首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Project MOHAVE was a major monitoring, modeling, and data analysis study whose objectives included the estimation of the contributions of the Mohave Power Project (MPP) and other sources to visibility impairment in the southwestern United States, in particular at Grand Canyon National Park. A major element of Project MOHAVE was the release of perfluorocarbon tracers at MPP and other locations during 50-day summer and 30-day winter intensive study periods. Tracer data (from about 30 locations) were sequestered until several source and receptor models were used to predict tracer concentrations. None of the models was successful in predicting the tracer concentrations; squared correlation coefficients between predicted and measured tracer were all less than 0.2, and most were less than 0.1.  相似文献   

2.
Project MOHAVE was initiated in 1992 to examine the role of emissions from the 1580 MW coal-fired MOHAVE Power Project (MPP) on haze at the Grand Canyon National Park (GCNP), located about 130 km north-north-east of the power plant. Statistical relationships were analyzed between summertime ambient concentrations of a gaseous perfluorocarbon tracer released from MPP and ambient SO2, particulate sulfur, and light scattering to evaluate whether MPP's emissions could be transported to the GCNP and then impact haze levels there. Spatial analyses indicated that particulate sulfur levels were strongly correlated across the monitoring network, regardless of whether the monitoring stations were upwind or downwind of MPP. This indicates that particulate sulfur levels in this region were influenced by distant regional emission sources. A significant particulate sulfur contribution from a point source such as MPP would result in a non-uniform pattern downwind. There was no suggestion of this in the data. Furthermore, correlations between the MPP tracer and ambient particulate sulfur and light scattering at locations in the park were virtually zero for averaging times ranging from 24 hr to 1 hr. Hour-by-hour MPP tracer levels and light scattering were individually examined, and still no positive correlations were detected. Finally, agreement between tracer and particulate sulfur did not improve as a function of meteorological regime, implying that, even during cloudy monsoon days when more rapid conversion of SO2 to particulate sulfur would be expected, there was no evidence for downwind particulate sulfur impacts. Despite the fact that MPP was a large source of SO2 and tracer, neither time series nor correlation analyses were able to detect any meaningful relationship between MPP's SO2 and tracer emission "signals" to particulate sulfur or light scattering.  相似文献   

3.
ABSTRACT

Project MOHAVE was initiated in 1992 to examine the role of emissions from the 1580 MW coal-fired MOHAVE Power Project (MPP) on haze at the Grand Canyon National Park (GCNP), located about 130 km north-northeast of the power plant. Statistical relationships were analyzed between summertime ambient concentrations of a gaseous perfluorocarbon tracer released from MPP and ambient SO2, particulate sulfur, and light scattering to evaluate whether MPP's emissions could be transported to the GCNP and then impact haze levels there. Spatial analyses indicated that particulate sulfur levels were strongly correlated across the monitoring network, regardless of whether the monitoring stations were upwind or downwind of MPP. This indicates that particulate sulfur levels in this region were influenced by distant regional emission sources. A significant particulate sulfur contribution from a point source such as MPP would result in a non-uniform pattern downwind. There was no suggestion of this in the data.

Furthermore, correlations between the MPP tracer and ambient particulate sulfur and light scattering at locations in the park were virtually zero for averaging times ranging from 24 hr to 1 hr. Hour-by-hour MPP tracer levels and light scattering were individually examined, and still no positive correlations were detected. Finally, agreement between tracer and particulate sulfur did not improve as a function of meteorological regime, implying that, even during cloudy monsoon days when more rapid conversion of SO2 to par-ticulate sulfur would be expected, there was no evidence for downwind particulate sulfur impacts. Despite the fact that MPP was a large source of SO2 and tracer, neither time series nor correlation analyses were able to detect any meaningful relationship between MPP's SO2 and tracer emission “signals” to particulate sulfur or light scattering.  相似文献   

