首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Studies comparing dispersal in fragmented versus unfragmented landscapes show that habitat fragmentation alters the dispersal behavior of many species. We used two complementary approaches to explore Florida Scrub‐Jay (Aphelocoma c?rulescens) dispersal in relation to landscape fragmentation. First, we compared dispersal distances of color‐marked individuals in intensively monitored continuous and fragmented landscapes. Second, we estimated effective dispersal relative to the degree of fragmentation (as inferred from two landscape indexes: proportion of study site covered with Florida Scrub‐Jay habitat and mean distance to nearest habitat patch within each study site) by comparing genetic isolation‐by‐distance regressions among 13 study sites having a range of landscape structures. Among color‐banded individuals, dispersal distances were greater in fragmented versus continuous landscapes, a result consistent with other studies. Nevertheless, genetic analyses revealed that effective dispersal decreases as the proportion of habitat in the landscape decreases. These results suggest that although individual Florida Scrub‐Jays may disperse farther as fragmentation increases, those that do so are less successful as breeders than those that disperse short distances. Our study highlights the importance of combining observational data with genetic inferences when evaluating the complex biological and life‐history implications of dispersal.  相似文献   

2.
Animal‐mediated seed dispersal is important for sustaining biological diversity in forest ecosystems, particularly in the tropics. Forest fragmentation, hunting, and selective logging modify forests in myriad ways and their effects on animal‐mediated seed dispersal have been examined in many case studies. However, the overall effects of different types of human disturbance on animal‐mediated seed dispersal are still unknown. We identified 35 articles that provided 83 comparisons of animal‐mediated seed dispersal between disturbed and undisturbed forests; all comparisons except one were conducted in tropical or subtropical ecosystems. We assessed the effects of forest fragmentation, hunting, and selective logging on seed dispersal of fleshy‐fruited tree species. We carried out a meta‐analysis to test whether forest fragmentation, hunting, and selective logging affected 3 components of animal‐mediated seed dispersal: frugivore visitation rate, number of seeds removed, and distance of seed dispersal. Forest fragmentation, hunting, and selective logging did not affect visitation rate and were marginally associated with a reduction in seed‐dispersal distance. Hunting and selective logging, but not fragmentation, were associated with a large reduction in the number of seeds removed. Fewer seeds of large‐seeded than of small‐seeded tree species were removed in hunted or selectively logged forests. A plausible explanation for the consistently negative effects of hunting and selective logging on large‐seeded plant species is that large frugivores, as the predominant seed dispersers for large‐seeded plant species, are the first animals to be extirpated from hunted or logged forests. The reduction in forest area after fragmentation appeared to have weaker effects on frugivore communities and animal‐mediated seed dispersal than hunting and selective logging. The differential effects of hunting and selective logging on large‐ and small‐seeded tree species underpinned case studies that showed disrupted plant‐frugivore interactions could trigger a homogenization of seed traits in tree communities in hunted or logged tropical forests. Meta Análisis de los Efectos de la Perturbación Humana sobre la Dispersión de Semillas por Animales  相似文献   

3.
Forest fragmentation dramatically alters species persistence and distribution and affects many ecological interactions among species. Recent studies suggest that mutualisms, such as pollination and seed dispersal, are more sensitive to the negative effects of forest fragmentation than antagonisms, such as predation or herbivory. We applied meta‐analytical techniques to evaluate this hypothesis and quantified the relative contributions of different components of the fragmentation process (decreases in fragment size, edge effects, increased isolation, and habitat degradation) to the overall effect. The effects of fragmentation on mutualisms were primarily driven by habitat degradation, edge effects, and fragment isolation, and, as predicted, they were consistently more negative on mutualisms than on antagonisms. For the most studied interaction type, seed dispersal, only certain components of fragmentation had significant (edge effects) or marginally significant (fragment size) effects. Seed size modulated the effect of fragmentation: species with large seeds showed stronger negative impacts of fragmentation via reduced dispersal rates. Our results reveal that different components of the habitat fragmentation process have varying impacts on key mutualisms. We also conclude that antagonistic interactions have been understudied in fragmented landscapes, most of the research has concentrated on particular types of mutualistic interactions such as seed dispersal, and that available studies of interspecific interactions have a strong geographical bias (arising mostly from studies carried out in Brazil, Chile, and the United States). Meta‐Análisis de los Efectos de la Fragmentación del Bosque sobre las Interacciones Interespecíficas  相似文献   

