tree individuals (Combretum fragrans, Combretaceae). To examine whether switching benefited caterpillar performance via diet-mixing, the caterpillars were reared either on leaves from several plant individuals (mixed diet) or on leaves from a single plant. The strongest effect of diet-mixing was found for fecundity, with females reared on a mixed diet laying significantly more eggs than sisters receiving a single-plant diet. In addition, a mixed diet decreased variability in egg size and increased the growth of second-instar caterpillars. Supplementary food choice experiments were conducted to assess a potential influence of lowered host quality (induced by herbivory) on caterpillar behavior; no such effect was found. By linking intraspecific host-switching behavior and herbivore performance, this study provides new information on the relevance of intraspecific plant variation for herbivorous insects.  相似文献   

2.
Lind EM  Barbosa P 《Ecology》2010,91(11):3274-3283
Species in a given trophic level occur in vastly unequal abundance, a pattern commonly documented but poorly explained for most taxa. Theoretical predictions of species density such as those arising from the metabolic theory of ecology hold well at large spatial and temporal scales but are not supported in many communities sampled at a relatively small scale. At these scales ecological factors may be more important than the inherent limits to energy use set by allometric scaling of mass. These factors include the amount of resources available, and the ability of individuals to convert these resources successfully into population growth. While previous studies have demonstrated the limits of macroecological theory in explaining local abundance, few studies have tested alternative generalized mechanisms determining abundance at the community scale. Using an assemblage of forest moth species found co-occurring as caterpillars on a single host plant species, we tested whether species abundance on that plant could be explained by mass allometry, intrinsic population growth, diet breadth, or some combination of these traits. We parameterized life history traits of the caterpillars in association with the host plant in both field and laboratory settings, so that the population growth estimate was specific to the plant on which abundance was measured. Using a generalized least-squares regression method incorporating phylogenetic relatedness, we found no relationship between abundance and mass but found that abundance was best explained by both intrinsic population growth rate and diet breadth. Species population growth potential was most affected by survivorship and larval development time on the host plant. Metabolic constraints may determine upper limits to local abundance levels for species, but local community abundance is strongly predicted by the potential for population increase and the resources available to that species in the environment.  相似文献   

3.
Tylianakis JM  Tscharntke T  Klein AM 《Ecology》2006,87(12):3047-3057
Global biodiversity decline has prompted great interest in the effects of habitat modification and diversity on the functioning and stability of ecosystem processes. However, the applicability of previous modeled or mesocosm community studies to real diverse communities in different habitats remains ambiguous. We exposed standardized nesting resources for naturally occurring communities of cavity-nesting bees and wasps and their parasitoids in coastal Ecuador, to test the effects of host and parasitoid diversity on an ecosystem function (parasitism rates) and temporal variability in this function. In accordance with predictions of complementary host use, parasitism rates increased with increasing diversity, not simply abundance, of parasitoids. In contrast, parasitism decreased with increasing host diversity, possibly due to positive prey interactions or increased probability of selecting unpalatable species. Temporal variability in parasitism was lower in plots with high mean parasitoid diversity and higher in plots with temporally variable host and parasitoid diversity. These effects of diversity on parasitism and temporal stability in parasitism rates were sufficiently strong to be visible across five different habitat types, representing a gradient of increasing anthropogenic modification. Habitat type did not directly affect parasitism rates, but host and parasitoid diversity and abundance were higher in highly modified habitats, and parasitoid diversity was positively correlated with rates of parasitism. The slope of the richness-parasitism relationship did not vary significantly across habitats, although that for Simpson's diversity was significant only in rice and pasture. We also show that pooling data over long time periods, as in previous studies, can blur the effect of diversity on parasitism rates, and the appropriate spatiotemporal scale of study must be considered.  相似文献   

