首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Conservation of wide‐ranging species, such as the African forest elephant (Loxodonta cyclotis), depends on fully protected areas and multiple‐use areas (MUA) that provide habitat connectivity. In the Gamba Complex of Protected Areas in Gabon, which includes 2 national parks separated by a MUA containing energy and forestry concessions, we studied forest elephants to evaluate the importance of the MUA to wide‐ranging species. We extracted DNA from elephant dung samples and used genetic information to identify over 500 individuals in the MUA and the parks. We then examined patterns of nuclear microsatellites and mitochondrial control‐region sequences to infer population structure, movement patterns, and habitat use by age and sex. Population structure was weak but significant, and differentiation was more pronounced during the wet season. Within the MUA, males were more strongly associated with open habitats, such as wetlands and savannas, than females during the dry season. Many of the movements detected within and between seasons involved the wetlands and bordering lagoons. Our results suggest that the MUA provides year‐round habitat for some elephants and additional habitat for others whose primary range is in the parks. With the continuing loss of roadless wilderness areas in Central Africa, well‐managed MUAs will likely be important to the conservation of wide‐ranging species. Utilización de Perfiles Genéticos de Elefantes Africanos para Inferir su Estructura Poblacional, Movimientos y Uso del Hábitat en un Paisaje con Conservación y Desarrollo en Gabón Resumenfgs  相似文献   

2.
Unsustainable hunting outside protected areas is threatening tropical biodiversity worldwide and requires conservationists to engage increasingly in antipoaching activities. Following the example of ecocertified logging companies, we argue that other extractive industries managing large concessions should engage in antipoaching activities as part of their environmental management plans. Onshore hydrocarbon concessions should also adopt antipoaching protocols as a standard because they represent a biodiversity threat comparable to logging. We examined the spatiotemporal patterns of small‐ and large‐mammal poaching in an onshore oil concession in Gabon, Central Africa, with a Bayesian occupancy model based on signs of poaching collected from 2010 to 2015 on antipoaching patrols. Patrol locations were initially determined based on local intelligence and past patrol successes (adaptive management) and subsequently with a systematic sampling of the concession. We generated maps of poaching probability in the concession and determined the temporal trends of this threat over 5 years. The spatiotemporal patterns of large‐ and small‐mammal poaching differed throughout the concession, and likely these groups will need different management strategies. By elucidating the relationship between site‐specific sampling effort and detection probability, the Bayesian method allowed us to set goals for future antipoaching patrols. Our results indicate that a combination of systematic sampling and adaptive management data is necessary to infer spatiotemporal patterns with the statistical method we used. On the basis of our case study, we recommend hydrocarbon companies interested in implementing efficient antipoaching activities in their onshore concessions to lay the foundation of long‐needed industry standards by: adequately measuring antipoaching effort; mixing adaptive management and balanced sampling; setting goals for antipoaching effort; pairing patrols with large‐mammal monitoring; supporting antipoaching patrols across the landscape; restricting access to their concessions; performing random searches for bushmeat and mammal products at points of entry; controlling urban and agricultural expansion; supporting bushmeat alternatives; and supporting land‐use planning.  相似文献   

3.
For over a century there have been continual efforts to incorporate nature into urban planning. These efforts (i.e., urban reconciliation) aim to manage and create habitats that support biodiversity within cities. Given that species select habitat at different spatial scales, understanding the scale at which urban species respond to their environment is critical to the success of urban reconciliation efforts. We assessed species–habitat relationships for common bat species at 50‐m, 500‐m, and 1 km spatial scales in the Chicago (U.S.A.) metropolitan area and predicted bat activity across the greater Chicago region. Habitat characteristics across all measured scales were important predictors of silver‐haired bat (Lasionycteris noctivagans) and eastern red bat (Lasiurus borealis) activity, and big brown bat (Eptesicus fuscus) activity was significantly lower at urban sites relative to rural sites. Open vegetation had a negative effect on silver‐haired bat activity at the 50‐m scale but a positive effect at the 500‐m scale, indicating potential shifts in the relative importance of some habitat characteristics at different scales. These results demonstrate that localized effects may be constrained by broader spatial patterns. Our findings highlight the importance of considering scale in urban reconciliation efforts and our landscape predictions provide information that can help prioritize urban conservation work.  相似文献   

