首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lane snappers (Lutjanus synagris), sampled from eight localities in the northern Gulf of Mexico (Gulf) and one locality along the Atlantic coast of Florida, were assayed for allelic variation at 14 nuclear-encoded microsatellites and for sequence variation in a 590 base-pair fragment of the mitochondrially encoded ND-4 gene (mtDNA). Significant heterogeneity among the nine localities in both microsatellite allele and genotype distributions and mtDNA haplotype distributions was indicated by exact tests and by analysis of molecular variance (AMOVA). Exact tests between pairs of localities and spatial analysis of molecular variance (SAMOVA) for both microsatellites and mtDNA revealed two genetically distinct groups: a Western Group that included six localities from the northwestern and northcentral Gulf and an Eastern Group that included three localities, one from the west coast of Florida, one from the Florida Keys, and one from the east (Atlantic) coast of Florida. The between-groups component of molecular variance was significant for both microsatellites (Φ CT = 0.016, P = 0.009) and mtDNA (Φ CT = 0.208, P = 0.010). Exact tests between pairs of localities within each group and spatial autocorrelation analysis did not reveal genetic heterogeneity or an isolation-by-distance effect among localities within either group. MtDNA haplotype diversity was significantly less (P < 0.0001) in the Western Group than in the Eastern Group; microsatellite allelic richness and gene diversity also were significantly less in the Western Group (P = 0.015 and 0.013, respectively). The difference in genetic variability between the two groups may reflect reduced effective population size in the Western Group and/or asymmetric rates of genetic migration. The relative difference in variability between the two groups was substantially greater in mtDNA and may reflect one or more mtDNA selective sweeps; tests of neutrality of the mtDNA data were consistent with this possibility. Bayesian analysis of genetic demography indicated that both groups have experienced a historical decline in effective population size, with the decline being greater in the Western Group. Maximum-likelihood analysis of microsatellite data indicated significant asymmetry in average, long-term migration rates between the two groups, with roughly twofold greater migration from the Western Group to the Eastern Group. The difference in mtDNA variability and the order-of-magnitude difference in genetic divergence between mtDNA and microsatellites may reflect different demographic events affecting mtDNA disproportionately and/or a sexual and/or spatial bias in gene flow and dispersal. The spatial discontinuity among lane snappers in the region corresponds to a known zone of vicariance in other marine species. The evidence of two genetically distinct groupings (stocks) has implications for management of lane snapper resources in the northern Gulf.  相似文献   

2.
Restriction-site variation in mitochondrial (mt) DNA was assayed among 1675 red drum (Sciaenops ocellatus Linnaeus) sampled from 20 localities along the southeastern coast of the USA (western Atlantic) and the Gulf of Mexico (Gulf). Up to four consecutive year-classes (cohorts) were sampled at most localities. Nucleotide-sequence divergence among 170 mtDNA haplotypes identified ranged (in percentage) from 0.184 to 1.913, with a mean (±SD) of 0.887 ± 0.300. Comparisons of mtDNA haplotype frequencies across year-classes within localities were non-significant, indicating temporal stability of breeding components within localities. Significant heterogeneity in mtDNA haplotype frequencies was found across all localities, between (pooled) samples from the western Atlantic and the Gulf, and among geographically spaced, regional groupings in the Gulf. Genetic divergence between subpopulations of red drum in the western Atlantic and Gulf follows a pattern exhibited in other marine fishes, and probably stems from physical (historical environmental heterogeneity, absence of suitable habitat, and current patterns) and, perhaps, behavioral factors. Genetic differences among red drum in the Gulf appear to be due largely to an isolation-by-distance effect that is attributable to behavioral factors. The latter may include female philopatry to natal bays or estuaries, limited offshore (coastwise) movement of females relative to their natal bay or estuary, or both. Genetic divergence among red drum in the Gulf occurs despite high gene flow (estimated as the number of genetic effective migrants in an island mode). Conservation and management of red drum should be based on the premise that strategies for a given bay or estuary will impact geographically proximal bays or estuaries more than distal ones. Trajectories of correlograms in spatial autocorrelation analysis suggest a geographic neighborhood size, relative to genetic migration of red drum from a bay or estuary, of roughly 500 to 600 km. Received: 22 July 1998 / Accepted: 19 November 1998  相似文献   