4.
Abstract: We studied local patterns of Brown-headed Cowbird ( Molothrus ater ) abundance, parasitism rates, and nest success of a common host, the Plumbeous Vireo ( Vireo plumbeus ), in relation to the distribution of livestock grazing in an undeveloped region of northeastern New Mexico, 1992–1997. We predicted that both cowbird abundance and parasitism rates of vireo nests would decrease with increasing distance from active livestock grazing, and that the nesting success of vireos would increase. We measured cowbird abundance and host density and located and monitored vireo nests in pinyon-juniper and mixed-conifer habitats that ranged from actively grazed to isolated from livestock grazing by up to 12 km. Cowbird abundance declined with distance from active livestock grazing and was not related to host density or habitat type. Brood parasitism levels of vireo nests ( n = 182) decreased from> 80% in actively grazed habitats to 33% in habitats that were 8–12 km from active grazing but did not vary by habitat type or distance to forest edge. Vireo nesting success was higher in mixed-conifer habitat than in pinyon-juniper but was unrelated to distance from active livestock grazing. Nest losses due to parasitism declined with distance from active livestock grazing. Our results suggest that cowbird abundance and parasitism rates of hosts may be distributed as a declining gradient based on distance from cowbird feeding sites and that isolation from feeding sites can reduce the effects of parasitism on host populations. These findings provide support for management techniques that propose to reduce local cowbird numbers and parasitism levels by manipulating the distribution of cowbird feeding sites. The presence of parasitized nests> 8 km from active livestock grazing suggests that, in some regions, management efforts may need to occur at larger scales than previously realized.  相似文献   

5.
Summary. Plant responses to herbivory might directly affect the herbivore (“direct” defences) or might benefit the plant by promoting the effectiveness of natural antagonists of the herbivores (“indirect” defences). Brussels sprouts attacked by Pieris brassicae larvae release volatiles that attract a natural antagonist of the herbivores, the parasitoid Cotesia glomerata, to the damaged plant. In a previous study, we observed that feeding by caterpillars on the lower leaves of the plant triggers the systemic release of volatiles detectable by the parasitoids from upper leaves of the same plant.?The role of these systemically induced volatiles as indirect defence and the dynamics of their emission were investigated in wind-tunnel dual choice tests with C. glomerata. The systemically induced emission of volatiles varied depending on leaf age and on plant age. Systemic induction affected parasitoid effectiveness, as induced plants could be more easily located by parasitoids than non-induced ones.?The role of the systemic induction as a direct defence was investigated through behavioural and feeding tests with P. brassicae. In dual choice assays, 1st instar larvae preferred to feed and fed more on systemically induced than on non-induced leaves. In single choice assays, the leaf area consumed by caterpillars was larger on systemically induced leaves than on non-induced control leaves. However, caterpillars fed on systemically induced leaves attained the same weight as those feeding on non-induced controls. In addition, P. brassicae pupae whose larvae were fed on systemically induced leaves had longer developmental times than those of larvae fed on non-induced leaves. Adult oviposition behavior was not influenced by systemic induction.?We conclude that systemically induced responses in cabbage might reduce P. brassicae fitness both directly, by affecting their development and feeding behavior and indirectly by making caterpillars and pupae more vulnerable to attack by carnivores. The occurrence of a possible relationship between direct and indirect defence is discussed. Received 24 January 2001; accepted 3 May 2001.  相似文献   

6.
Brown-headed Cowbirds, Molothrus ater , are brood parasites on many species of North American Passerines. Cowbird parasitism is frequently cited as a contributing factor in the decline of United States passerine populations, based on three lines of evidence. First, range expansion and population increases by Cowbirds in this century are dramatic and well documented. Second, increasing rates of parasitism have been discovered in a variety of host species populations. Finally, direct negative effects of parasitism on certain vulnerable species notably Kirtland's Warbler, Dendroica kirtlandii , have been demonstrated. It remains unproven, however, that Cowbirds have significant negative effects on more abundant and widely-distributed hosts.
We report here on the impact of Cowbird parasitism on populations of Nuttall's White-crowned Sparrow, Zonotrichia leucophrys nuttalli , in the San Francisco Bay Area. This widespread songbird is now subject to a 40–50% rate of parasitism in San Francisco, an increase from 5% only 15 years ago. Using known mortality and fecundity values, we calculate that this population of White-crowns cannot maintain its numbers when the parasitism rate exceeds approximately 20%. Present levels of parasitism thus appear to threaten the longevity survival of this adaptable Songbird in the San Francisco Bay Area.  相似文献   