4.
The conservation implications of large‐scale rainforest clearing and fragmentation on the persistence of functional and taxonomic diversity remain poorly understood. If traits represent adaptive strategies of plant species to particular circumstances, the expectation is that the effect of forest clearing and fragmentation will be affected by species functional traits, particularly those related to dispersal. We used species occurrence data for woody plants in 46 rainforest patches across 75,000 ha largely cleared of forest by the early 1900s to determine the combined effects of area reduction, fragmentation, and patch size on the taxonomic structure and functional diversity of subtropical rainforest. We compiled species trait values for leaf area, seed dry mass, wood density, and maximum height and calculated species niche breadths. Taxonomic structure, trait values (means, ranges), and the functional diversity of assemblages of climbing and free‐standing plants in remnant patches were quantified. Larger rainforest patches had higher species richness. Species in smaller patches were taxonomically less related than species in larger patches. Free‐standing plants had a high percentage of frugivore dispersed seeds; climbers had a high proportion of small wind‐dispersed seeds. Connections between the patchy spatial distribution of free‐standing species, larger seed sizes, and dispersal syndrome were weak. Assemblages of free‐standing plants in patches showed more taxonomic and spatial structuring than climbing plants. Smaller isolated patches retained relatively high functional diversity and similar taxonomic structure to larger tracts of forest despite lower species richness. The response of woody plants to clearing and fragmentation of subtropical rainforest differed between climbers and slow‐growing mature‐phase forest trees but not between climbers and pioneer trees. Quantifying taxonomic structure and functional diversity provides an improved basis for conservation planning and management by elucidating the effects of forest‐area reduction and fragmentation. Efectos de la Forma de Crecimiento y Atributos Funcionales en la Respuesta de Plantas Leñosas al Desmonte y Fragmentación de Bosque Lluvioso Subtropical  相似文献   

5.
Despite many studies showing that landscape corridors increase dispersal and species richness for disparate taxa, concerns persist that corridors can have unintended negative effects. In particular, some of the same mechanisms that underlie positive effects of corridors on species of conservation interest may also increase the spread and impact of antagonistic species (e.g., predators and pathogens), foster negative effects of edges, increase invasion by exotic species, increase the spread of unwanted disturbances such as fire, or increase population synchrony and thus reduce persistence. We conducted a literature review and meta‐analysis to evaluate the prevalence of each of these negative effects. We found no evidence that corridors increase unwanted disturbance or non‐native species invasion; however, these have not been well‐studied concerns (1 and 6 studies, respectively). Other effects of corridors were more often studied and yielded inconsistent results; mean effect sizes were indistinguishable from zero. The effect of edges on abundances of target species was as likely to be positive as negative. Corridors were as likely to have no effect on antagonists or population synchrony as they were to increase those negative effects. We found 3 deficiencies in the literature. First, despite studies on how corridors affect predators, there are few studies of related consequences for prey population size and persistence. Second, properly designed studies of negative corridor effects are needed in natural corridors at scales larger than those achievable in experimental systems. Third, studies are needed to test more targeted hypotheses about when corridor‐mediated effects on invasive species or disturbance may be negative for species of management concern. Overall, we found no overarching support for concerns that construction and maintenance of habitat corridors may result in unintended negative consequences. Negative edge effects may be mitigated by widening corridors or softening edges between corridors and the matrix. Other negative effects are relatively small and manageable compared with the large positive effects of facilitating dispersal and increasing diversity of native species. Efectos Negativos Potenciales de los Corredores  相似文献   