3.
Variation in mitochondrial (mt)DNA was examined among 473 red drum (Sciaenops ocellatus) sampled in 1988 and 1989 from nearshore localities in the northern Gulf of Mexico (Gulf) and the Atlantic coast of the southeastern United States (Atlantic). Data were combined with those from a previous study to generate a total of 871 individuals sampled from 11 localities in the Gulf and 5 localities in the Atlantic. Individuals assayed were from the 1986 and 1987 year-classes. A total of 118 composite mtDNA genotypes (haplotypes) was found. The percentage nucleotide sequence divergence among the 118 haplotypes ranged from 0.184 to 1.913, with a mean (±SE) of 0.878±0.004. MtDNA nucleon diversities and intrapopulational nucleotide-sequence divergence values were similar over all Gulf and Atlantic localities, and were high relative to most fish species surveyed to date. These data indicate that the perceived decline in red drum abundance appears not to have affected the genetic variability base of the species. Significant heterogeneity in the frequencies of at least four haplotypes was detected between pooled samples from the Gulf vs pooled samples from the Atlantic. No heterogeneity was found among localities from the Gulf or localities from the Atlantic. High levels of gene flow among all localities were inferred from F ST values (a measure of the variance in mtDNA haplotype frequencies) and from Slatkin's qualitative and quantitative analyses. Parsimony and phenetic analyses revealed no strong evidence for phylogeographic cohesion of localities, although there was weak support for cohesion of four of five localities from the Atlantic. These data indicate that the red drum population is subdivided, with weakly differentiated subpopulations (stocks) occurring in the northern Gulf and along the Atlantic coast of southeastern USA. Spatial autocor-relation analysis and heterogeneity tests of haplotype frequencies among regions within the Gulf supported the hypothesis of increased gene flow among neighboring localities; i.e., migration of individuals within the Gulf may be inversely related to geographic distance from an estuary or bay of natal origin. Estimates of evolutionary effective female-population size indicate that the red drum subpopulations may be large.  相似文献   

4.
We evaluated stock structure and demographic (population) history of red snapper (Lutjanus campechanus) in the northern Gulf of Mexico (Gulf) via analysis of mitochondrial (mt)DNA sequences from 360 individuals sampled from four cohorts (year classes) at three localities across the northern Gulf. Exact tests of genetic homogeneity and analysis of molecular variance both among cohorts within localities and among localities were non-significant. Nested clade analysis provided evidence of different temporal episodes of both range expansion and restricted gene flow due to isolation by distance. A mismatch distribution of pairwise differences among mtDNA haplotypes and a maximum-likelihood coalescence analysis indicated a population expansion phase that dated to the Pleistocene and probably represents (re)colonization of the continental shelf following glacial retreat. The spatial distribution of red snapper in the northern Gulf appears to have a complex history that likely reflects glacial advance/retreat, habitat availability and suitability, and hydrology. Habitat availability/suitability and hydrology may partially restrict gene flow among present-day red snapper in the northern Gulf and give rise to a metapopulation structure with variable demographic connectivity. This type of population structure may be difficult to detect with commonly used, selectively neutral genetic markers.Communicated by P.W. Sammarco, Chauvin  相似文献   

5.
The number and wide variety of southeastern United States marine taxa with significant differentiation between Gulf of Mexico and Atlantic Ocean populations suggests that these taxa may have experienced major vicariance events, whereby populations were subdivided by geological or ecological barriers. The present study compared variation in morphology, allozymes, and mtDNA in Gulf of Mexico and western Atlantic populations of the longwrist hermit crab Pagurus longicarpus Say collected during 1997 and 1998. Combined Atlantic populations had significantly fewer denticles on the second segment of the third maxilliped than did Gulf of Mexico populations, and the mean ratio of dactyl length to propodus length was significantly greater in the Atlantic crabs than in the Gulf of Mexico crabs. Allozyme allele frequencies at three loci showed genetic differentiation between a Gulf of Mexico population and two Atlantic populations. Analysis of mtDNA sequence data revealed a clear reciprocal monophyly between Gulf and Atlantic populations, with an estimated divergence age of ~0.6 million years ago. This estimated age of divergence is significantly more recent than an age previously estimated for its congener Pagurus pollicaris (~4 million years ago), suggesting that species with a similar genetic break between Gulf and Atlantic populations may not necessarily share an identical history. Surprisingly, there is evidence of geographic subdivision within Atlantic populations of P. longicarpus along the east coast of North America. This differentiation is especially strong between Nova Scotia and southern populations, suggesting that the Nova Scotia population may represent survivors from a northern refugium during the last glacial maximum.  相似文献   