7.
Jones J  Doran PJ  Holmes RT 《Ecology》2007,88(10):2505-2515
Synchrony in population fluctuations has been identified as an important component of population dynamics. In a previous study, we determined that local-scale (<15-km) spatial synchrony of bird populations in New England was correlated with synchronous fluctuations in lepidopteran larvae abundance and with the North Atlantic Oscillation. Here we address five questions that extend the scope of our earlier study using North American Breeding Bird Survey data. First, do bird populations in eastern North America exhibit spatial synchrony in abundances at scales beyond those we have documented previously? Second, does spatial synchrony depend on what population metric is analyzed (e.g., abundance, growth rate, or variability)? Third, is there geographic concordance in where species exhibit synchrony? Fourth, for those species that exhibit significant geographic concordance, are there landscape and habitat variables that contribute to the observed patterns? Fifth, is spatial synchrony affected by a species' life history traits? Significant spatial synchrony was common and its magnitude was dependent on the population metric analyzed. Twenty-four of 29 species examined exhibited significant synchrony in population abundance: mean local autocorrelation (rho)= 0.15; mean spatial extent (mean distance where rho=0) = 420.7 km. Five of the 29 species exhibited significant synchrony in annual population growth rate (mean local autocorrelation = 0.06, mean distance = 457.8 km). Ten of the 29 species exhibited significant synchrony in population abundance variability (mean local autocorrelation = 0.49, mean distance = 413.8 km). Analyses of landscape structure indicated that habitat variables were infrequent contributors to spatial synchrony. Likewise, we detected no effects of life history traits on synchrony in population abundance or growth rate. However, short-distance migrants exhibited more spatially extensive synchrony in population variability than either year-round residents or long-distance migrants. The dissimilarity of the spatial extent of synchrony across species suggests that most populations are not regulated at similar spatial scales. The spatial scale of the population synchrony patterns we describe is likely larger than the actual scale of population regulation, and in turn, the scale of population regulation is undoubtedly larger than the scale of individual ecological requirements.  相似文献   

8.
The quality and quantity of food delivered to young are among the major determinants of fitness. A parental provisioning capacity is known to increase with body size. Therefore, brood parasitism provides an opportunity to test the effects of varying provisioning abilities of different-sized hosts on parasitic chick growth and fledging success. Knowledge of growth patterns of common cuckoo, Cuculus canorus, chicks in nests of common hosts is very poor. Moreover, no study to date has focused on any currently unused hosts (i.e., suitable cuckoo host species in which parasitism is currently rare or absent). Here, I compare the growth performance of cuckoo chicks in nests of a common host (the reed warbler, Acrocephalus scirpaceus) and two unparasitized hosts (the song thrush, Turdus philomelos, and the blackbird, Turdus merula). Parasitic chicks were sole occupants of the observed nests, thus eliminating the confounding effect of competition with host chicks. Experiments revealed striking differences in parasitic chick growth in the two closely related Turdus hosts. Cuckoo chicks cross-fostered to song thrush nests grew much quicker and attained much higher mass at fledging than those in nests of their common reed warbler host. Alternatively, parasitic chicks in blackbird nests grew poorly and did not survive until fledging. I discuss these observations with respect to host selection by parasitic cuckoos.  相似文献   

