首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract: Climate change affects individual organisms by altering development, physiology, behavior, and fitness, and populations by altering genetic and phenotypic composition, vital rates, and dynamics. We sought to clarify how selection, phenotypic plasticity, and demography are linked in the context of climate change. On the basis of theory and results of recent empirical studies of plants and animals, we believe the ecological and evolutionary issues relevant to population persistence as climate changes are the rate, type, magnitude, and spatial pattern of climate‐induced abiotic and biotic change; generation time and life history of the organism; extent and type of phenotypic plasticity; amount and distribution of adaptive genetic variation across space and time; dispersal potential; and size and connectivity of subpopulations. An understanding of limits to plasticity and evolutionary potential across traits, populations, and species and feedbacks between adaptive and demographic responses is lacking. Integrated knowledge of coupled ecological and evolutionary mechanisms will increase understanding of the resilience and probabilities of persistence of populations and species.  相似文献   

2.
Abstract: The Hawaiian monk seal (Monachus schauinslandi) is one of the most critically endangered marine mammals. Less than 1200 individuals remain, and the species is declining at a rate of approximately 4% per year as a result of juvenile starvation, shark predation, and entanglement in marine debris. Some of these problems may be alleviated by translocation; however, if island breeding aggregates are effectively isolated subpopulations, moving individuals may disrupt local adaptations. In these circumstances, managers must balance the pragmatic need of increasing survival with theoretical concerns about genetic viability. To assess range‐wide population structure of the Hawaiian monk seal, we examined an unprecedented, near‐complete genetic inventory of the species (n =1897 seals, sampled over 14 years) at 18 microsatellite loci. Genetic variation was not spatially partitioned (w=?0.03, p = 1.0), and a Bayesian clustering method provided evidence of one panmictic population (K =1). Pairwise FST comparisons (among 7 island aggregates over 14 annual cohorts) did not reveal temporally stable, spatial reproductive isolation. Our results coupled with long‐term tag‐resight data confirm seal movement and gene flow throughout the Hawaiian Archipelago. Thus, human‐mediated translocation of seals among locations is not likely to result in genetic incompatibilities.  相似文献   

3.
Abstract: Identifying how social organization shapes individual behavior, survival, and fecundity of animals that live in groups can inform conservation efforts and improve forecasts of population abundance, even when the mechanism responsible for group‐level differences is unknown. We constructed a hierarchical Bayesian model to quantify the relative variability in survival rates among different levels of social organization (matrilines and pods) of an endangered population of killer whales (Orcinus orca). Individual killer whales often participate in group activities such as prey sharing and cooperative hunting. The estimated age‐specific survival probabilities and survivorship curves differed considerably among pods and to a lesser extent among matrilines (within pods). Across all pods, males had lower life expectancy than females. Differences in survival between pods may be caused by a combination of factors that vary across the population's range, including reduced prey availability, contaminants in prey, and human activity. Our modeling approach could be applied to demographic rates for other species and for parameters other than survival, including reproduction, prey selection, movement, and detection probabilities.  相似文献   

4.
Abstract: Theory suggests that demographic and genetic traits deteriorate (i.e., fitness and genetic diversity decrease) when populations become small, and that such deterioration could precipitate positive feedback loops called extinction vortices. We examined whether demographic attributes and genetic traits have changed over time in one of the 2 remaining small populations of the highly endangered Iberian lynx (Lynx pardinus) in Doñana, Spain. From 1983 to 2008, we recorded nontraumatic mortality rates, litter size, offspring survival, age at territory acquisition, and sex ratio. We combined these demographic attributes with measures of inbreeding and genetic diversity at neutral loci (microsatellites) and genes subjected to selection (major histocompatibility complex). Data on demographic traits were obtained through capture and radio tracking, checking dens during breeding, track surveys, and camera trapping. For genetic analyses, we obtained blood or tissue samples from captured or necropsied individuals or from museum specimens. Over time a female‐biased sex ratio developed, age of territory acquisition decreased, mean litter size decreased, and rates of nontraumatic mortality increased, but there were no significant changes in overall mortality rates, standardized individual heterozygosity declined steadily, and allelic diversity of exon 2 of class II major histocompatibility complex DRB genes remained constant (2 allelic variants present in all individuals analyzed). Changes in sex ratio and age of territory acquisition may have resulted from demographic stochasticity, whereas changes in litter size and nontraumatic mortality may be related to observed increases in inbreeding. Concomitant deterioration of both demographic attributes and genetic traits is consistent with an extinction vortex. The co‐occurrence, with or without interaction, of demographic and genetic deterioration may explain the lack of success of conservation efforts with the Doñana population of Iberian lynx.  相似文献   