4.
Perfluorocarbon tracers were released continuously from several surface locations and one power plant stack location during the winter (30 days) and summer (50 days) intensive studies as part of Project MOHAVE. Tracers were released in winter from the Mohave Power Plant (MPP) and Dangling Rope, UT, located on the shore of Lake Powell near Page, AZ; and in summer from MPP, the Tehachapi Pass between the Mojave Desert and the Central Valley in California, and El Centro, CA, on the California-Mexico border. At the Tehachapi tracer release site six-hour pulses of a separately identifiable perfluorocarbon tracer were released every four days in order to assess the time for the tracer to clear the monitoring network. Daily 24-hr integrated samples were collected at about 30 sites in four states. Limited tracer concentration data with higher time resolution is also available. Graphical displays and analyses identify several regional transport paths, including a convergence zone in the Mojave Desert, the importance of terrain channeling, especially in winter, and a relationship between 24-hr maximum influence function and distance that may prove useful as a scoping tool and to test regional scale air quality models. In winter, Dangling Rope tracer was routinely transported through the entire length of the Grand Canyon, while in summer, MPP tracer was routinely transported over most of Lake Mead.  相似文献   

5.
Receptor-based chemical mass balance (CMB) analysis techniques are designed to apportion species that are conserved during pollutant transport using conserved source profiles. The techniques will fail if non-conservative species (or profiles) are not properly accounted for in the CMB model. The straightforward application of the CMB model developed for Project MOHAVE using regional profiles resulted in a significant under-prediction of total sulfate oxides (SOx, SO2 plus fine particulate sulfate) for many samples at Meadview, AZ. In addition, for these samples the concentration of the inert tracer emitted from the MOHAVE Power Project (MPP), ocPDCH, was also under-predicted. A second-generation model has been developed which assumes that separation of particles and SO2 can occur in the MPP plume during nighttime stable plume conditions. This second-generation CMB model accounts for all SOx present at the various receptor sites. In addition, the concentrations of ocPDCH and the presence of other inert tracers of emission from regional sources are accurately predicted. The major source of SOx at Meadview was the MPP, but the major source of sulfate at this site was the Las Vegas urban area. At Hopi Point in the Grand Canyon, the Baja California region (Imperial Valley and northwestern Mexico) was the major source of both SOx and sulfate.  相似文献   

6.
ABSTRACT

Receptor-based chemical mass balance (CMB) analysis techniques are designed to apportion species that are conserved during pollutant transport using conserved source profiles. The techniques will fail if non-conservative species (or profiles) are not properly accounted for in the CMB model. The straightforward application of the CMB model developed for Project MOHAVE using regional profiles resulted in a significant under-prediction of total sulfate oxides (SOx, SO2 plus fine particulate sulfate) for many samples at Meadview, AZ. In addition, for these samples the concentration of the inert tracer emitted from the MOHAVE Power Project (MPP), ocPDCH, was also under-predicted. A second-generation model has been developed which assumes that separation of particles and SO2 can occur in the MPP plume during nighttime stable plume conditions. This second-generation CMB model accounts for all SOx present at the various receptor sites. In addition, the concentrations of ocPDCH and the presence of other inert tracers of emission from regional sources are accurately predicted. The major source of SOx at Meadview was the MPP, but the major source of sulfate at this site was the Las Vegas urban area. At Hopi Point in the Grand Canyon, the Baja California region (Imperial Valley and northwestern Mexico) was the major source of both SOx and sulfate.  相似文献   

7.
In the winter and summer of 1992, atmospheric tracer studies were conducted in support of project MOHAVE, a visibility study in the southwestern United States. The primary goal of project MOHAVE is to determine the effects of the Mohave power plant and other sources upon visibility at Grand Canyon National Park. Perfluorocarbon tracers (PFTs) were released from the Mohave power plant and other locations and monitored at about 30 sites. The tracer data are being used for source attribution analysis and for evaluation of transport and dispersion models and receptor models. Collocated measurements showed the tracer data to be of high quality and suitable for source attribution analysis and model evaluation. The results showed strong influences of channeling by the Colorado River canyon during both winter and summer. Flow from the Mohave power plant was usually to the south, away from the Grand Canyon in winter and to the northeast, toward the Grand Canyon in summer. Tracer released at Lake Powell in winter was found to often travel downstream through the entire length of the Grand Canyon. Data from summer tracer releases in southern California demonstrated the existence of a convergence zone in the western Mohave Desert.  相似文献   

8.
The Mohave Power Project (MPP) is an isolated 1580-MW coal-fired electric generating plant located in Laughlin, NV. Laughlin is a small desert gambling town situated in the lower Colorado River Valley near the junction of three states: Nevada, California, and Arizona. The location of the MPP is approximately 115 km southwest of the western end of the Grand Canyon National Park and about 240 km southwest from the Grand Canyon Village. This paper describes the summer transport patterns of the MPP emittants using illustrated examples from the Project MOHAVE (Measurements of Haze and Visual Effects) 1992 summer intensive study. The intensive study lasted 50 days from mid-July through August and encompassed the major meteorological patterns associated with southwestern U.S. summer meteorology. The MPP emittants were transported toward the Grand Canyon (north to the northeast) during more than 80% of the total hours. Airflow was from the south most of the time due to a combination of the semi-permanent thermal low, differential heating between the Gulf of California and lower Colorado River Valley, and upslope heating of the southern and western slopes of the nearby Colorado Plateau.  相似文献   