9.
The parsnip webworm, Depressaria pastinacella, specializes on wild parsnip, Pastinaca sativa, and several species of Heracleum, hostplants rich in toxic furanocoumarins. Rates of furanocoumarin metabolism in this species are among the highest known for any insect. Within its native range in Europe, webworms are heavily parasitized by the polyembryonic parasitoid wasp Copidosoma sosares. In this study, we determined whether these parasitoids are exposed to furanocoumarins in host hemolymph, whether they can metabolize furanocoumarins, and whether parasitism influences the ability of webworms to detoxify furanocoumarins. Hemolymph of webworms fed artificial diet containing 0.3 % fresh weight xanthotoxin, a furanocoumarin prevalent in wild parsnip hosts, contained trace amounts of this toxin; as well, hemolymph of webworms consuming P. sativa flowers and fruits contained trace amounts of six of seven furanocoumarins present in the hostplant. Thus, parasitoids likely encounter furanocoumarins in host hemolymph. Assays of xanthotoxin metabolism in C. sosares failed to show any ability to metabolize this compound. Parasitized webworms, collected from populations of Heracleum sphondylium in the Netherlands in 2004, were on average 55 % larger by weight than unparasitized individuals. This weight is inclusive of host and parasitoid masses. Absolute rates of detoxification (nmoles min−1) of five different furanocoumarins were indistinguishable between parasitized and unparasitized ultimate instars, suggesting that the intrinsic rates of metabolism are fixed. Thus, although parasitized larvae are larger, detoxification rates are not commensurate with size; rates in parasitized larvae expressed per gram of larval mass were 25 % lower than in unparasitized larvae.  相似文献   

10.
Great reed warblers (Acrocephalus arundinaceus) are frequently parasitized by egg-mimetic common cuckoos (Cuculus canorus) in Hungary, and these hosts reject about a third of parasitic eggs. The timing of parasitism is important, in that the probability of rejection decreases with advancing breeding stages in this host. Also, egg rejection is more common when a clutch is parasitized by a single foreign egg, compared to parasitism by multiple eggs. We repeatedly parasitized great reed warbler clutches with moderately mimetic foreign eggs, either with (1) one foreign egg (single parasitism) and, after 3 days, by all foreign eggs (multiple parasitism), or (2) all foreign eggs and, 3 days later, by only one foreign egg. Hosts ejected 26–53 % of the experimental parasitic eggs in the first stage of the repeated parasitism, but almost all eggs were accepted in the second stage, irrespective of whether the clutch was singly or multiply parasitized. Video-taping of the behavioural responses of hosts to experimental parasitism revealed no evidence for sensory constraints on foreign-egg recognition, because hosts recognized and pecked the parasitic eggs as frequently in the second stage of repeated parasitism, as they did in the first stage. We suggest that the relative timing of parasitism (laying vs. incubation stage), rather than learning to accept earlier-laid foreign eggs, results in higher acceptance rates of cuckoo eggs in repeated parasitism, because there is decreasing natural cuckoo parasitism on this host species and, hence, less need for antiparasitic defences, with the advancing stages of breeding.  相似文献   

11.
Summary. Field observations indicated that hornworms select feeding sites non-randomly on tobacco. We tested the hypotheses that differences in feeding site locations of larvae of Manduca sexta L. and Manduca quinquemaculata (Haworth) (Lepidoptera: Sphingidae) on tobacco could be explained by differential nicotine concentrations within plants and leaves, species-specific responses to nicotine, or pressure exerted by natural enemies. Results showed that third-instar larvae of M. sexta fed more proximally and centrally on the leaf, whereas M. quinquemaculata fed more distally. Within-plant selection of leaves did not differ; both species selected leaves in the middle region of the plant. Nicotine concentrations in a high nicotine genotype, NC95, varied within each leaf, increasing 2—3 fold from the basal to apical portion of the leaf, and within each plant, increasing 7—10 fold from the first fully expanded leaf to the twelfth (lowest) leaf. In laboratory bioassays, both Manduca species responded to nicotine as a feeding deterrent. Electrophysiological studies demonstrated that gustatory organs of both species responded to nicotine at concentrations found in tobacco leaves and that M. quinquemaculata generally showed a less vigorous response to nicotine than M. sexta. Field mortality of M. sexta due to parasitism by Cotesia congregata (Say) and to parasitism and predation combined differed among feeding sites; predation alone did not. Results suggest that although nicotine concentration and species specific responses to nicotine play a role in determining feeding site locations, pressure exerted by natural enemies, especially parasitism by C. congregata, is more important. Received 22 February 2000; accepted 20 July 2001.  相似文献   

