首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: We provide a cross‐taxon and historical analysis of what makes tropical forest species vulnerable to extinction. Several traits have been important for species survival in the recent and distant geological past, including seed dormancy and vegetative growth in plants, small body size in mammals, and vagility in insects. For major past catastrophes, such as the five mass extinction events, large range size and vagility or dispersal were key to species survival. Traits that make some species more vulnerable to extinction are consistent across time scales. Terrestrial organisms, particularly animals, are more extinction prone than marine organisms. Plants that persist through dramatic changes often reproduce vegetatively and possess mechanisms of die back. Synergistic interactions between current anthropogenic threats, such as logging, fire, hunting, pests and diseases, and climate change are frequent. Rising temperatures threaten all organisms, perhaps particularly tropical organisms adapted to small temperature ranges and isolated by distance from suitable future climates. Mutualist species and trophic specialists may also be more threatened because of such range‐shift gaps. Phylogenetically specialized groups may be collectively more prone to extinction than generalists. Characterization of tropical forest species’ vulnerability to anthropogenic change is constrained by complex interactions among threats and by both taxonomic and ecological impediments, including gross undersampling of biotas and poor understanding of the spatial patterns of taxa at all scales.  相似文献   

2.
Habitat loss and fragmentation are causing widespread population declines, but identifying how and when to intervene remains challenging. Predicting where extirpations are likely to occur and implementing management actions before losses result may be more cost‐effective than trying to reestablish lost populations. Early indicators of pressure on populations could be used to make such predictions. Previous work conducted in 2009 and 2010 identified that the presence of Eastern Yellow Robins (Eopsaltria australis) in 42 sites in a fragmented region of eastern Australia was unrelated to woodland extent within 500 m of a site, but the robins’ heterophil:lymphocyte (H:L) ratios (an indicator of chronic stress) were elevated at sites with low levels of surrounding woodland. We resurveyed these 42 sites in 2013 and 2014 for robin presence to determine whether the H:L ratios obtained in 2009 and 2010 predicted the locations of extirpations and whether the previous pattern in H:L ratios was an early sign that woodland extent would become an important predictor of occupancy. We also surveyed for robins at 43 additional sites to determine whether current occupancy could be better predicted by landscape context at a larger scale, relevant to dispersal movements. At the original 42 sites, H:L ratios and extirpations were not related, although only 4 extirpations were observed. Woodland extent within 500 m had become a strong predictor of occupancy. Taken together, these results provide mixed evidence as to whether patterns of individual condition can reveal habitat relationships that become evident as local shifts in occupancy occur but that are not revealed by a single snapshot of species distribution. Across all 85 sites, woodland extent at scales relevant to dispersal (5 km) was not related to occurrence. We recommend that conservation actions focus on regenerating areas of habitat large enough to support robin territories rather than increasing connectivity within the landscape.  相似文献   

3.
Abstract: Species distribution models are critical tools for the prediction of invasive species spread and conservation of biodiversity. The majority of species distribution models have been built with environmental data. Community ecology theory suggests that species co‐occurrence data could also be used to predict current and potential distributions of species. Species assemblages are the products of biotic and environmental constraints on the distribution of individual species and as a result may contain valuable information for niche modeling. We compared the predictive ability of distribution models of annual grassland plants derived from either environmental or community‐composition data. Composition‐based models were built with the presence or absence of species at a site as predictors of site quality, whereas environment‐based models were built with soil chemistry, moisture content, above‐ground biomass, and solar radiation as predictors. The reproductive output of experimentally seeded individuals of 4 species and the abundance of 100 species were used to evaluate the resulting models. Community‐composition data were the best predictors of both the site‐specific reproductive output of sown individuals and the site‐specific abundance of existing populations. Successful community‐based models were robust to omission of data on the occurrence of rare species, which suggests that even very basic survey data on the occurrence of common species may be adequate for generating such models. Our results highlight the need for increased public availability of ecological survey data to facilitate community‐based modeling at scales relevant to conservation.  相似文献   