9.
Project MOHAVE (Measurements of Haze and Visual Effects) encompassed a 1-yr field study in the southwestern United States from September 1991 through August 1992. The congressionally mandated study was a joint partnership between the U.S. Environmental Protection Agency, Southern California Edison, and the National Park Service. A major objective of this study was to quantify the potential haze impacts on the nearby Grand Canyon National Park from the 1580 MW coal-fired MOHAVE Power Project (MPP). Any regional impacts from MPP were from secondary fine sulfate. In this paper, we explore the temporal and spatial patterns of particulate sulfur (Sp) and "organic mass by hydrogen" (OMH) during the summer intensive, conducted from mid-July through the end of August 1992. Using an innovative hierarchical pattern recognition classification scheme, we developed 6 groups of Sp and 8 groups of OMH temporally similar behaving patterns in the sampling region. From a regional understanding of synoptic meteorology, these Sp patterns were explainable. We observed two regional gradients. One gradient was a west-to-east decreasing gradient, most likely the result of major sources from urban southern California, including the San Joaquin Valley. The other decreasing gradient was from south-to-north, perhaps the result of emissions emanating from the large urban centers in northern Mexico. The patterns for OMH were not as regionally homogeneous as the patterns for Sp. A west-to-east decreasing gradient was observed for OMH, along with reduced values in the lower Colorado River Valley and some higher values in central and eastern Arizona. The west-to-east decreasing gradient suggests the presence of the Los Angeles urban plume, while the higher values in central and eastern Arizona may be due to biogenic emissions and increased seasonal fires.  相似文献   

10.
The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was +/- 0.6 microg/m3 organic material, +/- 0.3 microg/m3 ammonium sulfate, and +/- 0.07 microg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction.  相似文献   

11.
Abstract

The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was ±0.6 μg/m3 organic material, ±0.3 μg/m3 ammonium sulfate, and ±0.07 μg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction.  相似文献   

12.
In previous work [Kovalets, I., Andronopoulos, S., Bartzis, J.G., Gounaris, N., Kushchan, A., 2004. Introduction of data assimilation procedures in the meteorological pre-processor of atmospheric dispersion models used in emergency response systems. Atmospheric Environment 38, 457–467.] the authors have developed data assimilation (DA) procedures and implemented them in the frames of a diagnostic meteorological pre-processor (MPP) to enable simultaneous use of meteorological measurements with numerical weather prediction (NWP) data. The DA techniques were directly validated showing a clear improvement of the MPP output quality in comparison with meteorological measurement data. In the current paper it is demonstrated that the application of DA procedures in the MPP, to combine meteorological measurements with NWP data, has a noticeable positive effect on the performance of an atmospheric dispersion model (ADM) driven by the MPP output. This result is particularly important for emergency response systems used for accidental releases of pollutants, because it provides the possibility to combine meteorological measurements with NWP data in order to achieve more reliable dispersion predictions. This is also an indirect way to validate the DA procedures applied in the MPP. The above goal is achieved by applying the Lagrangian ADM DIPCOT driven by meteorological data calculated by the MPP code both with and without the use of DA procedures to simulate the first European tracer experiment (ETEX I). The performance of the ADM in each case was evaluated by comparing the predicted and the experimental concentrations with the use of statistical indices and concentration plots. The comparison of resulting concentrations using the different sets of meteorological data showed that the activation of DA in the MPP code clearly improves the performance of dispersion calculations in terms of plume shape and dimensions, location of maximum concentrations, statistical indices and time variation of concentration at the detectors locations.  相似文献   

13.
ABSTRACT

Emissions from distant source areas are often imagined to provide a steady background to the emissions of whatever local sources are being studied. As part of Project MOHAVE in summer 1992, several air mass markers and an injected stack tracer were measured hourly near the Grand Canyon. Observed haze events generally coincided with transients in methylchloroform and water vapor, which we interpret as endemic tags for air from southern California and the subtropics. The results depict a dynamic regional background.  相似文献   