6.
Abstract:  In the Neotropics ongoing deforestation is producing open and heavily fragmented landscapes dominated by agriculture, mostly plantations and cattle pastures. After some time agriculture often becomes uneconomical and land is abandoned. Subsequent habitat regeneration may be slow because seed inputs are restricted by a lack of incentives—such as suitable roost sites—for seed dispersers to enter deforested areas. Increasing environmental awareness has fostered growing efforts to promote reforestation. Practical and cost-efficient methods for kick-starting forest regeneration are, however, lacking. We investigated whether artificial bat roosts for frugivorous bat species can attract these key seed dispersers to deforested areas, thereby increasing seed rain. We installed artificial bat roosts in a forest-pasture mosaic in the Costa Rican Atlantic lowlands and monitored bat colonization and seed dispersal. Colonization occurred within a few weeks of installation, and 10 species of bats occupied the artificial roosts. Five species of frugivorous or nectarivorous bats colonized artificial roosts permanently in both primary habitat and in deforested areas, in numbers similar to those found in natural roosts. Seed input around artificial roosts increased significantly. Sixty-nine different seed types, mostly of early-successional plant species, were transported by bats to artificial roosts in disturbed habitats. The installation of artificial bat roosts thus successfully attracted frugivorous bats and increased seed inputs into degraded sites. This method is likely to speed up early-vegetation succession, which in turn will attract additional seed dispersers, such as birds, and provide a microhabitat for seeds of mid- and late-successional plants. As well as supporting natural forest regeneration and bat conservation, this cost-efficient method can also increase environmental awareness among landowners.  相似文献   

7.
Abstract: Anthropogenic habitat perturbation is a major cause of population decline. A standard practice managers use to protect populations is to leave portions of natural habitat intact. We describe a case study in which, despite the use of this practice, the critically endangered lizard Acanthodactylus beershebensis was locally extirpated from both manipulated and natural patches within a mosaic landscape of an afforestation project. We hypothesized that increased structural complexity in planted patches favors avian predator activity and makes these patches less suitable for lizards due to a heightened risk of predation. Spatial rarity of natural perches (e.g., trees) in arid scrublands may hinder the ability of desert lizards to associate perches with low‐quality habitat, turning planted patches into ecological traps for such species. We erected artificial trees in a structurally simple arid habitat (similar to the way trees were planted in the afforestation project) and compared lizard population dynamics in plots with these structures and without. Survival of lizards in the plots with artificial trees was lower than survival in plots without artificial trees. Hatchlings dispersed into plots with artificial trees in a manner that indicated they perceived the quality of these plots as similar to the surrounding, unmanipulated landscape. Our results showed that local anthropogenic changes in habitat structure that seem relatively harmless may have a considerable negative effect beyond the immediate area of the perturbation because the disturbed habitat may become an ecological trap.  相似文献   

8.
Abstract: Disruption of gene flow among demes after landscape fragmentation can facilitate local adaptation but increase the effect of genetic drift and inbreeding. The joint effects of these conflicting forces on the mean fitness of individuals in a population are unknown. Through simulations, we explored the effect of increased isolation on the evolution of genetic load over the short and long term when fitness depends in part on local adaptation. We ignored genetic effects on demography. We modeled complex genomes, where a subset of the loci were under divergent selection in different localities. When a fraction of the loci were under heterogeneous selection, isolation increased mean fitness in larger demes made up of hundreds of individuals because of improved local adaptation. In smaller demes of tens of individuals, increased isolation improved local adaptation very little and reduced overall fitness. Short‐term improvement of mean fitness after fragmentation may not be indicative of the long‐term evolution of fitness. Whatever the deme size and potential for local adaptation, migration of one or two individuals per generation minimized the genetic load in general. The slow dynamics of mean fitness following fragmentation suggests that conservation measures should be implemented before the consequences of isolation on the genetic load become of concern.  相似文献   

9.
Abstract: Anthropogenic disturbances such as fragmentation are rapidly altering biodiversity, yet a lack of attention to species traits and abundance patterns has made the results of most studies difficult to generalize. We determined traits of extinction‐prone species and present a novel strategy for classifying species according to their population‐level response to a gradient of disturbance intensity. We examined the effects of forest fragmentation on dung beetle communities in an archipelago of 33 islands recently created by flooding in Venezuela. Species richness, density, and biomass all declined sharply with decreasing island area and increasing island isolation. Species richness was highly nested, indicating that local extinctions occurred nonrandomly. The most sensitive dung beetle species appeared to require at least 85 ha of forest, more than many large vertebrates. Extinction‐prone species were either large‐bodied, forest specialists, or uncommon. These explanatory variables were unrelated, suggesting at least 3 underlying causes of extirpation. Large species showed high wing loading (body mass/wing area) and a distinct flight strategy that may increase their area requirements. Although forest specificity made most species sensitive to fragmentation, a few persistent habitat generalists dispersed across the matrix. Density functions classified species into 4 response groups on the basis of their change in density with decreasing species richness. Sensitive and persistent species both declined with increasing fragmentation intensity, but persistent species occurred on more islands, which may be due to their higher baseline densities. Compensatory species increased in abundance following the initial loss of sensitive species, but rapidly declined with increasing fragmentation. Supertramp species (widespread habitat generalists) may be poor competitors but strong dispersers; their abundance peaked following the decline of the other 3 groups. Nevertheless, even the least sensitive species were extirpated or rare on the smallest and most isolated islands.  相似文献   