4.
Abstract: Despite the growing interest in conservation approaches that include payments for environmental services (PES), few evaluations of the influence of such interventions on behaviors of individuals have been conducted. We used self‐reported changes in six legal and illegal forest‐use behaviors to investigate the way in which a PES for biodiversity conservation intervention in Menabe, Madagascar, influenced behavior. Individuals (n =864) from eight intervention communities and five control communities answered questions on their forest‐use behaviors before and after the intervention began, as well as on their reasons for changing and their attitudes to various institutions. The payments had little impact on individuals’ reported decisions to change behaviors, but it had a strong impact on individuals’ attitudes. Payments appeared to legitimize monitoring of behaviors by the implementing nongovernmental organization (NGO), but did not act as a behavioral driver in their own right. Although there were no clear differences between changes in behaviors in the intervention and control communities, the intervention did influence motivations for change. Fear of local forest associations and the implementing NGO were strong motivators for changing behavior in communities with the PES intervention, whereas fear of the national government was the main reason given for change in control communities. Behavioral changes were most stable where fear of local organizations motivated the change. Our results highlight the interactions between different incentives people face when making behavioral decisions and the importance of considering the full range of incentives when designing community‐based PES interventions.  相似文献   

5.
Conservation efforts are often motivated by the threat of global extinction. Yet if conservationists had more information suggesting that extirpation of individual species could lead to undesirable ecological effects, they might more frequently attempt to protect or restore such species across their ranges even if they were not globally endangered. Scientists have seldom measured or quantitatively predicted the functional consequences of species loss, even for large, extinction‐prone species that theory suggests should be functionally unique. We measured the contribution of Asian elephants (Elephas maximus) to the dispersal of 3 large‐fruited species in a disturbed tropical moist forest and predicted the extent to which alternative dispersers could compensate for elephants in their absence. We created an empirical probability model with data on frugivory and seed dispersal from Buxa Tiger Reserve, India. These data were used to estimate the proportion of seeds consumed by elephants and other frugivores that survive handling and density‐dependent processes (Janzen‐Connell effects and conspecific intradung competition) and germinate. Without compensation, the number of seeds dispersed and surviving density‐dependent effects decreased 26% (Artocarpus chaplasha), 42% (Careya arborea), and 72% (Dillenia indica) when elephants were absent from the ecosystem. Compensatory fruit removal by other animals substantially ameliorated these losses. For instance, reductions in successful dispersal of D. indica were as low as 23% when gaur (Bos gaurus) persisted, but median dispersal distance still declined from 30% (C. arborea) to 90% (A. chaplasha) without elephants. Our results support the theory that the largest animal species in an ecosystem have nonredundant ecological functionality and that their extirpation is likely to lead to the deterioration of ecosystem processes such as seed dispersal. This effect is likely accentuated by the overall defaunation of many tropical systems.  相似文献   

6.
Abstract: We provide a cross‐taxon and historical analysis of what makes tropical forest species vulnerable to extinction. Several traits have been important for species survival in the recent and distant geological past, including seed dormancy and vegetative growth in plants, small body size in mammals, and vagility in insects. For major past catastrophes, such as the five mass extinction events, large range size and vagility or dispersal were key to species survival. Traits that make some species more vulnerable to extinction are consistent across time scales. Terrestrial organisms, particularly animals, are more extinction prone than marine organisms. Plants that persist through dramatic changes often reproduce vegetatively and possess mechanisms of die back. Synergistic interactions between current anthropogenic threats, such as logging, fire, hunting, pests and diseases, and climate change are frequent. Rising temperatures threaten all organisms, perhaps particularly tropical organisms adapted to small temperature ranges and isolated by distance from suitable future climates. Mutualist species and trophic specialists may also be more threatened because of such range‐shift gaps. Phylogenetically specialized groups may be collectively more prone to extinction than generalists. Characterization of tropical forest species’ vulnerability to anthropogenic change is constrained by complex interactions among threats and by both taxonomic and ecological impediments, including gross undersampling of biotas and poor understanding of the spatial patterns of taxa at all scales.  相似文献   