6.
King mackerel (Scomberomorus cavalla Cuvier) collected in 1992 and 1993 from 13 localities along the Atlantic coast of the southeastern USA and in the northern Gulf of Mexico were surveyed for variation in mitochondrial (mt)DNA and a nuclear-encoded dipeptidase locus (PEPA-2). Both polymorphic and fixed mtDNA restriction sites were identified and mapped using conventional and polymerase chain-reaction (PCR)-based methods. Heterogeneity in mtDNA haplotype frequencies was found only in comparisons of pooled haplotypes from Atlantic localities versus pooled haplotypes from Gulf localities. This finding indicates weak genetic divergence between king mackerel from the Atlantic and those from the Gulf. Frequencies of two PEPA-2 alleles essentially paralleled previous findings: one allele (PEPA-2a) was common among samples from western Gulf localities, whereas the other allele (PEPA-2b) was common among samples from Atlantic and eastern Gulf localities. There was considerable variation in PEPA-2 allele frequencies within broadly-defined regions. Variation in mtDNA haplotypes and PEPA-2 genotypes was independent, as was variation in mtDNA haplotypes with sex or age of individuals. Variation in PEPA-2 genotypes was not independent of sex or age of individuals. The latter result suggests that frequencies of PEPA-2 alleles in samples of king mackerel may stem, in part, from sex and age distributions of individuals within samples, and indicates that caution should be exercised in using allelic variation at PEPA-2 as a measure of population (stock) structure in king mackerel. The discordance in spatial patterning of mtDNA haplotypes versus PEPA-2 alleles across the Gulf (i.e. homogeneity in mtDNA haplotype frequencies versus heterogeneity in PEPA-2 allele frequencies) may be due to either female excess at several localities, sex-biased migration, or both. Observed patterns of genetic variation also are consistent with the hypothesis that king mackerel in the western Atlantic may have been subdivided during Pleistocene glaciation, and that the current distribution of PEPA-2 alleles may be a historical artefact. Received: 17 December 1996 / Accepted: 2 April 1997  相似文献   

7.
Nine polymorphic loci were found among 42 presumptive protein-coding gene loci surveyed among 474 red drum (Sciaenops ocellatus) sampled in 1987 from 13 nearshore and 1 offshore localities from the Atlantic coast of the southeastern USA and the northern Gulf of Mexico. The mean number of alleles over the polymorphic loci was 3.8, and the average heterozygosity over all loci examined was estimated as 0.047. These data indicate that red drum have normal levels of genetic variability. Wright'sF1 ST values (the standardized variance of allele frequencies between samples) over all polymorphic loci ranged from 0.009 to 0.027 (meanF1 ST =0.019), and estimates of the effective number of migrants (N e m) per generation using Wright's island model ranged from 9.0 to 27.5. High levels of gene flow among the red drum samples were also indicated by Slatkin's qualitative analysis using conditional average allele frequencies. Nei's estimates of genetic distance between pairs of samples ranged from 0.000 to 0.009, indicating a high degree of nuclear gene similarity among all samples. Highly significant heterogeneity in allele frequencies at the locus for adenosine deaminase was detected between red drum sampled from the Atlantic and those sampled from the Gulf and among red drum sampled from the Gulf.  相似文献   