10.
Effects of Coffee Management on Deforestation Rates and Forest Integrity   总被引:1,自引:0,他引:1  
Knowledge about how forest margins are utilized can be crucial for a general understanding of changes in forest cover, forest structure, and biodiversity across landscapes. We studied forest‐agriculture transitions in southwestern Ethiopia and hypothesized that the presence of coffee (Coffea arabica)decreases deforestation rates because of coffee's importance to local economies and its widespread occurrence in forests and forest margins. Using satellite images and elevation data, we compared changes in forest cover over 37 years (1973–2010) across elevations in 2 forest‐agriculture mosaic landscapes (1100 km2 around Bonga and 3000 km2 in Goma‐Gera). In the field in the Bonga area, we determined coffee cover and forest structure in 40 forest margins that differed in time since deforestation. Both the absolute and relative deforestation rates were lower at coffee‐growing elevations compared with at higher elevations (?10/20% vs. ?40/50% comparing relative rates at 1800 m asl and 2300–2500 m asl, respectively). Within the coffee‐growing elevation, the proportion of sites with high coffee cover (>20%) was significantly higher in stable margins (42% of sites that had been in the same location for the entire period) than in recently changed margins (0% of sites where expansion of annual crops had changed the margin). Disturbance level and forest structure did not differ between sites with 30% or 3% coffee. However, a growing body of literature on gradients of coffee management in Ethiopia reports coffee's negative effects on abundances of forest‐specialist species. Even if the presence of coffee slows down the conversion of forest to annual‐crop agriculture, there is a risk that an intensification of coffee management will still threaten forest biodiversity, including the genetic diversity of wild coffee. Conservation policy for Ethiopian forests thus needs to develop strategies that acknowledge that forests without coffee production may have higher deforestation risks than forests with coffee production and that forests with coffee production often have lower biodiversity value. Efectos de la Administración Cafetalera sobre las Tasas de Deforestación y la Integridad de los Bosques  相似文献   

11.
Abstract: Habitat loss and fragmentation in forested landscapes often negatively affect animal abundance; however, whether these factors also affect fitness is not well known. We hypothesized that observed decreases in bird occurrence and abundance in landscapes with harvested forests are associated with reduced apparent survival of adults. We defined apparent survival as an estimate of survival that accounts for an imperfect resighting probability, but not permanent emigration (i.e., dispersal). We examined the association between spatially extensive habitat loss and apparent survival of males of 2 Neotropical migrant species, Blackburnian Warbler (Dendroica fusca) and Black‐Throated Green Warbler (D. virens), over 7 years in the Greater Fundy Ecosystem, New Brunswick, Canada. We estimated apparent survival among and within breeding seasons. We quantified amount of habitat in the context of individual species. In this landscape, boundaries between land‐cover types are gradual rather than clearly identifiable and abrupt. Estimated apparent within‐season survival of both species decreased as a function of amount of habitat within a 2000‐m radius; survival was approximately 12 times (95% CI 3.43–14) greater in landscapes with 85% habitat than in landscapes with 10% habitat. Apparent annual survival also decreased as a function of amount of habitat within a 100‐m radius. Over the range of habitat amount, apparent annual survival decreased 15% (95% CI 7–29%) as the amount of habitat decreased. Our results suggest that reduced species occurrence in landscapes with low proportions of habitat is due partly to lower apparent survival at these sites. This mechanism operates both directly (i.e., via effects on mortality or dispersal during breeding) and possibly through indirect effects during the nonbreeding season. Habitat loss was associated not only with a lower number of individuals, but also with lower survival of those individuals.  相似文献   