12.
Growth rate and survival of first-instar larvae of Danaus plexippus, a milkweed specialist, depended on milkweed species, and was related to the amount of latex produced from wounds, leaf cardenolide concentrations and the presence of leaf hairs. Larval growth was more rapid and survival was higher on leaves of Asclepias californica with experimentally reduced latex, and this species has characteristically high latex, low- to mid-range cardenolide concentrations, and very hirsute leaves. Similarly, growth was higher on reduced latex leaves of both A. eriocarpa (a high latex/high cardenolide, hirsute species) and A. erosa (glabrous fleshy leaves, high latex/high cardenolides). There were no differences in either survival or growth rate between larvae on reduced latex or control leaves of the low latex/low cardenolide A. fascicularis with soft glabrous leaves and both survival and growth rate were higher on this species than the other species tested. Larval growth rates on leaves with reduced latex were similar among ten milkweed species tested to date but differed from growth rates on intact leaves suggesting that latex and possibly included cardenolides are both important in first-instar monarch larval growth, development and survival. We show for a range of ecologically important milkweeds that experiments on cut plant material (no latex outflow) lead to higher growth rates compared to intact plants. Such laboratory assays based on detached leaves will be misleading if the objective is to determine the impact of treatments such as Bt-maize pollen on monarchs on field plants.  相似文献   

13.
Summary. Polyphagous caterpillars of the giant geometer Biston robustum resemble the twigs of their respective food sources in color and shape. Common predatory ants, including Lasius and Formica, were often observed to freely prowl directly on caterpillars bodies, even after antennal contact. This suggests that the cuticular chemicals of the caterpillars resemble those of the twigs of the foodplants, so we analyzed both by GC and GC-MS. The chemical compositions differed among caterpillars fed on a cherry, Prunus yedoensis, a chinquapin Castanopsis cuspidata, and a camellia Camellia japonica. The cuticular chemicals of the caterpillars resembled those of their corresponding food sources. When the caterpillar diets were switched from the cherry to camellia or chinquapin at the 4th instars, the caterpillars cuticular chemicals changed after molting to resemble those of their respective foods. Caterpillars also changed their cuticular chemicals when they perched on cherry twigs and fed on camellia or chinquapin leaves, but not when they perched on camellia or chinquapin twigs and fed on cherry leaves. The chemical similarities between the caterpillars and the twigs were due to the digestion of host leaves, which indicates that this is a diet-induced adaptation.  相似文献   

14.
Most host species of obligate interspecific brood parasites are under strong selection because such parasitism, e.g., that involving evictor nestmates, is highly costly. Egg rejection is one of the most efficient host defences against avian brood parasites. Many hosts have thus evolved egg-recognition ability and rejection behaviour. However, this defensive mechanism has not evolved in most species where only intraspecific brood parasitism occurs, probably because (1) the eggs of conspecific females are very similar in appearance, making egg rejection less likely to emerge, and (2) such parasitism is frequently less costly than interspecific parasitism. Using a captive population of house sparrows (Passer domesticus) with a low breeding density, we here provide new evidence showing that this species actually has a fine capacity to discriminate conspecific eggs and to eject them (44.2% of foreign eggs ejected) while incurring very low rejection costs (4.2% of own eggs ejected). This result contradicts those previously found in high-density house sparrow populations in which very high rejection costs and very high clutch desertion rates were reported, probably as a consequence of intraspecific competition and infanticide provoked by the high breeding density. The house sparrow has only rarely been reported as the host of an interspecific brood parasite, which implies that it is a newly described example of an altricial species in which egg ejection has evolved and is maintained in response to intraspecific brood parasitism.  相似文献   