7.
Forest degradation is arguably the greatest threat to biodiversity, ecosystem services, and rural livelihoods. Therefore, increasing understanding of how organisms respond to degradation is essential for management and conservation planning. We were motivated by the need for rapid and practical analytical tools to assess the influence of management and degradation on biodiversity and system state in areas subject to rapid environmental change. We compared bird community composition and size in managed (ejido, i.e., communally owned lands) and unmanaged (national park) forests in the Sierra Tarahumara region, Mexico, using multispecies occupancy models and data from a 2‐year breeding bird survey. Unmanaged sites had on average higher species occupancy and richness than managed sites. Most species were present in low numbers as indicated by lower values of detection and occupancy associated with logging‐induced degradation. Less than 10% of species had occupancy probabilities >0.5, and degradation had no positive effects on occupancy. The estimated metacommunity size of 125 exceeded previous estimates for the region, and sites with mature trees and uneven‐aged forest stand characteristics contained the highest species richness. Higher estimation uncertainty and decreases in richness and occupancy for all species, including habitat generalists, were associated with degraded young, even‐aged stands. Our findings show that multispecies occupancy methods provide tractable measures of biodiversity and system state and valuable decision support for landholders and managers. These techniques can be used to rapidly address gaps in biodiversity information, threats to biodiversity, and vulnerabilities of species of interest on a landscape level, even in degraded or fast‐changing environments. Moreover, such tools may be particularly relevant in the assessment of species richness and distribution in a wide array of habitats. Uso de Modelos de Ocupación para Múltiples Especies para Evaluar la Respuesta de las Comunidades de Aves a la Degradación de Bosques Asociada con la Tala  相似文献   

8.
Despite international waters covering over 60% of the world's oceans, understanding of how fisheries in these regions shape ecosystem processes is surprisingly poor. Seabirds forage at fishing vessels, which has potentially deleterious effects for their population, but the extent of overlap and behavior in relation to ships is poorly known. Using novel biologging devices, which detect radar emissions and record the position of boats and seabirds, we measured the true extent of the overlap between seabirds and fishing vessels and generated estimates of the intensity of fishing and distribution of vessels in international waters. During breeding, wandering albatrosses (Diomedea exulans) from the Crozet Islands patrolled an area of over 10 million km2 at distances up to 2500 km from the colony. Up to 79.5% of loggers attached to birds detected vessels. The extent of overlap between albatrosses and fisheries has widespread implications for bycatch risk in seabirds and reveals the areas of intense fishing throughout the ocean. We suggest that seabirds equipped with radar detectors are excellent monitors of the presence of vessels in the Southern Ocean and offer a new way to monitor the presence of illegal fisheries and to better understand the impact of fisheries on seabirds.  相似文献   

9.
Passive acoustic monitoring could be a powerful way to assess biodiversity across large spatial and temporal scales. However, extracting meaningful information from recordings can be prohibitively time consuming. Acoustic indices (i.e., a mathematical summary of acoustic energy) offer a relatively rapid method for processing acoustic data and are increasingly used to characterize biological communities. We examined the relationship between acoustic indices and the diversity and abundance of biological sounds in recordings. We reviewed the acoustic‐index literature and found that over 60 indices have been applied to a range of objectives with varying success. We used 36 of the most indicative indices to develop a predictive model of the diversity of animal sounds in recordings. Acoustic data were collected at 43 sites in temperate terrestrial and tropical marine habitats across the continental United States. For terrestrial recordings, random‐forest models with a suite of acoustic indices as covariates predicted Shannon diversity, richness, and total number of biological sounds with high accuracy (R2 ≥ 0.94, mean squared error [MSE] ≤170.2). Among the indices assessed, roughness, acoustic activity, and acoustic richness contributed most to the predictive ability of models. Performance of index models was negatively affected by insect, weather, and anthropogenic sounds. For marine recordings, random‐forest models poorly predicted Shannon diversity, richness, and total number of biological sounds (R2 ≤ 0.40, MSE ≥ 195). Our results suggest that using a combination of relevant acoustic indices in a flexible model can accurately predict the diversity of biological sounds in temperate terrestrial acoustic recordings. Thus, acoustic approaches could be an important contribution to biodiversity monitoring in some habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号