12.
Abstract: Seed dispersal by animals is considered a pivotal ecosystem function that drives plant‐community dynamics in natural habitats and vegetation recovery in human‐altered landscapes. Nevertheless, there is a lack of suitable ecological knowledge to develop basic conservation and management guidelines for this ecosystem service. Essential questions, such as how well the abundance of frugivorous animals predicts seeding function in different ecosystems and how anthropogenic landscape heterogeneity conditions the role of dispersers, remain poorly answered. In three temperate ecosystems, we studied seed dispersal by frugivorous birds in landscape mosaics shaped by human disturbance. By applying a standardized design across systems, we related the frequency of occurrence of bird‐dispersed seeds throughout the landscape to the abundance of birds, the habitat features, and the abundance of fleshy fruits. Abundance of frugivorous birds in itself predicted the occurrence of dispersed seeds throughout the landscape in all ecosystems studied. Even those landscape patches impoverished due to anthropogenic disturbance received some dispersed seeds when visited intensively by birds. Nonetheless, human‐caused landscape degradation largely affected seed‐deposition patterns by decreasing cover of woody vegetation or availability of fruit resources that attracted birds and promoted seed dispersal. The relative role of woody cover and fruit availability in seed dispersal by birds differed among ecosystems. Our results suggest that to manage seed dispersal for temperate ecosystem preservation or restoration one should consider abundance of frugivorous birds as a surrogate of landscape‐scale seed dispersal and an indicator of patch quality for the dispersal function; woody cover and fruit resource availability as key landscape features that drive seedfall patterns; and birds as mobile links that connect landscape patches of different degrees of degradation and habitat quality via seed deposition.  相似文献   

13.
Habitat corridors are important tools for maintaining connectivity in increasingly fragmented landscapes, but generally they have been considered in single‐species approaches. Corridors intended to facilitate the movement of multiple species could increase persistence of entire communities, but at the likely cost of being less efficient for any given species than a corridor intended specifically for that species. There have been few tests of the trade‐offs between single‐ and multispecies corridor approaches. We assessed single‐species and multispecies habitat corridors for 5 threatened mammal species in tropical forests of Borneo. We generated maps of the cost of movement across the landscape for each species based on the species’ local abundance as estimated through hierarchical modeling of camera‐trap data with biophysical and anthropogenic covariates. Elevation influenced local abundance of banded civets (Hemigalus derbyanus) and sun bears (Helarctos malayanus). Increased road density was associated with lower local abundance of Sunda clouded leopards (Neofelis diardi) and higher local abundance of sambar deer (Rusa unicolor). Pig‐tailed macaque (Macaca nemestrina) local abundance was lower in recently logged areas. An all‐species‐combined connectivity scenario with least‐cost paths and 1 km buffers generated total movement costs that were 27% and 23% higher for banded civets and clouded leopards, respectively, than the connectivity scenarios for those species individually. A carnivore multispecies connectivity scenario, however, increased movement cost by 2% for banded civets and clouded leopards. Likewise, an herbivore multispecies scenario provided more effective connectivity than the all‐species‐combined scenario for sambar and macaques. We suggest that multispecies habitat connectivity plans be tailored to groups of ecologically similar, disturbance‐sensitive species to maximize their effectiveness. Evaluación de la Conectividad de Terrenos Multiespecie en una Comunidad Tropical de Mamíferos  相似文献   

14.
Abstract: Despite many studies on fragmentation of tropical forests, the extent to which plant and animal communities are altered in small, isolated forest fragments remains obscure if not controversial. We examined the hypothesis that fragmentation alters the relative abundance of tree species with different vegetative and reproductive traits. In a fragmented landscape (670 km2) of the Atlantic Forest of northeastern Brazil, we categorized 4056 trees of 182 species by leafing pattern, reproductive phenology, and morphology of seeds and fruit. We calculated relative abundance of traits in 50 1‐ha plots in three types of forest configurations: forest edges, small forest fragments (3.4–83.6 ha), and interior of the largest forest fragment (3500 ha, old growth). Although evergreen species were the most abundant across all configurations, forest edges and small fragments had more deciduous and semideciduous species than interior forest. Edges lacked supra‐annual flowering and fruiting species and had more species and stems with drupes and small seeds than small forest fragments and forest interior areas. In an ordination of species similarity and life‐history traits, the three types of configurations formed clearly segregated clusters. Furthermore, the differences in the taxonomic and functional (i.e., trait‐based) composition of tree assemblages we documented were driven primarily by the higher abundance of pioneer species in the forest edge and small forest fragments. Our work provides strong evidence that long‐term transitions in phenology and seed and fruit morphology of tree functional groups are occurring in fragmented tropical forests. Our results also suggest that edge‐induced shifts in tree assemblages of tropical forests can be larger than previously documented.  相似文献   

