首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Agricultural Production Systems sIMulator model validated in a prior study for winter wheat was used to simulate yield, aboveground crop biomass (BM), transpiration (T), and evapotranspiration under four irrigation capacities (ICs) (0, 1.7, 2.5, and 5 mm/day) with two nitrogen (N) application rates (N1, 94 kg N/ha; N2, 160 kg N/ha) to (1) understand the performance of winter wheat under different ICs and (2) develop crop water production function under various ICs and N rates. Evaluation was based on yield, aboveground crop BM, transpiration productivity (TP), crop water productivity (WP), and irrigation WP (IWP). Simulation results showed winter wheat yield increased with increase in N application rate and IC. However, the rate of yield increase gradually reduced with additional irrigation beyond 2.5 mm/day. A 5 mm/day IC required a total of 190 mm irrigation and produced a 5%–16% yield advantage over 2.5 mm/day. This indicates it is possible to reduce groundwater use for wheat by 50% incurring only 5%–16% yield loss relative to 5 mm/day. The TP and IWP for grain were slightly higher under IC of 1.7 mm/day (15.2–16.1 kg/ha/mm and 0.98–1.6 kg/m3) when compared to 5 mm/day (14.7–15.5 kg/ha/mm and 0.6–1.06 kg/m3), respectively. Since TP and IWPs are relatively higher under lower ICs, winter wheat could be a suitable crop under lower ICs in the region. Relationship between yield–T and yield–ET was linear with a slope of 15–16 and 9.5–10 kg/ha/mm, respectively. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

2.
ABSTRACT: From 1940 to 1978, irrigated acreage in the Western United States increased by over 150 percent, irrigated acres per farm increased by 204 percent, and the number of irrigation organizations grew by 31 percent. Understanding the factors affecting these trends (in the structure of irrigated agriculture) is the key to formulating policies for efficient allocation and transfer of water in the west. Four variables that impact the composition of irrigation organizations are farm size changes, organizational efficiency, intersectoral competition for water, and governmental policies. The conclusions show that from 1940 to 1978, the total number of irrigated farms and organizations declined, and the average farm size increased, and larger management oriented organizations such as districts and U.S. Bureau of Reclamation have become more prevalent. With respect to total quantities of water delivered, districts have increased over 50 percent since the 1959 Census and over 100 percent since the 1950 Census, while unincorporated mutuals have declined by approximately 20 percent. Future organizational structure tends to be moving in the direction of more management control as opposed to user control. Changes in water use, delivery, investment, transfers, and laws will continue to change the structure of irrigation organizations and institutions in the west.  相似文献   

3.
There is an increasing need to strategize and plan irrigation systems under varied climatic conditions to support efficient irrigation practices while maintaining and improving the sustainability of groundwater systems. This study was undertaken to simulate the growth and production of soybean [Glycine max (L.)] under different irrigation scenarios. The objectives of this study were to calibrate and validate the CROPGRO‐Soybean model under Texas High Plains’ (THP) climatic conditions and to apply the calibrated model to simulate the impacts of different irrigation levels and triggers on soybean production. The methodology involved combining short‐term experimental data with long‐term historical weather data (1951–2012), and use of mechanistic crop growth simulation algorithms to determine optimum irrigation management strategies. Irrigation was scheduled based on five different plant extractable water levels (irrigation threshold [ITHR]) set at 20%, 35%, 50%, 65%, and 80%. The calibrated model was able to satisfactorily reproduce measured leaf area index, biomass, and evapotranspiration for soybean, indicating it can be used for investigating different strategies for irrigating soybean in the THP. Calculations of crop water productivity for biomass and yield along with irrigation water use efficiency indicated soybean can be irrigated at ITHR set at 50% or 65% with minimal yield loss as compared to 80% ITHR, thus conserving water and contributing toward lower groundwater withdrawals. Editor's note: This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