4.
Abstract: Species listed under the U.S. Endangered Species Act (i.e., listed species) have declined to the point that the probability of their extinction is high. The decline of these species, however, may manifest itself in different ways, including reductions in geographic range, number of populations, or overall abundance. Understanding the pattern of decline can help managers assess extinction probability and define recovery objectives. Although quantitative data on changes in geographic range, number of populations, and abundance usually do not exist for listed species, more often qualitative data can be obtained. We used qualitative data in recovery plans for federally listed species to determine whether each listed species declined in range size, number of populations, or abundance relative to historical levels. We calculated the proportion of listed species in each state (or equivalent) that declined in each of those ways. Nearly all listed species declined in abundance, and range size or number of populations declined in approximately 80% of species for which those data were available. Patterns of decline, however, differed taxonomically and geographically. Declines in range were more common among vertebrates than plants, whereas population extirpations were more common among plants. Invertebrates had high incidence of range and population declines. Narrowly distributed plants and invertebrates may be subject to acute threats that may result in population extirpations, whereas vertebrates may be affected by chronic threats that reduce the extent and size of populations. Additionally, in the eastern United States and U.S. coastal areas, where the level of land conversion is high, a greater percentage of species’ ranges declined and more populations were extirpated than in other areas. Species in the Southwest, especially plants, had fewer range and population declines than other areas. Such relations may help in the selection of species’ recovery criteria.  相似文献   

5.
In 2014, the Fish and Wildlife Service (FWS) and National Marine Fisheries Service announced a new policy interpretation for the U.S. Endangered Species Act (ESA). According to the act, a species must be listed as threatened or endangered if it is determined to be threatened or endangered in a significant portion of its range (SPR). The 2014 policy seeks to provide consistency by establishing that a portion of the range should be considered significant if the associated individuals’ “removal would cause the entire species to become endangered or threatened.” We reviewed 20 quantitative techniques used to assess whether a portion of a species’ range is significant according to the new guidance. Our assessments are based on the 3R criteria—redundancy (i.e., buffering from catastrophe), resiliency (i.e., ability to withstand stochasticity), and representation (i.e., ability to evolve)—that the FWS uses to determine if a species merits listing. We identified data needs for each quantitative technique and considered which methods could be implemented given the data limitations typical of rare species. We also identified proxies for the 3Rs that may be used with limited data. To assess potential data availability, we evaluated 7 example species by accessing data in their species status assessments, which document all the information used during a listing decision. In all species, an SPR could be evaluated with at least one metric for each of the 3Rs robustly or with substantial assumptions. Resiliency assessments appeared most constrained by limited data, and many species lacked information on connectivity between subpopulations, genetic variation, and spatial variability in vital rates. These data gaps will likely make SPR assessments for species with complex life histories or that cross national boundaries difficult. Although we reviewed techniques for the ESA, other countries require identification of significant areas and could benefit from this research.  相似文献   

6.
Assisted colonization of vascular plants is considered by many ecologists an important tool to preserve biodiversity threatened by climate change. I argue that assisted colonization may have negative consequences in arctic‐alpine and boreal regions. The observed slow movement of plants toward the north has been an argument for assisted colonization. However, these range shifts may be slow because for many plants microclimatic warming (ignored by advocates of assisted colonization) has been smaller than macroclimatic warming. Arctic‐alpine and boreal plants may have limited possibilities to disperse farther north or to higher elevations. I suggest that arctic‐alpine species are more likely to be driven to extinction because of competitive exclusion by southern species than by increasing temperatures. If so, the future existence of arctic‐alpine and boreal flora may depend on delaying or preventing the migration of plants toward the north to allow northern species to evolve to survive in a warmer climate. In the arctic‐alpine region, preventing the dispersal of trees and shrubs may be the most important method to mitigate the negative effects of climate change. The purported conservation benefits of assisted colonization should not be used to promote the migration of invasive species by forestry.  相似文献   

7.
Abstract: Environmental synergisms may pose the greatest threat to tropical biodiversity. Using recently updated data sets from the International Union for Conservation of Nature (IUCN) Red List, we evaluated the incidence of perceived threats to all known mammal, bird, and amphibian species in tropical forests. Vulnerable, endangered, and extinct species were collectively far more likely to be imperiled by combinations of threats than expected by chance. Among 45 possible pairwise combinations of 10 different threats, 69%, 93%, and 71% were significantly more frequent than expected for threatened mammals, birds, and amphibians, respectively, even with a stringent Bonferroni‐corrected probability value (p= 0.003). Based on this analysis, we identified five key environmental synergisms in the tropics and speculate on the existence of others. The most important involve interactions between habitat loss or alteration (from agriculture, urban sprawl, infrastructure, or logging) and other anthropogenic disturbances such as hunting, fire, exotic‐species invasions, or pollution. Climatic change and emerging pathogens also can interact with other threats. We assert that environmental synergisms are more likely the norm than the exception for threatened species and ecosystems, can vary markedly in nature among geographic regions and taxa, and may be exceedingly difficult to predict in terms of their ultimate impacts. The perils posed by environmental synergisms highlight the need for a precautionary approach to tropical biodiversity conservation.  相似文献   