15.
Habitat loss and fragmentation alter the composition of bird assemblages in rainforest. Because birds are major seed dispersers in rainforests, fragmentation‐induced changes to frugivorous bird assemblages are also likely to alter the ecological processes of seed dispersal and forest regeneration, but the specific nature of these changes is poorly understood. We assessed the influence of fragment size and landscape forest cover on the abundance, species composition, and functional properties of the avian seed disperser community in an extensively cleared, former rainforest landscape of subtropical Australia. Bird surveys of fixed time and area in 25 rainforest fragments (1–139 ha in size across a 1800 km2 region) provided bird assemblage data which were coupled with prior knowledge of bird species’ particular roles in seed dispersal to give measurements of seven different attributes of the seed disperser assemblage. We used multimodel regression to assess how patch size and surrounding forest cover (within 200 m, 1000 m, and 5000 m radii) influenced variation in the abundance of individual bird species and of functional groups based on bird species’ responses to fragmentation and their roles in seed dispersal. Surrounding forest cover, specifically rainforest cover, generally had a greater effect on frugivorous bird assemblages than fragment size. Amount of rainforest cover within 200 m of fragments was the main factor positively associated with abundances of frugivorous birds that are both fragmentation sensitive and important seed dispersers. Our results suggest a high proportion of local rainforest cover is required for the persistence of seed‐dispersing birds and the maintenance of seed dispersal processes. Thus, even small rainforest fragments can function as important parts of habitat networks for seed‐dispersing birds, whether or not they are physically connected by vegetation. Respuestas de Aves Dispersoras de Semillas al Incremento de Selvas en el Paisaje Alrededor de Fragmentos  相似文献   

16.
Climate change will require species to adapt to new conditions or follow preferred climates to higher latitudes or elevations, but many dispersal‐limited freshwater species may be unable to move due to barriers imposed by watershed boundaries. In addition, invasive nonnative species may expand into new regions under future climate conditions and contribute to the decline of native species. We evaluated future distributions for the threatened European crayfish fauna in response to climate change, watershed boundaries, and the spread of invasive crayfishes, which transmit the crayfish plague, a lethal disease for native European crayfishes. We used climate projections from general circulation models and statistical models based on Mahalanobis distance to predict climate‐suitable regions for native and invasive crayfishes in the middle and at the end of the 21st century. We identified these suitable regions as accessible or inaccessible on the basis of major watershed boundaries and present occurrences and evaluated potential future overlap with 3 invasive North American crayfishes. Climate‐suitable areas decreased for native crayfishes by 19% to 72%, and the majority of future suitable areas for most of these species were inaccessible relative to native and current distributions. Overlap with invasive crayfish plague‐transmitting species was predicted to increase. Some native crayfish species (e.g., noble crayfish [Astacus astacus]) had no future refugia that were unsuitable for the modeled nonnative species. Our results emphasize the importance of preventing additional introductions and spread of invasive crayfishes in Europe to minimize interactions between the multiple stressors of climate change and invasive species, while suggesting candidate regions for the debatable management option of assisted colonization. Efectos del Cambio Climático, Especies Invasoras y Enfermedades sobre la Distribución de Cangrejos de Río Europeos Nativos  相似文献   