8.
We investigated the genetic diversity among populations of the shrimp Farfantepenaeus notialis, the most abundant penaeid species around Cuba. A total of 25 allozyme loci were analyzed in samples of shrimps from seven localities at the south central platform of the island (Ana María Gulf). Samples from three of these localities and from Batabanó Gulf and Guacanayabo Gulf at the south west and south east platforms of the island, respectively, were also characterized at the mtDNA level through sequence variation of a 2027 bp segment including part of the COI and COIII genes. Of the 25 allozyme loci studied 9 were polymorphic: Akp2, Akp3, AmyB, Est3, Gdh, GP7, and Per1, 2 and 3. In contrast to mtDNA, the pattern of allozyme variation among localities revealed strong population structuring at Ana María Gulf, with significant F st in all pairwise comparisons. The magnitude of F st estimates as well as the grouping pattern obtained by a UPGMA analysis based on a distance matrix indicated that the level of differentiation was concordant with the geographical position of the localities and the hydrographic regime. Homogeneity of mtDNA suggested that differentiation of allozyme loci might be due to more recent events rather than historical isolation of the sampled populations. Ana María and Guacanayabo Gulf populations were differentiated by mtDNA from Batabanó Gulf, at the southwestern end of the island. The analysis showed three restriction site differences among them, suggesting genetic isolation of the two regions. The present results also suggest that an artificial introduction of larvae from Tunas de Zaza into Batabanó Gulf, in an effort to repopulate this fishing region, may have been ineffective. Received: 13 December 1999 / Accepted: 2 October 2000  相似文献   

9.
The objective of the present study was to investigate the population genetic structure of the commercially important camouflage grouper, Epinephelus polyphekadion (Bleeker, 1849), in the western and central Pacific Ocean to improve existing management. Camouflage grouper are widely distributed in the Indo-Pacific and form brief, seasonal, spawning aggregations that are often heavily fished. The present study examined populations sampled in 1997-1998 at five sites in the western central Pacific spanning a geographic distance of ~5,000 km: New Caledonia, Great Barrier Reef, Palau, Marshall Islands, and Pohnpei (Micronesia). Primer pairs were developed to examine genetic variation at three polymorphic microsatellite loci. Cluster analysis, using genetic distance, revealed three regional groupings: (1) Palau, (2) Pohnpei and the Marshall Islands, and (3) the Great Barrier Reef and New Caledonia. Highly significant allele frequency differences were observed among sites. At Pohnpei, significant allele frequency differences in successive years were also apparent, possibly related to genetic variation among cohorts or between local spawning groups. The inter-annual differences at Pohnpei suggest that there may be further genetic structuring over relatively modest distances, a finding relative to determining management units for this commercially valuable species and suggests that future studies need to incorporate possible small-scale temporal or spatial components into study design.  相似文献   

10.
Patterns of genetic diversity of the marine deep-water redfish, Sebastes mentella Travin, from 21 sampling locations (n=46 per sample, from 1995 to 1998) were examined throughout its range in the North Atlantic. Eight microsatellite loci were used in order to: (1) define the genetic structure and consider the possible influence of dispersal, geographic distance, oceanic currents and historical factors; and (2) relate the structure to present management units and practices. Three divergent population units (mean Š=0.012) associated with distinct geographic areas were defined: Eastern (Norway and Barents Sea), Panoceanic and Western (Gulf of St. Lawrence and offshore Newfoundland). The most important observation was the lack of genetic differences (mean Š=-0.0004) and lack of genetic isolation by geographic distance (r=0.318, P=0.112) among samples within the Panoceanic zone, from the Faroe Islands to the Grand Banks (6,000 km). A combination of vicariance, historical introgression with a closely related species, S. fasciatus, and contemporary patterns of oceanic circulation are likely to have shaped the observed population structure. These results only partially support current management units, and call for more integrated practices for regulating the exploitation of S. mentella throughout its extensive range.  相似文献   