8.
Abstract: The rapidity of climate change is predicted to exceed the ability of many species to adapt or to disperse to more climatically favorable surroundings. Conservation of these species may require managed relocation (also called assisted migration or assisted colonization) of individuals to locations where the probability of their future persistence may be higher. The history of non‐native species throughout the world suggests managed relocation may not be applicable universally. Given the constrained existence of freshwater organisms within highly dendritic networks containing isolated ponds, lakes, and rivers, managed relocation may represent a useful conservation strategy. Yet, these same distinctive properties of freshwater ecosystems may increase the probability of unintended ecological consequences. We explored whether managed relocation is an ecologically sound conservation strategy for freshwater systems and provided guidelines for identifying candidates and localities for managed relocation. A comparison of ecological and life‐history traits of freshwater animals associated with high probabilities of extirpation and invasion suggests that it is possible to select species for managed relocation to minimize the likelihood of unintended effects to recipient ecosystems. We recommend that translocations occur within the species’ historical range and optimally within the same major river basin and that lacustrine and riverine species be translocated to physically isolated seepage lakes and upstream of natural or artificial barriers, respectively, to lower the risk of secondary spread across the landscape. We provide five core recommendations to enhance the scientific basis of guidelines for managed relocation in freshwater environments: adopt the term managed translocation to reflect the fact that individuals will not always be reintroduced within their historical native range; examine the trade‐off between facilitation of individual movement and the probability of range expansion of non‐native species; determine which species and locations might be immediately considered for managed translocation; adopt a hypothetico‐deductive framework by conducting experimental trials to introduce species of conservation concern into new areas within their historical range; build on previous research associated with species reintroductions through communication and synthesis of case studies.  相似文献   

9.
Seabirds are the most threatened group of marine animals; 29% of species are at some risk of extinction. Significant threats to seabirds occur on islands where they breed, but in many cases, effective island conservation can mitigate these threats. To guide island‐based seabird conservation actions, we identified all islands with extant or extirpated populations of the 98 globally threatened seabird species, as recognized on the International Union for Conservation of Nature Red List, and quantified the presence of threatening invasive species, protected areas, and human populations. We matched these results with island attributes to highlight feasible island conservation opportunities. We identified 1362 threatened breeding seabird populations on 968 islands. On 803 (83%) of these islands, we identified threatening invasive species (20%), incomplete protected area coverage (23%), or both (40%). Most islands with threatened seabirds are amenable to island‐wide conservation action because they are small (57% were <1 km2), uninhabited (74%), and occur in high‐ or middle‐income countries (96%). Collectively these attributes make islands with threatened seabirds a rare opportunity for effective conservation at scale. La Biogeografía de Aves Marinas Amenazadas Globalmente y las Oportunidades de Conservación en Islas  相似文献   

10.
Climate change is expected to be a top driver of global biodiversity loss in the 21st century. It poses new challenges to conserving and managing imperiled species, particularly in marine and estuarine ecosystems. The use of climate‐related science in statutorily driven species management, such as under the U.S. Endangered Species Act (ESA), is in its early stages. This article provides an overview of ESA processes, with emphasis on the mandate to the National Marine Fisheries Service (NMFS) to manage listed marine, estuarine, and anadromous species. Although the ESA is specific to the United States, its requirements are broadly relevant to conservation planning. Under the ESA, species, subspecies, and “distinct population segments” may be listed as either endangered or threatened, and taking of most listed species (harassing, harming, pursuing, wounding, killing, or capturing) is prohibited unless specifically authorized via a case‐by‐case permit process. Government agencies, in addition to avoiding take, must ensure that actions they fund, authorize, or conduct are not likely to jeopardize a listed species’ continued existence or adversely affect designated critical habitat. Decisions for which climate change is likely to be a key factor include: determining whether a species should be listed under the ESA, designating critical habitat areas, developing species recovery plans, and predicting whether effects of proposed human activities will be compatible with ESA‐listed species’ survival and recovery. Scientific analyses that underlie these critical conservation decisions include risk assessment, long‐term recovery planning, defining environmental baselines, predicting distribution, and defining appropriate temporal and spatial scales. Although specific guidance is still evolving, it is clear that the unprecedented changes in global ecosystems brought about by climate change necessitate new information and approaches to conservation of imperiled species. El Cambio Climático, los Ecosistemas Marinos y el Acta Estadunidense de Especies en Peligro  相似文献   