4.
ABSTRACT: A preliminary field experiment was conducted for trickle irrigation of winter wheat raised for grain production under arid conditions. Treated waste water was applied for trickle irrigation via a trickle system. Mean total amount of effluent applied was about 5700 m3/ha. In one of the experimental treatments, which was irrigated once a week, a grain yield of over 10,000 kg/ha was obtained, whereas in the other treatments the yields were about 8,500 kg/ha, which are above the mean yield obtained under sprinkler irrigation.  相似文献   

5.
Use of models to simulate crop production has become important in optimizing irrigation management in arid and semiarid regions. However, applicability and performance of these models differ across regions, due to differences in environmental and management factors. The AquaCrop model was used to simulate soil water content (SWC), evapotranspiration (ET), and yield for grain sorghum under different irrigation regimes and dryland conditions at two sites in Central and Southern High Plains. Prediction error (Pe), estimated as the difference between simulated and measured divided by measured, for SWC ranged from ?17% to 4% in fully irrigated, ?3% to ?10% in limited irrigated, and ?16% to 25% in dryland treatments. The Pe within ±4%, ?5%, and ?17% to 24% were attained for seasonal ET under fully irrigated, limited irrigated, and dryland conditions, respectively. Pe values for grain yield were within those previously reported and ranged from ?10% to 12%, ?12% to 7%, and 9% to 17% for fully irrigated, limited irrigated and dryland conditions, respectively. Overall performance of the AquaCrop model showed it could be used as an effective tool for evaluating the impacts of variable crop and irrigation managements on the production of grain sorghum in the study area. Finally, the application of the model in the study area revealed planting date has a significant impact on sorghum yield and irrigation requirements, but the impact of planting density was negligible. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

6.
ABSTRACT: In areas where water is scarce, drip irrigation provides the most efficient way to conserve irrigation water, but its cost of £1000 an acre is prohibitive for most small farmers in developing countries. The cost was reduced by 90 percent by (1) making dripper lines moveable, so that each line reaches ten rows instead of one; (2) replacing 25-cent emitters with simple 0.70 mm holes punched by a heated needle; and (3) using £3.00 off-the-shelf 20 liter containers with cloth filters in place of expensive filter systems. This reduced the cost of a half-acre system to £50. The low cost system was field tested in the hill areas of Nepal, and in mulberry cultivation in Andhra Pradesh, India. Uniformity of flow from emitters was 73–84 percent. Small farmers reported that the low cost trickle irrigation system cut labor requirements in half, and doubled the area irrigated by the same amount of water. The low cost drip system is likely to be widely adopted by small farmers in semi-arid and hilly regions.  相似文献   

7.
Irrigated agriculture is a major economic contributor of the High Plains Region and it primarily relies on the High Plains Aquifer as a source of water. Over time, areas of the High Plains Aquifer have experienced drawdowns limiting its ability to supply sufficient water to sustain fully irrigated crop production. This among other reasons, including variable climatic factors and differences in state water policy, has resulted in some areas adopting and practicing deficit irrigation management. Considerable research has been conducted across the High Plains Aquifer region to identify locally appropriate deficit irrigation strategies. This review summarizes and discusses research conducted in Nebraska, Colorado, Kansas, and Texas, as well as highlights areas for future research. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