11.
Mitochondrial cytochrome oxidase subunit one (COI) sequence, nuclear microsatellites, and amplified fragment length polymorphisms (AFLPs) were used to evaluate connectivity among nine red abalone (Haliotis rufescens) populations sampled between August 1998 and November 2003 along approximately 1,300 km of California coastline from Crescent City (41°46′N, 124°12′W) to San Miguel Island (34°02′N, 120°22′W). COI sequences and microsatellite genotypes did not show significant genetic divergence among nine sampled populations. A subset of five populations spanning the geographic range of the study was scored for 163 polymorphic AFLP markers. Of these, 41 loci showed significant divergence (P < 0.001) among populations. Still, no AFLP markers were diagnostic for any of the study populations, and assignment tests did not consistently assign individuals to the correct population. Although the AFLP data are the first to suggest there is significant genetic differentiation among California red abalone populations, the discordance between the different genetic markers needs further study before unambiguous conclusions can be drawn with respect to connectivity among the populations. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The spawning population of European eel (Anguilla anguilla L.) has been considered panmictic on the basis of genetic markers and morphometric studies. This hypothesis was tested by screening glass eel from five locations (Ireland, Italy, Morocco, Sweden and U.K.), belonging to two cohorts at the cytochrome b (cyt b) locus (392 bp) of the mitochondrion and at five nuclear microsatellite loci. Seventeen cyt b haplotypes were detected, of which ten were singletons; the most common haplotype occurred in 47% of all fish. Haplotype number increased significantly with latitude. Phylogeographical structure based on the cytoplasmic marker was weak (FST=0.014) and non-significant. Close similarity was revealed between British and Irish glass eel populations, and weak differentiation among the British/Irish, Atlantic Moroccan, Italian and Swedish Baltic populations, respectively. No hierarchical genetic structure was obvious. Levels of genetic variation detected with five microsatellites were much higher levels than found with allozymes in previous studies (mean number of alleles per locus=11.1; mean expected heterozygosity=0.68). Overall among-population microsatellite variance was low but significant (FST=0.004), and caused by the linked microsatellite loci Aan03 and Aan04. The Hardy-Weinberg-Castle equilibrium and the absence of gametic disequilibria at these loci in the Moroccan population might point to its genetic isolation, although the impact of just two out of five loci is puzzling. Given the weak differentiation typical for marine species and the limitations of our data, the results should be interpreted with caution. However, combined with recent evidence from a related study, the paradigm that the European eel constitutes a panmictic population becomes difficult to maintain.  相似文献   

13.
The red porgy, Pagrus pagrus (L.), is a protogynous sparid associated with reefs and hard bottom habitat throughout the warm-temperate Atlantic Ocean. In this study, the degree of geographic population differentiation in Atlantic populations was examined with microsatellite and mitochondrial DNA markers (mtDNA). Six microsatellite loci were amplified and scored in 690 individuals from the eastern North Atlantic (Crete, Madeira, and Azores), western North Atlantic (North Carolina to Florida, and the eastern Gulf of Mexico), and Brazil. At two loci, fixed allelic differences were found among the three major geographic areas, while frequency differences were observed at three other loci. The DNA of 371 individuals was amplified at the mtDNA control region, and 526 bp were sequenced. Tamura–Nei’s D was used as a measure of nucleotide diversity and divergence: diversity averaged 0.011 within samples, while the corrected divergence averaged 0 between samples within the same area and 0.061 between samples from different areas. Transversion haplotype minimum spanning networks, nucleotide divergence, and F ST values all show that the western Atlantic samples were more closely related to each other than any was to samples from the eastern North Atlantic. Within the western North Atlantic, no significant population differentiation was observed, and within the eastern North Atlantic, only the Azores sample showed detectable differences from Crete and Madeira. These data indicate general homogeneity within large areas, and deep divisions between these areas. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

14.
S. Herke  D. Foltz 《Marine Biology》2002,140(1):103-115
The loliginid squids Loligo pealei LeSueur and L. plei Blaineville (both recently proposed for reclassification as Doryteuthis) are commercially important, similar in appearance, and sympatric throughout much of the northwestern Atlantic Ocean, the Gulf of Mexico, and the Caribbean Sea. To investigate possible cryptic speciation and population structure, we examined samples (collected from 1995 to 1997) of both species for restriction fragment length polymorphisms (RFLPs) in PCR products of the mitochondrial gene cytochrome c oxidase (subunit I). RFLP haplotypes were further characterized by direct sequencing. In North American waters, cryptic speciation was rejected by the far greater nucleotide sequence divergence between species (~14%) versus within species (<1%). Each species displayed about a dozen RFLP haplotypes, but only three of their respective haplotypes were found among 90% of L. pealei specimens (n=356) and 97% of L. plei specimens (n=431). For L. pealei, a genetic break existed between the northern Gulf of Mexico and the Atlantic Ocean; among sample units within each population, gene flow was consistent with panmixia. The phylogeography of L. pealei is likely a consequence of the eastward currents of the Florida Straits, the elevated temperatures of those surface waters, and the restriction of this species to the continental shelf. For L. plei, a genetic break existed between longitudes 88°W and 89°W, with the northwestern Gulf of Mexico and the northeastern Gulf-Atlantic Ocean comprising separate populations; among sample units within each population, gene flow fit an isolation-by-distance model. If the genetic break found for L. plei represents resident populations separated by nearshore physical parameters (e.g. effects of the Mississippi River and the sediment boundary at longitude 88°W), the lack of structure within the Gulf for L. pealei might be due to its distribution farther from shore. However, the two populations of L. plei probably represent annual recolonization from the southwestern Gulf of Mexico and from the eastern Caribbean Sea, whereas the populations of L. pealei probably are permanent residents within their respective regions.  相似文献   