5.
Abstract: Including both economic costs and biological benefits of sites in systematic reserve selection greatly increases cost‐efficiency. Nevertheless, limited funding generally forces conservation planners to choose which data to focus the most resources on; therefore, the relative importance of different types of data must be carefully assessed. We investigated the relative importance of including information about costs and benefits for 3 different commonly used conservation goals: 2 in which biological benefits were measured per site (species number and conservation value scores) and 1 in which benefits were measured on the basis of site complementarity (total species number in the reserve network). For each goal, we used site‐selection models with data on benefits only, costs only, and benefits and costs together, and we compared the efficiency of each model. Costs were more important to include than benefits for the goals in which benefits were measured per site. By contrast, for the complementarity‐based goal, benefits were more important to include. To understand this pattern, we compared the variability in benefits and in costs for each goal. By comparing the best and the worst possible selection of sites with regard to costs alone and benefits alone for each conservation goal, we introduced a simple and consistent variability measure that is applicable to all kinds of reserve‐selection situations. In our study, benefit variability depended strongly on how the conservation goal was formulated and was largest for the complementarity‐based conservation goal. We argue that from a cost‐efficiency point of view, most resources should be spent on collecting the most variable type of data for the conservation goal at hand.  相似文献   

6.
Abstract: The acquisition or designation of new protected areas is usually based on criteria for representation of different ecosystems or land‐cover classes, and it is unclear how wellthreatened species are conserved within protected‐area networks. Here, we assessed how Australia's terrestrial protected‐area system (89 million ha, 11.6% of the continent) overlaps with the geographic distributions of threatened species and compared this overlap against a model that randomly placed protected areas across the continent and a spatially efficient model that placed protected areas across the continent to maximize threatened species’ representation within the protected‐area estate. We defined the minimum area needed to conserve each species on the basis of the species’ range size. We found that although the current configuration of protected areas met targets for representation of a given percentage of species’ ranges better than a random selection of areas, 166 (12.6%) threatened species occurred entirely outside protected areas and target levels of protection were met for only 259 (19.6%) species. Critically endangered species were among those with the least protection; 12 (21.1%) species occurred entirely outside protected areas. Reptiles and plants were the most poorly represented taxonomic groups, and amphibians the best represented. Spatial prioritization analyses revealed that an efficient protected‐area system of the same size as the current protected‐area system (11.6% of the area of Australia) could meet representation targets for 1272 (93.3%) threatened species. Moreover, the results of these prioritization analyses showed that by protecting 17.8% of Australia, all threatened species could reach target levels of representation, assuming all current protected areas are retained. Although this amount of area theoretically could be protected, existing land uses and the finite resources available for conservation mean land acquisition may not be possible or even effective for the recovery of threatened species. The optimal use of resources must balance acquisition of new protected areas, where processes that threaten native species are mitigated by the change in ownership or on‐ground management jurisdiction, and management of threatened species inside and outside the existing protected‐area system.  相似文献   