8.
Expansion of irrigated agriculture in the Aral Sea Basin in the second half of the twentieth century led to the conversion of vast tracks of virgin land into productive agricultural systems resulting in significant increases in employment opportunities and income generation. The positive effects of the development of irrigated agriculture were replete with serious environmental implications. Excessive use of irrigation water coupled with inadequate drainage systems has caused large‐scale land degradation and water quality deterioration in downstream parts of the basin, which is fed by two main rivers, the Amu‐Darya and Syr‐Darya. Recent estimates suggest that more than 50% of irrigated soils are salt‐affected and/or waterlogged in Central Asia. Considering the availability of natural and human resources in the Aral Sea Basin as well as the recent research addressing soil and water management, there is cause for cautious optimism. Research‐based interventions that have shown significant promise in addressing this impasse include: (1) rehabilitation of abandoned salt‐affected lands through halophytic plant species; (2) introduction of 35‐day‐old early maturing rice varieties to withstand ambient soil and irrigation water salinity; (3) productivity enhancement of high‐magnesium soils and water resources through calcium‐based soil amendments; (4) use of certain tree species as biological pumps to lower elevated groundwater levels in waterlogged areas; (5) optimal use of fertilizers, particularly those supplying nitrogen, to mitigate the adverse effects of soil and irrigation water salinity; (6) mulching of furrows under saline conditions to reduce evaporation and salinity buildup in the root zone; and (7) establishment of multipurpose tree and shrub species for biomass and renewable energy production. Because of water withdrawals for agriculture from two main transboundary rivers in the Aral Sea Basin, there would be a need for policy level interventions conducive for enhancing interstate cooperation to transform salt‐affected soil and saline water resources from an environmental and productivity constraint into an economic asset.  相似文献   

9.
ABSTRACT: Growing interest in agricultural irrigation in the Great Lakes basin presents an increasing competition to other uses of Great Lakes water. This paper, through a case study of the Mud Creek Irrigation District in the Saginaw Bay basin, Michigan, evaluates the potential hydrologic effects of withdrawing water for agricultural irrigation to the Great Lakes. Crop growth simulation models for corn, soybeans, dry beans, and the FAO Penman method were used to estimate the difference in evapotranspiration rates between irrigated and nonirrigated identical crops, based on climate, soil, and management data. The simulated results indicate that an additional 70–120 mm of water would be evapotranspirated during the growing season from irrigated crop fields as compared to nonirrigated identical plantings. Dependent upon the magnitude of irrigation expansion, an equivalent of about 1 to 5 mm of water from Lakes Huron-Michigan could be lost to the atmosphere. If agricultural irrigation further expands in the entire Great Lakes basin, the aggregated potential of water loss to the atmosphere through ET from all five Great Lakes would be even greater.  相似文献   

10.
Para grass, irrigated with secondary domestic sewage effluent, showed excellent response for disposal of large amounts of water, effective nitrogen removal, and high production of excellent fodder. This grass is found throughout the tropics and parts of the subtropics. It endures flooding and forms dense, easily maintained stands. This is the first time its use has been reported for effluent irrigation. Water, nitrogen, and biomass budgets over a 17-month period were measured in eight percolate style lysimeters. Under irrigation rates as great as 98 mm/day, five days/week, evapo-transpiration averaged 4.6 mm/day. With nitrogen applications of 130 to 2,600 kg/ha/yr, ≥ 79 percent of applied nitrogen was harvested in the grass; 3 percent percolated; and ≤ 28 percent was denitrified. With the highest effluent irrigation rates, nitrate-nitrogen levels remained below the 10 mg/L maximum recommended for potable water. Crop productivity for full effluent treatments averaged 110 t/ha/yr, dry weight. Maximum calculated crude protein content was 13 percent. No nitrate-nitrogen level in the forage exceeded 0.1 percent.  相似文献   

11.
ABSTRACT In humid areas appreciable amounts of rainfall complicate irrigation scheduling. This rainfall tends to give supplemental water application a low priority. As a result irrigation may be delayed until there is not enough time to cover the crop area before some drought damage occurs. To improve the management of irrigation systems, a scheduling model has been developed. The model's water application decisions incorporate climatological records, soil-plant data, current pan evaporation and rainfall, the number of fields to be irrigated, and 5-day weather forecasts. The model updates the soil moisture conditions, predicts impending water depletion, and if supplemental water is needed both the field priority and amount to be applied is indicated for each of the next 5 days. Errors introduced through the use of forecasts and long-term pan evaporation records have been slight because of the tri-weekly updating. Also natural rains which restore the root zone to maximum water holding capacity prevent long-term bias.  相似文献   