15.
Spatial and temporal genetic heterogeneity in the sequences of nuclear protein-coding genes were investigated in populations of the blue crab, Callinectes sapidus. Haplotype frequencies of these novel markers were determined for adult crabs collected along 300 km in the northern Gulf of Mexico in two different years (2010 and 2011), as well as for megalopal recruits collected in 2010. Tests of genetic differentiation among all locations and between locations spanning known genetic breaks in other species were conducted. In addition, samples from distant locations within the range of C. sapidus were used to assess genetic divergence on a broader geographic scale. Significant between-year differences were found for adults at one location and near significant spatial differentiation was found across northern Gulf of Mexico locations in 2010. These results suggest that although the large population sizes and meroplanktonic life history of blue crabs promote widespread gene flow on a regional scale, genetic composition can change over just one year. Substantial divergence between the northern Gulf of Mexico and Venezuela suggests the possibility that temporal shifts in haplotype frequencies could result from variation in the rate of immigration from genetically distinct source populations. The possible effects of the Deepwater Horizon Oil Spill and attendant fisheries closures during the sampling phase of this study are also considered.  相似文献   

16.
The population genetic structure of the meiobenthic harpacticoid copepod Microarthridion littorale (Poppe) was examined with a geographic survey of a 348 bp fragment of the mitochondrial cytochrome b gene. Copepods were collected from ten locations on the coast from North Carolina to Georgia, USA, from January 1997 to November 1998. Sequence divergence among 198 individuals was as much as 4.3%, and three divergent mitochondrial clades were uncovered that differed by six to nine nucleotide changes. A rapid assay was developed to distinguish among mitochondrial clades, and an additional 333 specimens were surveyed. The three lineages co-occurred in seven of ten sampling locations. Data analyses were carried out separately for individuals assayed by DNA sequencing as well as for a combined data set that included individuals typed by restriction endonuclease digestion. An analysis of molecular variance indicated that a significant proportion of the total genetic variance could be partitioned among populations, although no significant correlation between geographical and genetic distance was detected.  相似文献   

17.
P. Borsa 《Marine Biology》2003,142(3):575-581
Round scad mackerel sampled in 1995-1998 were analysed for genetic variation using mitochondrial-DNA and nuclear-DNA markers. Sequence variation for a fragment of the cytochrome b gene (mitochondrial), amplified by polymerase chain reaction, was screened across individuals using single strand conformation polymorphism (SSCP). Sequence analysis of all SSCP haplotypes indicated two mitochondrial clades separated by, on average, 2.3% nucleotide divergence. The geographic distribution of haplotypes was homogeneous (Weir and Cockerham's [^(q)] \hat \theta =-0.002). Also, no geographic heterogeneity was detected for length polymorphism of Intron 1 of the gene encoding aldolase B ([^(q)] \hat \theta =0.005). Although homogeneity in allele frequencies throughout the Indo-Malay archipelago conformed to the expectations for a widely distributed pelagic fish in a highly connected habitat, this was at variance with the sharp geographic structure previously uncovered in Indian scad mackerel, Decapterus russelli, a fish with life-history characteristics similar to D. macrosoma. A remarkable similarity, however, was the occurrence of two similarly distinct clades within each species, suggesting a common history of geographic isolation. Low sea levels in the Pleistocene might have caused the separation and vicariance of populations within both D. macrosoma and D. russelli. Subsequent genetic exchange between populations would then have erased allele-frequency differences at the cytochrome b and aldolase B loci in D. macrosoma while some barrier to gene flow was maintained in D. russelli.  相似文献   