7.
Abstract: Disruption of gene flow among demes after landscape fragmentation can facilitate local adaptation but increase the effect of genetic drift and inbreeding. The joint effects of these conflicting forces on the mean fitness of individuals in a population are unknown. Through simulations, we explored the effect of increased isolation on the evolution of genetic load over the short and long term when fitness depends in part on local adaptation. We ignored genetic effects on demography. We modeled complex genomes, where a subset of the loci were under divergent selection in different localities. When a fraction of the loci were under heterogeneous selection, isolation increased mean fitness in larger demes made up of hundreds of individuals because of improved local adaptation. In smaller demes of tens of individuals, increased isolation improved local adaptation very little and reduced overall fitness. Short‐term improvement of mean fitness after fragmentation may not be indicative of the long‐term evolution of fitness. Whatever the deme size and potential for local adaptation, migration of one or two individuals per generation minimized the genetic load in general. The slow dynamics of mean fitness following fragmentation suggests that conservation measures should be implemented before the consequences of isolation on the genetic load become of concern.  相似文献   

8.
Abstract: High‐latitude coral reefs (HLRs) are potentially vulnerable marine ecosystems facing well‐documented threats to tropical reefs and exposure to suboptimal temperatures and insolation. In addition, because of their geographic isolation, HLRs may have poor or erratic larval connections to tropical reefs and a reduced genetic diversity and capacity to respond to environmental change. On Australia's east coast, a system of marine protected areas (MPAs) has been established with the aim of conserving HLRs in part by providing sources of colonizing larvae. To examine the effectiveness of existing MPAs as networks for dispersal, we compared genetic diversity within and among the HLRs in MPAs and between these HLRs and tropical reefs on the southern Great Barrier Reef (GBR). The 2 coral species best represented on Australian HLRs (the brooding Pocillopora damicornis and the broadcast‐spawning Goniastrea australensis) exhibited sharply contrasting patterns of diversity and connectedness. For P. damicornis, the 8‐locus genetic and genotypic diversity declined dramatically with increasing latitude (Na= 3.6–1.2, He= 0.3–0.03, Ng:N = 0.87–0.06), although population structure was consistent with recruitment derived largely from sexual reproduction (Go:Ge= 1.28–0.55). Genetic differentiation was high among the HLRs (FST[SD]= 0.32 [0.08], p < 0.05) and between the GBR and the HLRs (FST= 0.24 [0.06], p < 0.05), which indicates these temperate populations are effectively closed. In contrast for G. australensis, 9‐locus genetic diversity was more consistent across reefs (Na= 4.2–3.9, He= 0.3–0.26, Ng:N = 1–0.61), and there was no differentiation among regions (FST= 0.00 [0.004], p > 0.05), which implies the HLRs and the southern GBR are strongly interconnected. Our results demonstrate that although the current MPAs appear to capture most of the genetic diversity present within the HLR systems for these 2 species, their sharply contrasting patterns of connectivity indicate some taxa, such as P. damicornis, will be more vulnerable than others, and this disparity will provide challenges for future management.  相似文献   

9.
Abstract: Juvenile growth rate and adult body size are important components of life‐history strategies because of their direct impact on fitness. The diamondback terrapin (Malaclemys terrapin) is a sexually dimorphic, long‐lived turtle inhabiting brackish waters throughout the Atlantic and Gulf coasts of the United States. In parts of its range, terrapins face anthropogenically imposed mortality: juveniles of both sexes inadvertently enter commercial crab traps and drown. For adult females, the carapace eventually grows large enough that they cannot enter traps, whereas males almost never reach that critical size. We compared age structure, carapace dimensions, growth curves, and indices of sexual dimorphism for a Chesapeake Bay population of terrapins (where mortality of turtles is high due to crab traps) with contemporary terrapins from Long Island Sound and museum specimens from Chesapeake Bay (neither group subject to commercial crab traps). We also calculated the allochronic and synchronic rates of evolutionary change (haldanes) for males and females to measure the rate of trait change in a population or between populations, respectively. We found a dramatic shift to a younger male age structure, a decrease in the length of time to terminal female carapace size, a 15% increase in female carapace width, and an increase in sexual dimorphism in Chesapeake Bay. In a new twist, our results implicate a fishery in the selective increase in size of a reptilian bycatch species. These sex‐specific changes in life history and demography have implications for population viability that need to be considered when addressing conservation of this threatened turtle.  相似文献   