14.
Sets of new and used SUMMA® polished stainless steel canisters were tested for storage stability of volatile organic compounds (VOCs). Evacuated canisters were filled at a controlled rate with ambient air containing added concentrations of 15 VOCs (14 chlorinated, one brominated) at < 2 ppbv. Concentrations of VOCs in each canister were then periodically determined during 7-day or 30-day storage periods using simultaneous flame ionization and electron capture detection. No initial decreases in concentrations of target compounds were observed. Statistical analysis of data showed that the relative standard deviation of concentrations of most VOCs in each canister set was 10% or less during the storage periods. For the 7-day tests, the mean change in concentration per day was within ± 3.2 %. These canisters appear suitable as an alternative to other sampling techniques, at least for most of the compounds tested here.  相似文献   

15.
Abstract

The Mohave Valley region of southern Nevada/southwestern Arizona has experienced elevated particulate concentrations and is classified as a PM10 nonattainment area. Anthropogenic aerosol sources in the area include the Mohave Power Project (MPP), a 1,580-MW coal-fired power plant; motor vehicles; construction activities; and paved and unpaved road dust and disturbed desert soil. Aerosols may also be transported long distances from other areas, such as the Los Angeles Basin. Based on the infrequency of plume contact at sites in the valley (as determined by SO2 measurements), it was believed that the contribution of the MPP to primary PM10 was minimal and that fugitive dust was the primary source of ambient particulate matter.

To evaluate the magnitude of source contributors, PM10 measurements were made using a medium-volume sampler along with ancillary meteorological and air quality measurements in the Mohave Valley at Bullhead City, Arizona, for a period of longer than one year (September 1988 through mid-October 1989). The aerosol filter samples were analyzed for mass, elements, ions, and carbon. Source apportionment using the Chemical Mass Balance (CMB) receptor model was performed. On average, geological dust was the major contributor to PM10 (79.5%), followed by primary motor vehicle sources (16.7%), secondary ammonium sulfate (3.5%), secondary ammonium nitrate (0.1%), and primary coal-fired power plant emissions (0.1%).  相似文献   

16.
Moon HB  Kannan K  Lee SJ  Choi M 《Chemosphere》2007,66(2):243-251
Concentrations of polybrominated diphenyl ethers (PBDEs) were determined in sediment and bivalves collected from 25 coastal locations in Korea. Twenty major PBDE congeners were found in all sediment and bivalve samples. SigmaPBDE20 concentrations ranged from 0.45 to 494 ng/g, dry weight (average 27.8 ng/g dry weight) in sediments, and from 0.38 to 9.19 ng/g, wet weight (average 2.94 ng/g wet weight) in bivalves. The highest concentrations were found at locations near industrial complexes and large harbors, suggesting that human activities contribute to PBDEs contamination in Korean coastal environment. PBDE concentrations measured in our study, excluding BDE congener 209 (deca-BDE), in sediment and bivalves were lower than those reported from other countries; whereas BDE 209 concentrations were comparable to or higher than those reported from other countries. The predominant PBDE congener in sediments and bivalves was deca-BDE, which accounted for >90% and >60% of the total PBDE concentrations in sediment and bivalves, respectively. This is consistent with high consumption of deca-BDE for the flame-retardant market in Korea. Significant correlations existed among BDEs 28, 47, 99, 100, 153 and 154 in sediments and bivalves; however, BDEs 183 and 209 showed little correlation compared with less highly brominated congeners.  相似文献   

17.
《Atmospheric environment(England)》1981,15(10-11):2219-2222
During August 1978, The Environmental Protection Agency (EPA) conducted a major field study at the Cumberland Steam Plant of the Tennessee Valley Authority. This study, known as the Tennessee Plume Study, was conducted as part of the EPA Sulfur Transport and Transformation in the Environment (STATE) Project. The field experiments included the release and tracking of tetroons from Cumberland during numerous intervals within the period of the study. On 15 August, 10 tetroons were released, traveling distances ranging from less than 25 km to in excess of 200 km. The tetroon position data were compared with three-dimensional (3-D) kinematic trajectory predictions from a 3-D regional-scale dynamic model. The average directional error was 7° where the maximum error was 14° and an error of less than 2° prevailed for 2 trajectories. The average displacement error was 9 % of the observed path of the tetroon, with the maximum being 30% and an error of 3% or less prevailing for 4 trajectories.  相似文献   