15.
Obligate avian brood parasites lay their eggs in nests of other species (hosts), which raise parasitic young. Parasitic nestlings are likely to influence host’s parental behaviours as they typically beg for food more vigorously than young host for a given hunger level. However, few studies have tested this idea, with conflicting results. These prior studies were largely limited to biparental hosts, but little is known about the effect of brood parasitism on parental behaviours in hosts that breed cooperatively. We followed a multimodel approach to examine the effect of brood parasitism on nest provisioning and helper recruitment in the baywing (Agelaioides badius), a cooperative breeder parasitised by screaming (Molothrus rufoaxillaris) and shiny (Molothrus bonariensis) cowbirds. Multimodel inference results indicated that feeding visits increased with nestling age, cooperative group size and number of cowbird nestlings in the brood. Brood size had little influence on feeding visits, which further suggests that baywings adjusted their provisioning effort in response to cowbird parasitism. In addition, nests parasitised artificially with shiny cowbird eggs or hatchlings recruited more helpers than unmanipulated nests having only host or screaming cowbird young. Our results provide novel evidence that brood parasitism and cooperative breeding interact in determining the levels of nest provisioning.  相似文献   

16.
Poorter L  Bongers F 《Ecology》2006,87(7):1733-1743
We compared the leaf traits and plant performance of 53 co-occurring tree species in a semi-evergreen tropical moist forest community. The species differed in all leaf traits analyzed: leaf life span varied 11-fold among species, specific leaf area 5-fold, mass-based nitrogen 3-fold, mass-based assimilation rate 13-fold, mass-based respiration rate 15-fold, stomatal conductance 8-fold, and photosynthetic water use efficiency 4-fold. Photosynthetic traits were strongly coordinated, and specific leaf area predicted mass-based rates of assimilation and respiration; leaf life span predicted many other leaf characteristics. Leaf traits were closely associated with growth, survival, and light requirement of the species. Leaf investment strategies varied on a continuum trading off short-term carbon gain against long-term leaf persistence that, in turn, is linked to variation in whole-plant growth and survival. Leaf traits were good predictors of plant performance, both in gaps and in the forest understory. High growth in gaps is promoted by cheap, short-lived, and physiologically active leaves. High survival in the forest understory is enhanced by the formation of long-lived well protected leaves that reduce biomass loss by herbivory, mechanical disturbance, or leaf turnover. Leaf traits underlay this growth-survival trade-off; species with short-lived, physiologically active leaves have high growth but low survival. This continuum in leaf traits, through its effect on plant performance, in turn gives rise to a continuum in species' light requirements.  相似文献   

17.
Summary. We examined the role of plant phenology in the evolution of anti-herbivore defence in symbiotic ant-plant protection mutualisms. Phenology of the host-plant affects traits of its herbivores, including size, growth rate, development time, and gregariousness. Traits of herbivores in turn determine what traits ants must have to protect their host. Diversity in plant phenological traits could thus help explain the great ecological diversity of coevolved ant-plant mutualisms. We explored the postulated causal chain linking phenology of the plant, herbivore adaptations to phenology, and ant adaptations for protection, by comparing two myrmecophytes presenting strong contrasts in phenology. In Leonardoxa africana, a slow-growing understory tree, growth at each twig terminal is intermittent, the rapid flushing of a single leaf-bearing internode being followed by a pause of several months. In contrast, axes of Barteria nigritana, a tree of open areas, grow continuously. Analysis of the phenology (kinetics of expansion) and chemistry of leaf development (contents of chlorophylls, lignin, and nitrogen during leaf growth) showed that these two species exhibit strongly contrasting strategies. Leonardoxa exhibited a delayed greening strategy, with rapid expansion of leaves during a short period, followed by synthesis of chlorophylls and lignins only after final leaf size has been reached. In contrast, leaves of Barteria expanded more slowly, with chlorophylls and lignin gradually synthesised throughout development. Differences in the phenology of leaf development are reflected in differences in the duration of larval development, and thereby in size, of the principal lepidopteran herbivores observed on these two plants. This difference may in turn have led to different requirements for effective defence by ants. The strategy of phenological defence may thus affect the evolution of biotic defence.  相似文献   