11.
Extinction‐risk assessments aim to identify biological diversity features threatened with extinction. Although largely developed at the species level, these assessments have recently been applied at the ecosystem level. In South Africa, national legislation provides for the listing and protection of threatened ecosystems. We assessed how land‐cover mapping and the detail of ecosystem classification affected the results of risk assessments that were based on extent of habitat loss. We tested 3 ecosystem classifications and 4 land‐cover data sets of the Little Karoo region, South Africa. Degraded land (in particular, overgrazed areas) was successfully mapped in just one of the land‐cover data sets. From <3% to 25% of the Little Karoo was classified as threatened, depending on the land‐cover data set and ecosystem classification applied. The full suite of threatened ecosystems on a fine‐scale map was never completely represented within the spatial boundaries of a coarse‐scale map of threatened ecosystems. Our assessments highlight the importance of land‐degradation mapping for the listing of threatened ecosystems. On the basis of our results, we recommend that when budgets are constrained priority be given to generating more‐detailed land‐cover data sets rather than more‐detailed ecosystem classifications for the assessment of threatened ecosystems. El Efecto de la Cobertura Terrestre y el Mapeo de Ecosistemas en la Valoración de Riesgos en los Ecosistemas en Little Karoo, Sudáfrica  相似文献   

12.
The effects of chronic exposure to increasing levels of human‐induced underwater noise on marine animal populations reliant on sound for communication are poorly understood. We sought to further develop methods of quantifying the effects of communication masking associated with human‐induced sound on contact‐calling North Atlantic right whales (Eubalaena glacialis) in an ecologically relevant area (~10,000 km2) and time period (peak feeding time). We used an array of temporary, bottom‐mounted, autonomous acoustic recorders in the Stellwagen Bank National Marine Sanctuary to monitor ambient noise levels, measure levels of sound associated with vessels, and detect and locate calling whales. We related wind speed, as recorded by regional oceanographic buoys, to ambient noise levels. We used vessel‐tracking data from the Automatic Identification System to quantify acoustic signatures of large commercial vessels. On the basis of these integrated sound fields, median signal excess (the difference between the signal‐to‐noise ratio and the assumed recognition differential) for contact‐calling right whales was negative (?1 dB) under current ambient noise levels and was further reduced (?2 dB) by the addition of noise from ships. Compared with potential communication space available under historically lower noise conditions, calling right whales may have lost, on average, 63–67% of their communication space. One or more of the 89 calling whales in the study area was exposed to noise levels ≥120 dB re 1 μPa by ships for 20% of the month, and a maximum of 11 whales were exposed to noise at or above this level during a single 10‐min period. These results highlight the limitations of exposure‐threshold (i.e., dose‐response) metrics for assessing chronic anthropogenic noise effects on communication opportunities. Our methods can be used to integrate chronic and wide‐ranging noise effects in emerging ocean‐planning forums that seek to improve management of cumulative effects of noise on marine species and their habitats. Cuantificación de la Pérdida de Espacio de Comunicación Acústica para Ballenas Francas Dentro y Alrededor de un Santuario Marino Nacional en E. U. A.  相似文献   

13.
Abstract: Species occurrence in a habitat patch depends on local habitat and the amount of that habitat in the wider landscape. We used predictions from empirical landscape studies to set quantitative conservation criteria and targets in a multispecies and multiscale conservation planning effort. We used regression analyses to compare species richness and occurrence of five red‐listed lichens on 50 ancient oaks (Quercus robur; 120–140 cm in diameter) with the density of ancient oaks in circles of varying radius from each individual oak. Species richness and the occurrence of three of the five species were best explained by increasing density of oaks within 0.5 km; one species was best explained by the density of oaks within 2 km, and another was best predicted by the density of oaks within 5 km. The minimum numbers of ancient oaks required for “successful conservation” was defined as the number of oaks required to obtain a predicted local occurrence of 50% for all species included or a predicted local occurrence of 80% for all species included. These numbers of oaks were calculated for two relevant landscape scales (1 km2 and 13 km2) that corresponded to various species responses, in such a way that calculations also accounted for local number of oaks. Ten and seven of the 50 ancient oaks surveyed were situated in landscapes that already fulfilled criteria for successful conservation when the 50% and 80% criteria, respectively, were used to define the level of successful conservation. For cost‐efficient conservation, oak stands in the landscapes most suitable for successful conservation should be prioritized for conservation and management (e.g., grazing and planting of new oaks) at the expense of oak stands situated elsewhere.  相似文献   