18.
The genetic population structure of red grouper, Epinephelus morio (Valenciennes), and scamp, Mycteroperca phenax Jordan and Swain, from the southeastern U.S. Atlantic coast and the Gulf of Mexico was examined using nuclear microsatellite DNA markers in order to test the null hypothesis of panmixia throughout this range. Physical and biological data indicate that relatively isolated populations of these fish exist. Genetic variation was assessed at four microsatellite loci in red grouper and six loci in scamp. The fish were collected on different dates between 1991 and 2001. The microsatellite loci were highly polymorphic, with an average expected heterozygosity of 0.75 in red grouper and 0.68 in scamp. Heterozygote deficiencies (significant deviations from Hardy–Weinberg equilibrium, HWE) were found at two of four loci in all red grouper samples except the eastern Gulf of Mexico, and for all red grouper combined. In contrast, all loci conformed to HWE in the separate scamp samples. Minimal genetic differences distinguished southeastern U.S. Atlantic or Mexican red grouper from other localities, and no indication of genetic differentiation was observed in scamp. This large-scale genetic homogeneity may be attributed to ongoing gene flow and/or historical contact between present-day populations. For management purposes, genetic homogeneity does not necessarily imply a single stock. Because larval dispersal may be sufficient to homogenize gene frequencies but not to replenish depleted stocks, other data must be considered in the management of these species.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Communicated by J.P. Grassle, New Brunswick  相似文献   

19.
The existence of three distinct populations is widely accepted for the finless porpoise (Neophocaena phocaenoides) in Chinese waters: the Yellow Sea, Yangtze River, and South China Sea populations. Here, we use nine species-specific microsatellite loci, the complete mitochondrial DNA control region (912 bp), and the complete mitochondrial cytochrome b gene (1,140 bp) to further investigate potential population stratification in the Yellow Sea using 147 finless porpoise samples from the Bohai Sea and adjacent northern Yellow Sea, two regions that were largely underrepresented in previous genetic studies. Our F-statistics analyses confirm the previously described three populations, but further demonstrate significant genetic differentiation between the [Bohai + northern Yellow] Sea and the southern Yellow Sea. On the other hand, median-joining network analyses do not exhibit well-differentiated haplotype groups among different geographic populations, suggesting the existence of shared ancestral haplotypes. Levels of microsatellite diversity are moderate to high (mean H E = 0.794) among the 147 [Bohai + northern Yellow] Sea finless porpoises and no recent bottleneck was detected, whereas mtDNA control region and cytochrome b gene diversity is low to moderate. The microsatellite genotypic and mtDNA haplotypic data also confirm the presence of mother-calf pairs in single-net bycatch cases. The results presented here highlight the necessity to treat the [Bohai + northern Yellow] Sea population (highly impacted by anthropogenic threats) as a separate Management Unit.  相似文献   

20.
The genetic population structure of the precominant zooplankter, the copepod Calanus finmarchicus (Gunnerus), was examined to determine whether genetically distinct populations exist in the Gulf of Maine. C. finmarchicus was sampled in three regions of the Gulf of Maine (Great South Channel, spring 1989; northern Gulf of Maine, winter 1990; Great South Channel and Georges Bank, spring 1990). Copepods from seven locations in the Great South Channel, five in the northern Gulf of Maine and four on or near Georges Bank were assayed for allozyme variation and mitochondrial DNA variation of amplified 16S rRNA and cytochrome b genes. Restriction fragment length polymorphism (RFLP) analyses of both mitochondrial DNA genes revealed no variation among any of the individuals assayed. Analysis of five polymorphic allozyme loci revealed that genetic variation among the three geographic regions was low, and genetic identities were high between all locations (I>0.97). Most of the genetic variation was among locations regardless of region. Chi-square tests were used to examine genetic similarity between specific pairs of locations within and between regions. In the northern Gulf of Maine, genetic homogeneity occurred over larger spatial scales (hundreds of km) than in either the Great South Channel or Georges Bank (tens of km). Only copepods from the Bay of Fundy and Nova Scotian Shelf locations were genetically distinct from Wilkinson Basin copepods at two loci. Copepod populations from the northern locations may have been partially isolated or they may represent immigrant populations (e.g., from the Gulf of St. Lawrence). Several pairs of locations were genetically distinct at one or more loci in the two southern regions. Differences between locations in these regions may represent distinct populations advected into the areas at different times or from different sources (e.g., genetic variation may represent a mixture of genetically distinct northern and southern copepod populations). These results suggest extensive gene flow among populations of C. finmarchicus in the Gulf of Maine with some evidence of genetic population subdivision near the Gulf's northeastern and southern boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号