18.
An injected tracer field experiment was conducted at the University of Idaho Ground Water Field Laboratory to evaluate the application of borehole-to-surface voltage measurements for delineation of the tracer distribution in partially saturated, fractured basalt. A tap water tracer was injected into a fracture-dominated, salt-water plume formed during a previous salt-water injection experiment. The tap water tracer was injected into a central injection well under constant hydraulic head for 34 days. The injection well was surrounded by seven test boreholes. Each borehole contained several copper wire electrodes for borehole-to-surface potential measurements between a surface grid of 224 copper sulfate, porous pot electrodes. Eight pole-pole, borehole-to-surface voltage data sets were acquired during each measurement period by energization of a selected electrode in each of the eight boreholes. Predicted voltages for a uniform earth (homogeneous and isotropic) potential model (finite difference) were subtracted from each data set (for its respective current source location), and the voltage residuals superposed to create new data sets with greater measurement sensitivity and coverage, to aid in interpretation. These data sets were collected over four measurement periods during tap water injection and four measurement periods during the subsequent 64-day drainage phase. The data were interpreted with the use of three-dimensional models and by comparisons with other electrical and hydrological observations. Results indicate that superposition of multiple data sets of voltage residuals significantly improved the lateral resolution of subsurface bulk resistivity changes that occurred over time.  相似文献   

19.
This paper reports mercury (Hg) concentrations and fluxes in precipitation that was collected from 2006 to 2008 at three sites in Canada: sub-Arctic boreal forest, sub-Arctic coast, and southern Alberta, using cold-adapted precipitation collectors which operated reliably at temperatures below ?30 °C during the study. The southern Alberta site (Crossfield) may be influenced by Calgary urban air, whereas the sub-Arctic coastal (Churchill, Manitoba) and boreal forest (Fort Vermilion, Alberta) sites are in more remote northern areas. Annual mean Hg concentrations in precipitation (5.0–9.2 ng L?1) at the study sites were in the lower half of the range reported for southern Canada and the USA by the Mercury Deposition Network (MDN). But owing to typically low precipitation rates, gross wet Hg fluxes (0.54–2.0 μg m?2 yr?1) were among the lowest reported by MDN, with Crossfield having about twice the flux in 2007 of the other two sites. Flux was significantly correlated with precipitation, and thus was highest in summer (June–August) and lowest during winter, a pattern typical of other temperate continental locations. There was no evidence of higher wet Hg fluxes or concentrations in springtime at Churchill where atmospheric mercury depletion events (AMDEs) occur. Measured gross deposition fluxes at the study locations were ~2–8 times lower than estimated by GEOS-Chem and GRAHM atmospheric models. The largest discrepancy occurred for Churchill, which raises the question of how well Hg deposition from AMDEs is described by current models. Better agreement between measurements and models was obtained from MDN stations in Alberta and Alaska, where wet Hg fluxes were 2–10 times higher than the study sites either because of power plant emissions (Alberta), or because of high precipitation rates (Alaska).  相似文献   

20.
Atmospheric Aluminum measured in northern Taiwan from 2003 to 2006 is used as a dust tracer, from which dust concentrations are derived, and major Asian dust events are determined. The source locations for the major dust events are traced back and identified, and the processes leading to the southeastward transport of Asian dust is investigated. The derived dust concentrations are compared to the local PM10 (particle with size less than 10 μm) concentrations, and the impacts of Asian dust on the air quality of Taiwan are quantified.According to the backward trajectory and dust observation analyses, most of the southeastward transport of major Asian dust events originate from Mongolia and Inner Mongolia in northern China, and only one out of 16 events is generated from western China. Modeling studies and weather analyses of dust events suggest that the southeastward transport of Asian dust is usually generated behind a surface front and transported downwind behind the associated upper level trough. The associated upper level trough is usually deep, in which the northwesterly wind behind the trough favors the southeastward transport of dust to lower latitudes. Dust transported to Taipei generally occur during periods of large-scale subsidence.Asian dust contributes about 15 μg m?3 of aerosol particles to northern Taiwan during winter monsoon, which accounts for about 24–30% of the PM10 concentrations to the northern Taiwan. The contributions of Asian dust are raised pronouncedly to about 60–70% during major dust events. The impacts of Asian dust on Taiwan's air quality are most substantial in December. The Asian dust impacts decrease in other months, but still remain at around 30% in the late winter to early spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号