14.
Abstract: The unit of trade in ecosystem services is usually the use of a proportion of the parcels of land associated with a given service. Valuing small changes in the provision of an ecosystem service presents obstacles, particularly when the service provides non‐use benefits, as is the case with conservation of most plants and animals. Quantifying non‐use values requires stated‐preference valuations. Stated‐preference valuations can provide estimates of the public's willingness to pay for a broad conservation goal. Nevertheless, stated‐preference valuations can be expensive and do not produce consistent measures for varying levels of provision of a service. Additionally, the unit of trade, land use, is not always linearly related to the level of ecosystem services the land might provide. To overcome these obstacles, we developed a method to estimate the value of a marginal change in the provision of a non‐use ecosystem service—in this case conservation of plants or animals associated with a given land‐cover type. Our method serves as a tool for calculating transferable valuations of small changes in the provision of ecosystem services relative to the existing provision. Valuation is achieved through stated‐preference investigations, calculation of a unit value for a parcel of land, and the weighting of this parcel by its ability to provide the desired ecosystem service and its effect on the ability of the surrounding land parcels to provide the desired service. We used the water vole (Arvicola terrestris) as a case study to illustrate the method. The average present value of a meter of water vole habitat was estimated at UK£12, but the marginal value of a meter (based on our methods) could range between £0 and £40 or more.  相似文献   

15.
Abstract: Understanding the risk of extinction of a single population is an important problem in both theoretical and applied ecology. Local extinction risk depends on several factors, including population size, demographic or environmental stochasticity, natural catastrophe, or the loss of genetic diversity. The probability of local extinction may also be higher in low‐quality sink habitats than in high‐quality source habitats. We tested this hypothesis by comparing local extinction rates of 15 species of Odonata (dragonflies and damselflies) between 1930–1975 and 1995–2003 in central Finland. Local extinction rates were higher in low‐quality than in high‐quality habitats. Nevertheless, for the three most common species there were no differences in extinction rates between low‐ and high‐quality habitats. Our results suggest that a good understanding of habitat quality is crucial for the conservation of species in heterogeneous landscapes.  相似文献   

16.
Abstract: Riparian and quaking aspen (Populus tremuloides) woodlands are centers of avian abundance and diversity in the western United States, but they have been affected adversely by land use practices, particularly livestock grazing. In 1990, cattle were removed from a 112,500‐ha national wildlife refuge in southeastern Oregon. Thereafter, we monitored changes in vegetation and bird abundance in years 1–3 (phase 1) and 10–12 (phase 2) in 17 riparian and 9 snow‐pocket aspen plots. On each 1.5‐ha plot, we sampled vegetation in 6 transects. Three times during each breeding season, observers recorded all birds 50 m to each side of the plot's 150‐m centerline for 25 minutes. We analyzed data with multivariate analysis of variance and paired t tests with p values adjusted for multiple comparisons. In both periods, riparian and snow‐pocket aspen produced extensive regeneration of new shoots ( stems/ha and 7079 stems/ha, respectively). By phase 2, a 64% increase in medium‐diameter trees in riparian stands indicated successful recruitment into the overstory, but this pattern was not seen in snow‐pocket stands, where the density of trees was over 2 times greater. By phase 2 in riparian and snow‐pocket stands, native forb cover had increased by 68% and 57%, respectively, mesic shrub cover had increased by 29% and 58%, and sagebrush cover had decreased by 24% and 31%. Total avian abundance increased by 33% and 39% in riparian and snow‐pocket aspen, respectively, ground or understory nesters increased by 133% and 67% and overstory nesters increased by 34% and 33%. Similarly, ground or understory foragers increased by 25% and 32%, aerial foragers by 55% and 57%, and overstory foragers by 66% and 43%. We interpreted the substantial regeneration of aspen shoots, increased densities of riparian forbs and shrubs, and increased avian abundances as a multitrophic‐level response to the total removal of livestock and as substantial movement toward recovery of biological integrity.  相似文献   