10.
In some fishes, water chemistry or temperature affects sex determination or creates sex‐specific selection pressures. The resulting population sex ratios are hard to predict from laboratory studies if the environmental triggers interact with other factors, whereas in field studies, singular observations of unusual sex ratios may be particularly prone to selective reporting. Long‐term monitoring largely avoids these problems. We studied a population of grayling (Thymallus thymallus) in Lake Thun, Switzerland, that has been monitored since 1948. Samples of spawning fish have been caught about 3 times/week around spawning season, and water temperature at the spawning site has been continuously recorded since 1970. We used scale samples collected in different years to determine the average age of spawners (for life‐stage specific analyses) and to identify the cohort born in 2003 (an extraordinarily warm year). Recent tissue samples were genotyped on microsatellite markers to test for genetic bottlenecks in the past and to estimate the genetically effective population size (Ne). Operational sex ratios changed from approximately 65% males before 1993 to approximately 85% males from 1993 to 2011. Sex ratios correlated with the water temperatures the fish experienced in their first year of life. Sex ratios were best explained by the average temperature juvenile fish experienced during their first summer. Grayling abundance is declining, but we found no evidence of a strong genetic bottleneck that would explain the apparent lack of evolutionary response to the unequal sex ratio. Results of other studies show no evidence of endocrine disruptors in the study area. Our findings suggest temperature affects population sex ratio and thereby contributes to population decline. Persistencia de Proporción de Sexos Desigual en una Población de Tímalos (Salmonidae) y el Posible Papel del Incremento de la Temperatura  相似文献   

11.
Abstract: In conservation biology, understanding the causes of endangerment is a key step to devising effective conservation strategies. We used molecular evidence (coalescent simulations of population changes from microsatellite data) and historical information (habitat and human population changes) to investigate how the most‐isolated populations of giant pandas (Ailuropoda melanoleuca) in the Xiaoxiangling Mountains became highly endangered. These populations experienced a strong, recent demographic reduction (60‐fold), starting approximately 250 years BP. Explosion of the human population and use of non‐native crop species at the peak of the Qing Empire resulted in land‐use changes, deforestation, and habitat fragmentation, which are likely to have led to the drastic reduction of the most‐isolated populations of giant pandas. We predict that demographic, genetic, and environmental factors will lead to extinction of giant pandas in the Xiaoxiangling Mountains in the future if the population remains isolated. Therefore, a targeted conservation action—translocation—has been proposed and is being implemented by the Chinese goverment.  相似文献   

12.
Life-history theory predicts that individuals should increase their reproductive effort when the fitness return from reproduction is high. Females mated with high-quality males are therefore expected to have higher investment than females mated with low-quality males, which could bias estimates of paternal effects. Investigating the traits females use in their allocation decisions and the aspects of reproduction that are altered is essential for understanding how sexual selection is affected. We studied the potential for differential female allocation in a captive population of a precocial bird, the Chinese quail, Coturnix chinensis. Females paired with males with large sexual ornaments laid larger, but not more, eggs than females paired with males with small sexual ornaments. Furthermore, female egg mass was also significantly positively affected by male testis size, probably via some unknown effect of testis size on male phenotype. Testis size and ornament size were not correlated. Thus, both primary and secondary male sexual traits could be important components of female allocation decisions. Experimental manipulation of hormone levels during embryonic development showed that both male and female traits influencing female egg size were sensitive to early hormone exposure. Differences in prenatal hormone exposure as a result of maternal steroid allocation to eggs may explain some of the variation in reproductive success among individuals, with important implications for non-genetic transgenerational effects in sexual selection.Communicated by C. Brown  相似文献   