12.
ABSTRACT: A national and interregional programming model was used in projecting the impacts of alternative energy policies and prices on agricultural production, land use, and irrigation. The alternatives analyzed include (a) natural gas deregulation, (b) natural gas curtailment, (c) doubled energy prices, and (d) tripled energy prices. These alternatives are compared with a base alternative where prices and conditions are at normal levels. Restraints in the model control availability of water, land, nitrogen fertilizers, and energy. Water production functions were used to adjust water use to conform with projected energy prices and policies. Natural gas curtailment would have the largest effect on nitrogen use on irrigated land. Values or shadow prices for lands that remains in irrigation would increase under all of the alternatives because of reduced supply. Increased energy prices generally would increase use of surface water for irrigation and reduce use of ground water due to higher pumping costs. Reductions of 50 percent or more in ground water use would occur in the South Central and Western regions of the United States. Water supply prices increase under all of the alternatives; with the amount varying by regions and the policy or price situation.  相似文献   

13.
Studies of irrigation drainage in the Western United States have documented some of the effects of irrigating land without first understanding and then considering implications from the interdependent relationships of hydrology, geology, geochemistry, biology, climatology, land use and socio-economic issues. In studies completed in 26 areas, selenium is the trace element found most often at elevated concentrations in water, bottom material and biota. Boron, arsenic, mercury and pesticide residues have also been found at elevated levels in some areas. Bioaccumulation of constituents associated with irrigation drainage is common. As the world experiences an explosive population growth, particularly in poorer countries, demands for food production from marginal, submarginal and newly irrigated soils are likely to cause severe adverse environmental impacts from allocation of limited water resources and contamination from irrigation drainwater. Cultivated marginal land is highly susceptible to degradation from soil erosion, salinization and waterlogging, not withstanding release of contaminants from application of irrigation water.  相似文献   

14.
ABSTRACT: This paper examines irrigation water supply deficit and associated risk indicators due to random climate events and potential effects on irrigated food production during the period 1996 to 2025 for seven river basins in the USA, China, and India. An integrated water and food model with global scope is applied for the analysis. The global climate regime during 1961 to 1990 is used to generate 30 climatic scenarios for the time period 1996 to 2025, and these scenarios are applied to the model in order to characterize the randomness of precipitation, runoff, and evapotranspiration, which affects both irrigation water supply and demand. The risk with random climate events is represented by reliability, variability, and vulnerability from different perspectives. Regarding irrigation water supply, Colorado will bear an increasingly unstable situation although the average water supply relative to the demand will maintain at a relatively high level; selected basins in China and India indicate that significantly lower levels of reliability and more deleterious affects from drought can be expected, but under a less variable condition due to assumed water storage increase. From 1996 to 2025, the effects of water deficits on irrigated food production are characterized with a nonlinear phenomenon and food production loss will be more sensitive to irrigation water supply deficit in the future. Future work following this paper needs to consider the impact of global climate change and the water quality of the irrigation return flow and result verification by local studies.  相似文献   

15.
ABSTRACT Irrigated land outproduces dryland agriculture, especially in the western United States. Many valuable crops could not be grown without irrigation. A paucity of yield data does not allow direct measurement of the contribution from irrigated crop agriculture, nor does it allow evaluation of the contributions from livestock which are dependent upon irrigated feed. Regression results indicate that 80 percent of Idaho farm income is associated with irrigation, and that 75 percent of the farm income in the 17 western states is associated with irrigation. For the United States as a whole, results indicate that 13.7 percent of the total cropland (irrigated land) produced 41.3 percent of all cash receipts from farming in 1978. If 14 percent of the land can produce 40 percent of the value of production, can 35 percent of our land produce all our food and fiber needs? Such an allegation has several implications in terms of the adequacy of our land and water resources. It also emphasizes the role of technology in future resource use and production.  相似文献   