17.
Abstract: Understanding the way in which habitat fragmentation disrupts animal dispersal is key to identifying effective and efficient conservation strategies. To differentiate the potential effectiveness of 2 frequently used strategies for increasing the connectivity of populations in fragmented landscapes—corridors and stepping stones—we combined 3 complimentary methods: behavioral studies at habitat edges, mark‐recapture, and genetic analyses. Each of these methods addresses different steps in the dispersal process that a single intensive study could not address. We applied the 3 methods to the case study of Atrytonopsis new species 1, a rare butterfly endemic to a partially urbanized stretch of barrier islands in North Carolina (U.S.A.). Results of behavioral analyses showed the butterfly flew into urban and forested areas, but not over open beach; mark‐recapture showed that the butterfly dispersed successfully through short stretches of urban areas (<500 m); and genetic studies showed that longer stretches of forest (>5 km) were a dispersal barrier, but shorter stretches of urban areas (≤5 km) were not. Although results from all 3 methods indicated natural features in the landscape, not urbanization, were barriers to dispersal, when we combined the results we could determine where barriers might arise: forests restricted dispersal for the butterfly only when there were long stretches with no habitat. Therefore, urban areas have the potential to become a dispersal barrier if their extent increases, a finding that may have gone unnoticed if we had used a single approach. Protection of stepping stones should be sufficient to maintain connectivity for Atrytonopsis new species 1 at current levels of urbanization. Our research highlights how the use of complementary approaches for studying animal dispersal in fragmented landscapes can help identify conservation strategies.  相似文献   

18.
Abstract: The dry forests of southern India, which are endangered tropical ecosystems and among the world's most important tiger (Panthera tigris) habitats, are extensively invaded by exotic plants. Yet, experimental studies exploring the impacts of these invasions on native plants in these forests are scarce. Consequently, little is known about associated implications for the long‐term conservation of tigers and other biodiversity in these habitats. I studied the impacts of the exotic plant Lantana camara on understory vegetation in a dry‐forest tiger habitat in southern India. I compared the richness, composition, and abundance of tree seedlings, herbs, and shrubs and the abundance of grass among plots in which Lantana was cleared or left standing. These plots were distributed across two blocks—livestock free and livestock grazed. Removal of Lantana had an immediate positive effect on herb–shrub richness in the livestock‐free block, but had no effect on that of tree seedlings in either livestock block. Tree‐seedling and herb–shrub composition differed significantly between Lantana treatment and livestock block, and Lantana removal significantly decreased survival of tree seedlings. Nevertheless, the absence of trees, in any stage between seedling and adult, indicates that Lantana may stall tree regeneration. Lantana removal decreased the abundance of all understory strata, probably because forage plants beneath Lantana are less accessible to herbivores, and plants in Lantana‐free open plots experienced greater herbivory. Reduced access to forage in invaded habitats could negatively affect ungulate populations and ultimately compromise the ability of these forests to sustain prey‐dependent large carnivores. Additional research focused on understanding and mitigating threats posed by exotic plants may be crucial to the long‐term protection of these forests as viable tiger habitats.  相似文献   

19.
Abstract: In conservation biology, understanding the causes of endangerment is a key step to devising effective conservation strategies. We used molecular evidence (coalescent simulations of population changes from microsatellite data) and historical information (habitat and human population changes) to investigate how the most‐isolated populations of giant pandas (Ailuropoda melanoleuca) in the Xiaoxiangling Mountains became highly endangered. These populations experienced a strong, recent demographic reduction (60‐fold), starting approximately 250 years BP. Explosion of the human population and use of non‐native crop species at the peak of the Qing Empire resulted in land‐use changes, deforestation, and habitat fragmentation, which are likely to have led to the drastic reduction of the most‐isolated populations of giant pandas. We predict that demographic, genetic, and environmental factors will lead to extinction of giant pandas in the Xiaoxiangling Mountains in the future if the population remains isolated. Therefore, a targeted conservation action—translocation—has been proposed and is being implemented by the Chinese goverment.  相似文献   

20.
Abstract: Many of the skills and resources associated with botanic gardens and arboreta, including plant taxonomy, horticulture, and seed bank management, are fundamental to ecological restoration efforts, yet few of the world's botanic gardens are involved in the science or practice of restoration. Thus, we examined the potential role of botanic gardens in these emerging fields. We believe a reorientation of certain existing institutional strengths, such as plant‐based research and knowledge transfer, would enable many more botanic gardens worldwide to provide effective science‐based support to restoration efforts. We recommend botanic gardens widen research to include ecosystems as well as species, increase involvement in practical restoration projects and training practitioners, and serve as information hubs for data archiving and exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号