13.
Conservation scientists and resource managers often have to design monitoring programs for species that are rare or patchily distributed across large landscapes. Such programs are frequently expensive and seldom can be conducted by one entity. It is essential that a prospective power analysis be undertaken to ensure stated monitoring goals are feasible. We developed a spatially based simulation program that accounts for natural history, habitat use, and sampling scheme to investigate the power of monitoring protocols to detect trends in population abundance over time with occupancy‐based methods. We analyzed monitoring schemes with different sampling efforts for wolverine (Gulo gulo) populations in 2 areas of the U.S. Rocky Mountains. The relation between occupancy and abundance was nonlinear and depended on landscape, population size, and movement parameters. With current estimates for population size and detection probability in the northern U.S. Rockies, most sampling schemes were only able to detect large declines in abundance in the simulations (i.e., 50% decline over 10 years). For small populations reestablishing in the Southern Rockies, occupancy‐based methods had enough power to detect population trends only when populations were increasing dramatically (e.g., doubling or tripling in 10 years), regardless of sampling effort. In general, increasing the number of cells sampled or the per‐visit detection probability had a much greater effect on power than the number of visits conducted during a survey. Although our results are specific to wolverines, this approach could easily be adapted to other territorial species. Poder de Análisis Espacialmente Explícito para el Monitoreo Basado en Ocupación del Glotón (Gulo gulo) en las Montañas Rocallosas de Estados Unidos  相似文献   

14.
Artificial propagation strategies often incur selection in captivity that leads to traits that are maladaptive in the wild. For propagation programs focused on production rather than demographic contribution to wild populations, effects on wild populations can occur through unintentional escapement or the need to release individuals into natural environments for part of their life cycle. In this case, 2 alternative management strategies might reduce unintended fitness consequences on natural populations: (1) reduce selection in captivity as much as possible to reduce fitness load (keep them similar), or (2) breed a separate population to reduce captive‐wild interactions as much as possible (make them different). We quantitatively evaluate these 2 strategies with a coupled demographic–genetic model based on Pacific salmon hatcheries that incorporates a variety of relevant processes and dynamics: selection in the hatchery relative to the wild, assortative mating based on the trait under selection, and different life cycle arrangements in terms of hatchery release, density dependence, natural selection, and reproduction. Model results indicate that, if natural selection only occurs between reproduction and captive release, the similar strategy performs better. However, if natural selection occurs between captive release and reproduction, the different and similar strategies present viable alternatives to reducing unintended fitness consequences because of the greater opportunity to purge maladaptive individuals. In this case, the appropriate approach depends on the feasibility of each strategy and the demographic goal (e.g., increasing natural abundance, or ensuring that a high proportion of natural spawners are naturally produced). In addition, the fitness effects of hatchery release are much greater if hatchery release occurs before (vs. after) density‐dependent interactions. Given the logistical challenges to achieving both the similar and different strategies, evaluation of not just the preferred strategy but also the consequences of failing to achieve the desired target is critical. Evaluación de Estrategias Alternativas para Minimizar las Consecuencias No Inesperadas en la Adecuación de Individuos Criados en Cautiverio sobre Poblaciones Silvestres  相似文献   