16.
ABSTRACT: The on-farm economic effectiveness of government capital grants, subsidized interest rates, and the Canadian Wheat Board (CWB) delivery quota levels in terms of adoption and/or expansion of irrigation in Saskatchewan is tested. The annualized net income at 5 and 20 years of three representative farm types - a dryland grain farm, an irrigated grain farm, and an irrigated mixed farm - are used in the analysis. Tradeoffs between income levels and the risks associated with adoption/expansion of irrigation are evaluated using mean-standard deviation tradeoff and stochastic dominance. Risk differences arise due to reduced business risk through higher yields and increased financial risk through higher borrowing when adopting or expanding irrigation. Capital grants and subsidized interest rates are effective policy measures for dryland grain farms adopting irrigation because the farms are left in a similar risk position. However, these grants and interest rates are not effective policy measures in the medium run (5 years) for irrigated grain farms expanding irrigation because they lower the farm's risk efficiency. In the long run (20 years), the capital grants and subsidized interest rates need to be combined with open CWB delivery quotas before the risk position can be improved for irrigated grain farms expanding irrigation. Finally, the grants and interest rates need to be combined with increased irrigated hay production for risk efficiency to increase in both the medium and long run (5 and 20 years, respectively) on irrigated mixed farms expanding irrigation.  相似文献   

17.
ABSTRACT: This paper reports on new methods of linking climate change scenarios with hydrologic, agricultural an water planning models to study future water availability for agriculture, an essential element of sustainability. The study is based on the integration of models of water supply and demand, and of crop growth and irrigation management. Consistent modeling assumptions, available databases, and scenario simulations are used to capture a range of possible future conditions. The linked models include WATBAL for water supply; CERES, SOYGRO, and CROPWAT for crop and irrigation modeling; and WEAP for water demand forecasting, planning and evaluation. These models are applied to the U.S. Cornbelt using forecasts of climate change, agricultural production, population and GDP growth. Results suggest that, at least in the near term, the relative abundance of water for agriculture can be maintained under climate change conditions. However, increased water demands from urban growth, increases in reservoir evaporation and increases in crop consumptive use must be accommodated by timely improvements in crop, irrigation and drainage technology, water management, and institutions. These improvements are likely to require substantial resources and expertise. In the highly irrigated basins of the region, irrigation demand greatly exceeds industrial and municipal demands. When improvements in irrigation efficiency are tested, these basins respond by reducing demand and lessening environmental stress with an improvement in system reliability, effects particularly evident under a high technology scenario. Rain-fed lands in the Cornbelt are not forced to invest in irrigation, but there is some concern about increased water-logging during the spring and consequent required increased investment in agricultural drainage. One major water region in the Cornbelt also provides a useful caveat: change will not necessarily be continuous and monotonic. Under one GCM scenario for the 2010s, the region shows a significant decrease in system reliability, while the scenario for the 2020s shows an increase.  相似文献   

18.
ABSTRACT: Irrigation in arid and semiarid regions has led to accumulation of salts, destruction of soil texture, decline in fertility and yield, and eventual abandoning of the land. The problems of irrigated agriculture may be attributed to the fact that managers seldom consider irrigated land as a system consisting of a number of components and that the individual health of each component is vital to the overall health of the entire system. A management model is described here which considers all the important components of an irrigated system and may help maintain a permanent irrigated agriculture. The model optimizes net farm income, maintains favorable hydrologic and salt balance in the irrigated system, meets the concentration requirements of the drainage water for the individual crops, and simulates the impact of the irrigation on the unsaturated and the saturated zone.  相似文献   

19.
20.
ABSTRACT: A study was conducted to evaluate the existing furrow irrigation system of Karun Agro Industry, a sugar cane plant in Daimcheh, Iran. Although the system is only eight years old, design and operational problems have reduced its efficiency by 50 percent. Lack of skilled irrigation workers, inadequate control of irrigation water, and problems with night irrigation have resulted in substantial revenue losses for the plant. This study evaluates the existing irrigation system, and recommends modifications and improvements to increase its efficiency. Final recommendations include the use of various irrigation methods, improvements to the existing system, and cancellation of night irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号