18.
The growth of 0-group Pleuronectes platessa L. on diets containing plant proteins was examined. Diets were made acceptable to the fish by including in them cod flesh which had been predigested with proteolytic enzymes, as well as a proportion of air-dried cod meal. A leaf-protein concentrate was fed at 6 levels ranging from 0 to 63 % of the total dietary protein; B.P. protein concentrate (Toprina) and soyabean meal were examined at a single level — about 45 % of the dietary protein. The remainder of the protein in these diets was animal protein, cod meal or cod flesh. Analysis of the weight gains after a 12 week feeding period and of the growth curves showed that, as the proportion of leaf protein in the diet increased, the growth rate diminished, the effect becoming more pronounced when leaf protein reached 40 % or more of the dietary protein. Growth on the diet containing B.P. protein concentrate was superior to that on the diet containing soyabean meal and was comparable with diets containing low levels of leaf protein. The protein efficiency ratios (PER= g live weight gain/g protein fed) for the different diets showed similar trends to the growth rates. Diets containing 40 % or less of leaf protein and the B.P. protein diet had PERs of 1.4 to 1.5. The soyabean meal diet and diets containing more than 40 % of the protein as leaf protein had PERs of 1.0 or less. The results are considered in the context of production diets for flatfish.  相似文献   

19.
Summary Brown-headed cowbirds (Molothrus ater) parasitized yellow warblers (Dendroica petechia) six times more frequently than least flycatchers (Empidonax minimus) nesting in the same riparian habitat in southern Manitoba. This difference was surprising because least flycatchers were higher quality hosts; flycatchers always accepted cowbird eggs while warblers did so on only about half the occasions. Both hosts were equally good foster parents, at least until fledging; thus, once an egg was accepted there was probably no further advantage in parasitizing one species over the other. The probability that a nest was parasitized decreased with increasing nest height, perhaps as a consequence of the cowbird's habit of searching for nests close to the ground. Since least flycatchers nested higher in the canopy than yellow warblers, a greater proportion of flycatcher nests probably were not detected by cowbirds. Nevertheless, nest height alone could not account fully for the lower incidence of parasitism on flycatchers. Clutch initiation in flycatchers peaked 6 days after warbler clutch initiations and 5 days after that of cowbirds. Despite the later peak in initiations, flycatcher nests were always available as potential hosts over the entire cowbird laying season and it was not until new clutch initiations by warblers declined in late summer that flycatchers were actually used as hosts. Because least flycatchers responded more aggressively than yellow warblers to a model female cowbird at the nest, we concluded that greater nest defense by flycatchers may have also reduced the rate of brood parasitism in this host. Together, our results suggest the large difference in the frequency of parasitism between these two hosts was primarily a product of nest location but that differences in host nest-defense and breeding season asynchrony may have contributed to preferential host selection.Offprint requests to: J.V. Briskie  相似文献   

20.
Summary. The effects of artificially added flavonoid aglycones to birch leaf surfaces on the larval performance of six species of leaf-chewing sawflies were investigated. Significantly negative effects of increased contents of both total flavonoid and individually fed flavonoid compounds were found for the larval performance of certain mid to late and late, but not early season, sawfly species. Species-specific variations in the quantity of faecal flavonoid glycosides, which were examined to investigate whether effective glycosylation of foliar flavonoid aglycones in larvae correlated with varying tolerance to these compounds, also yielded significant species-specific differences between early and late season species. The results suggest seasonal adaptations in host plant use by sawflies feeding on mountain birch, such that phenologically earlier species are better adapted to coping with leaf surface flavonoid aglycones, which occur in the highest concentrations in young leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号