15.
A central premise of conservation biology is that small populations suffer reduced viability through loss of genetic diversity and inbreeding. However, there is little evidence that variation in inbreeding impacts individual reproductive success within remnant populations of threatened taxa, largely due to problems associated with obtaining comprehensive pedigree information to estimate inbreeding. In the critically endangered black rhinoceros, a species that experienced severe demographic reductions, we used model selection to identify factors associated with variation in reproductive success (number of offspring). Factors examined as predictors of reproductive success were age, home range size, number of nearby mates, reserve location, and multilocus heterozygosity (a proxy for inbreeding). Multilocus heterozygosity predicted male reproductive success (p< 0.001, explained deviance >58%) and correlated with male home range size (p < 0.01, r2 > 44%). Such effects were not apparent in females, where reproductive success was determined by age (p < 0.01, explained deviance 34%) as females raise calves alone and choose between, rather than compete for, mates. This first report of a 3‐way association between an individual male's heterozygosity, reproductive output, and territory size in a large vertebrate is consistent with an asymmetry in the level of intrasexual competition and highlights the relevance of sex‐biased inbreeding for the management of many conservation‐priority species. Our results contrast with the idea that wild populations of threatened taxa may possess some inherent difference from most nonthreatened populations that necessitates the use of detailed pedigrees to study inbreeding effects. Despite substantial variance in male reproductive success, the increased fitness of more heterozygous males limits the loss of heterozygosity. Understanding how individual differences in genetic diversity mediate the outcome of intrasexual competition will be essential for effective management, particularly in enclosed populations, where individuals have restricted choice about home range location and where the reproductive impact of translocated animals will depend upon the background distribution in individual heterozygosity. Efectos de la Endogamia Sesgada por el Sexo sobre el Éxito Reproductivo y el Rango del Tamaño de Hábitat del Rinoceronte Negro, Especie en Peligro Crítico  相似文献   

16.
Abstract: The fitness of species with little genetic diversity is expected to be affected by inbreeding and an inability to respond to environmental change. Conservation theory suggests that endangered species will generally demonstrate lower genetic diversity than taxa that are not threatened. This hypothesis has been challenged because the time frame of anthropogenic extinction may be too fast to expect genetic factors to significantly contribute. I conducted a meta‐analysis to examine how genetic diversity in 894 tetrapods correlates with extinction threat level. Because species are not evolutionarily independent, I used a phylogenetic regression framework to address this issue. Mean genetic diversity of tetrapods, as assessed by protein heterozygosity, was 29.7–31.5% lower on average in threatened species than in their nonthreatened relatives, a highly significant reduction. Within amphibians as diversity decreased extinction risk increased in phylogenetic models, but not in nonphylogenetic regressions. The effects of threatened status on diversity also remained significant after accounting for body size in mammals. These results support the hypothesis that genetic effects on population fitness are important in the extinction process.  相似文献   

17.
Abstract: Predation pressure on vulnerable bird species has made predator control an important issue for international nature conservation. Predator removal by culling or translocation is controversial, expensive, and time‐consuming, and results are often temporary. Thus, it is important to assess its effectiveness from all available evidence. We used explicit systematic review methodology to determine the impact of predator removal on four measurable responses in birds: breeding performance (hatching success and fledging success) and population size (breeding and postbreeding). We used meta‐analysis to summarize results from 83 predator removal studies from six continents. We also investigated whether characteristics of the prey, predator species, location, and study methodology explained heterogeneity in effect sizes. Removing predators increased hatching success, fledging success, and breeding populations. Removing all predator species achieved a significantly larger increase in breeding population than removing only a subset. Postbreeding population size was not improved on islands, or overall, but did increase on mainlands. Heterogeneity in effect sizes for the four population parameters was not explained by whether predators were native or introduced; prey were declining, migratory, or game species; or by the study methodology. Effect sizes for fledging success were smaller for ground‐nesting birds than those that nest elsewhere, but the difference was not significant. We conclude that current evidence indicates that predator removal is an effective strategy for the conservation of vulnerable bird populations. Nevertheless, the ethical and practical problems associated with predator removal may lead managers to favor alternative, nonlethal solutions. Research is needed to provide and synthesize data to determine whether these are effective management practices for future policies on bird conservation.  相似文献   

