共查询到4条相似文献,搜索用时 0 毫秒
1.
KRIS A. MURRAY LEE F. SKERRATT† RICK SPEARE† HAMISH McCALLUM ‡ 《Conservation biology》2009,23(5):1242-1252
Abstract: Estimating disease-associated mortality and transmission processes is difficult in free-ranging wildlife but important for understanding disease impacts and dynamics and for informing management decisions. In a capture–mark–recapture study, we used a PCR-based diagnostic test in combination with multistate models to provide the first estimates of disease-associated mortality and detection, infection, and recovery rates for frogs endemically infected with the chytrid fungus Batrachochytrium dendrobatidis (Bd), which causes the pandemic amphibian disease chytridiomycosis. We found that endemic chytridiomycosis was associated with a substantial reduction (approximately 38%) in apparent monthly survival of the threatened rainforest treefrog Litoria pearsoniana despite a long period of coexistence (approximately 30 years); detection rate was not influenced by disease status; improved recovery and reduced infection rates correlated with decreased prevalence, which occurred when temperatures increased; and incorporating changes in individuals' infection status through time with multistate models increased effect size and support (98.6% vs. 71% of total support) for the presence of disease-associated mortality when compared with a Cormack–Jolly–Seber model in which infection status was restricted to the time of first capture. Our results indicate that amphibian populations can face significant ongoing pressure from chytridiomycosis long after epidemics associated with initial Bd invasions subside, an important consideration for the long-term conservation of many amphibian species worldwide. Our findings also improve confidence in estimates of disease prevalence in wild amphibians and provide a general framework for estimating parameters in epidemiological models for chytridiomycosis, an important step toward better understanding and management of this disease. 相似文献
2.
Ben C. Scheele David A. Hunter Laura A. Brannelly Lee F. Skerratt Don A. Driscoll 《Conservation biology》2017,31(3):592-600
Emerging wildlife pathogens are an increasing threat to biodiversity. One of the most serious wildlife diseases is chytridiomycosis, caused by the fungal pathogen, Batrachochytrium dendrobatidis (Bd), which has been documented in over 500 amphibian species. Amphibians vary greatly in their susceptibility to Bd; some species tolerate infection, whereas others experience rapid mortality. Reservoir hosts—species that carry infection while maintaining high abundance but are rarely killed by disease—can increase extinction risk in highly susceptible, sympatric species. However, whether reservoir hosts amplify Bd in declining amphibian species has not been examined. We investigated the role of reservoir hosts in the decline of the threatened northern corroboree frog (Pseudophryne pengilleyi) in an amphibian community in southeastern Australia. In the laboratory, we characterized the response of a potential reservoir host, the (nondeclining) common eastern froglet (Crinia signifera), to Bd infection. In the field, we conducted frog abundance surveys and Bd sampling for both P. pengilleyi and C. signifera. We built multinomial logistic regression models to test whether Crinia signifera and environmental factors were associated with P. pengilleyi decline. C. signifera was a reservoir host for Bd. In the laboratory, many individuals maintained intense infections (>1000 zoospore equivalents) over 12 weeks without mortality, and 79% of individuals sampled in the wild also carried infections. The presence of C. signifera at a site was strongly associated with increased Bd prevalence in sympatric P. pengilleyi. Consistent with disease amplification by a reservoir host, P. pengilleyi declined at sites with high C. signifera abundance. Our results suggest that when reservoir hosts are present, population declines of susceptible species may continue long after the initial emergence of Bd, highlighting an urgent need to assess extinction risk in remnant populations of other declined amphibian species. 相似文献
3.
VALÉRIE ST‐AMOUR TRENTON W.J. GARNER ALBRECHT I. SCHULTE‐HOSTEDDE DAVID LESBARRÈRES 《Conservation biology》2010,24(3):788-794
Abstract: Developmental instability, measured as fluctuating asymmetry (FA), is often used as a tool to measure stress and the overall quality of organisms. Under FA, it is assumed that control of symmetry during development is costly and that under stress the trajectory of development is disturbed, resulting in asymmetric morphologies. Amphibian emergent infectious diseases (EIDs), such as Ranavirus and chytrid fungus, have been involved in several mortality events, which makes them stressors and allows for the study of FA. We analyzed nine populations of green frogs (Rana clamitans) for the presence or absence of Ranavirus and chytrid fungus. Individuals were measured to determine levels of FA in seven traits under the hypothesis that FA is more likely to be observed in individuals infected by the pathogens. Significantly higher levels of FA were found in individuals with Ranavirus compared with uninfected individuals among all populations and all traits. We did not observe FA in individuals infected with chytrid fungus for any of the traits measured. Additionally, we observed a significant association between Ranavirus infection and levels of FA in both males and females, which may indicate this viral disease is likely to affect both sexes during development. Altogether, our results indicate that some EIDs may have far‐reaching and nonlethal effects on individual development and populations harboring such diseases and that FA can be used as a conservation tool to identify populations subject to such a stress. 相似文献
4.
Effects of pond salinization on survival rate of amphibian hosts infected with the chytrid fungus 下载免费PDF全文
Michelle Pirrie Stockwell Lachlan James Storrie Carla Jean Pollard John Clulow Michael Joseph Mahony 《Conservation biology》2015,29(2):391-399
The chytrid fungus Batrachochytrium dendrobatidis has been implicated in the decline and extinction of amphibian populations worldwide, but management options are limited. Recent studies show that sodium chloride (NaCl) has fungicidal properties that reduce the mortality rates of infected hosts in captivity. We investigated whether similar results can be obtained by adding salt to water bodies in the field. We increased the salinity of 8 water bodies to 2 or 4 ppt and left an additional 4 water bodies with close to 0 ppt and monitored salinity for 18 months. Captively bred tadpoles of green and golden bell frog (Litoria aurea) were released into each water body and their development, levels of B. dendrobatidis infection, and survival were monitored at 1, 4, and 12 months. The effect of salt on the abundance of nontarget organisms was also investigated in before and after style analyses. Salinities remained constant over time with little intervention. Hosts in water bodies with 4 ppt salt had a significantly lower prevalence of chytrid infection and higher survival, following metamorphosis, than hosts in 0 ppt salt. Tadpoles in the 4 ppt group were smaller in length after 1 month in the release site than those in the 0 and 2 ppt groups, but after metamorphosis body size in all water bodies was similar . In water bodies with 4 ppt salt, the abundance of dwarf tree frogs (Litoria fallax), dragonfly larvae, and damselfly larvae was lower than in water bodies with 0 and 2 ppt salt, which could have knock‐on effects for community structure. Based on our results, salt may be an effective field‐based B. dendrobatidis mitigation tool for lentic amphibians that could contribute to the conservation of numerous susceptible species. However, as in all conservation efforts, these benefits need to be weighed against negative effects on both target and nontarget organisms. 相似文献