17.
We aspired to set conservation priorities in ways that lead to direct conservation actions. Very large‐scale strategic mapping leads to familiar conservation priorities exemplified by biodiversity hotspots. In contrast, tactical conservation actions unfold on much smaller geographical extents and they need to reflect the habitat loss and fragmentation that have sharply restricted where species now live. Our aspirations for direct, practical actions were demanding. First, we identified the global, strategic conservation priorities and then downscaled to practical local actions within the selected priorities. In doing this, we recognized the limitations of incomplete information. We started such a process in Colombia and used the results presented here to implement reforestation of degraded land to prevent the isolation of a large area of cloud forest. We used existing range maps of 171 bird species to identify priority conservation areas that would conserve the greatest number of species at risk in Colombia. By at risk species, we mean those that are endemic and have small ranges. The Western Andes had the highest concentrations of such species—100 in total—but the lowest densities of national parks. We then adjusted the priorities for this region by refining these species ranges by selecting only areas of suitable elevation and remaining habitat. The estimated ranges of these species shrank by 18–100% after accounting for habitat and suitable elevation. Setting conservation priorities on the basis of currently available range maps excluded priority areas in the Western Andes and, by extension, likely elsewhere and for other taxa. By incorporating detailed maps of remaining natural habitats, we made practical recommendations for conservation actions. One recommendation was to restore forest connections to a patch of cloud forest about to become isolated from the main Andes. Establecimiento de Prioridades Prácticas para la Conservación de Aves en los Andes Occidentales de Colombia  相似文献   

18.
19.
Within protected areas, biodiversity loss is often a consequence of illegal resource use. Understanding the patterns and extent of illegal activities is therefore essential for effective law enforcement and prevention of biodiversity declines. We used extensive data, commonly collected by ranger patrols in many protected areas, and Bayesian hierarchical models to identify drivers, trends, and distribution of multiple illegal activities within the Queen Elizabeth Conservation Area (QECA), Uganda. Encroachment (e.g., by pastoralists with cattle) and poaching of noncommercial animals (e.g., snaring bushmeat) were the most prevalent illegal activities within the QECA. Illegal activities occurred in different areas of the QECA. Poaching of noncommercial animals was most widely distributed within the national park. Overall, ecological covariates, although significant, were not useful predictors for occurrence of illegal activities. Instead, the location of illegal activities in previous years was more important. There were significant increases in encroachment and noncommercial plant harvesting (nontimber products) during the study period (1999–2012). We also found significant spatiotemporal variation in the occurrence of all activities. Our results show the need to explicitly model ranger patrol effort to reduce biases from existing uncorrected or capture per unit effort analyses. Prioritization of ranger patrol strategies is needed to target illegal activities; these strategies are determined by protected area managers, and therefore changes at a site‐level can be implemented quickly. These strategies should also be informed by the location of past occurrences of illegal activity: the most useful predictor of future events. However, because spatial and temporal changes in illegal activities occurred, regular patrols throughout the protected area, even in areas of low occurrence, are also required.  相似文献   

20.
High costs of land in agricultural regions warrant spatial prioritization approaches to conservation that explicitly consider land prices to produce protected‐area networks that accomplish targets efficiently. However, land‐use changes in such regions and delays between plan design and implementation may render optimized plans obsolete before implementation occurs. To measure the shelf life of cost‐efficient conservation plans, we simulated a land‐acquisition and restoration initiative aimed at conserving species at risk in Canada's farmlands. We accounted for observed changes in land‐acquisition costs and in agricultural intensity based on censuses of agriculture taken from 1986 to 2011. For each year of data, we mapped costs and areas of conservation priority designated using Marxan. We compared plans to test for changes through time in the arrangement of high‐priority sites and in the total cost of each plan. For acquisition costs, we measured the savings from accounting for prices during site selection. Land‐acquisition costs and land‐use intensity generally rose over time independent of inflation (24–78%), although rates of change were heterogeneous through space and decreased in some areas. Accounting for spatial variation in land price lowered the cost of conservation plans by 1.73–13.9%, decreased the range of costs by 19–82%, and created unique solutions from which to choose. Despite the rise in plan costs over time, the high conservation priority of particular areas remained consistent. Delaying conservation in these critical areas may compromise what optimized conservation plans can achieve. In the case of Canadian farmland, rapid conservation action is cost‐effective, even with moderate levels of uncertainty in how to implement restoration goals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号