18.
The wolf (Canis lupus) is classified as endangered in Sweden by the Swedish Species Information Centre, which is the official authority for threat classification. The present population, which was founded in the early 1980s, descends from 5 individuals. It is isolated and highly inbred, and on average individuals are more related than siblings. Hunts have been used by Swedish authorities during 2010 and 2011 to reduce the population size to its upper tolerable level of 210 wolves. European Union (EU) biodiversity legislation requires all member states to promote a concept called “favourable conservation status” (FCS) for a series of species including the wolf. Swedish national policy stipulates maintenance of viable populations with sufficient levels of genetic variation of all naturally occurring species. Hunting to reduce wolf numbers in Sweden is currently not in line with national and EU policy agreements and will make genetically based FCS criteria less achievable for this species. We suggest that to reach FCS for the wolf in Sweden the following criteria need to be met: (1) a well‐connected, large, subdivided wolf population over Scandinavia, Finland, and the Russian Karelia‐Kola region should be reestablished, (2) genetically effective size (Ne) of this population is in the minimum range of Ne = 500–1000, (3) Sweden harbors a part of this total population that substantially contributes to the total Ne and that is large enough to not be classified as threatened genetically or according to IUCN criteria, and (4) average inbreeding levels in the Swedish population are <0.1. Efectos de la Cacería sobre el Estatus de Conservación Favorable de Lobos Suecos con Endogamia Alta  相似文献   

19.
Abstract: Species listed under the U.S. Endangered Species Act (i.e., listed species) have declined to the point that the probability of their extinction is high. The decline of these species, however, may manifest itself in different ways, including reductions in geographic range, number of populations, or overall abundance. Understanding the pattern of decline can help managers assess extinction probability and define recovery objectives. Although quantitative data on changes in geographic range, number of populations, and abundance usually do not exist for listed species, more often qualitative data can be obtained. We used qualitative data in recovery plans for federally listed species to determine whether each listed species declined in range size, number of populations, or abundance relative to historical levels. We calculated the proportion of listed species in each state (or equivalent) that declined in each of those ways. Nearly all listed species declined in abundance, and range size or number of populations declined in approximately 80% of species for which those data were available. Patterns of decline, however, differed taxonomically and geographically. Declines in range were more common among vertebrates than plants, whereas population extirpations were more common among plants. Invertebrates had high incidence of range and population declines. Narrowly distributed plants and invertebrates may be subject to acute threats that may result in population extirpations, whereas vertebrates may be affected by chronic threats that reduce the extent and size of populations. Additionally, in the eastern United States and U.S. coastal areas, where the level of land conversion is high, a greater percentage of species’ ranges declined and more populations were extirpated than in other areas. Species in the Southwest, especially plants, had fewer range and population declines than other areas. Such relations may help in the selection of species’ recovery criteria.  相似文献   

20.
Despite the high profile of amphibian declines and the increasing threat of drought and fragmentation to aquatic ecosystems, few studies have examined long‐term rates of change for a single species across a large geographic area. We analyzed growth in annual egg‐mass counts of the Columbia spotted frog (Rana luteiventris) across the northwestern United States, an area encompassing 3 genetic clades. On the basis of data collected by multiple partners from 98 water bodies between 1991 and 2011, we used state‐space and linear‐regression models to measure effects of patch characteristics, frequency of summer drought, and wetland restoration on population growth. Abundance increased in the 2 clades with greatest decline history, but declined where populations are considered most secure. Population growth was negatively associated with temporary hydroperiods and landscape modification (measured by the human footprint index), but was similar in modified and natural water bodies. The effect of drought was mediated by the size of the water body: populations in large water bodies maintained positive growth despite drought, whereas drought magnified declines in small water bodies. Rapid growth in restored wetlands in areas of historical population declines provided strong evidence of successful management. Our results highlight the importance of maintaining large areas of habitat and underscore the greater vulnerability of small areas of habitat to environmental stochasticity. Similar long‐term growth rates in modified and natural water bodies and rapid, positive responses to restoration suggest pond construction and other forms of management can effectively increase population growth. These tools are likely to become increasingly important to mitigate effects of increased drought expected from global climate change. Papeles de las Características del Fragmento, Frecuencia de Sequía y Restauración en las Tendencias a Largo Plazo de un Anfibio Ampliamente Distribuido  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号