首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Respiration rates of Thais haemastoma and Callinectes sapidus were determined as a function of salinity with a flow-through respirometer at 20°C. Respiration rates were measured at 10, 20 and 30 S for acclimated animals. The effects of 10-5-10, 20-10-20, 30-10-30 and 10-30-10 S semidiurnal cycles (12 h) of fluctuating salinity on the rate of respiration of the oyster drill were studied. During each cycle, salinity was changed from the acclimation salinity over a 4 h interval, held at that salinity for 2 h, returned to the acclimation salinity over 4 h and held at that salinity for 2 h. The effects of diurnal (24.8 h) salinity cycles on respiration in the oyster drill and blue crab were also studied. Salinity was changed from the acclimation salinity over a 10.4 h interval, held at that salinity for 2 h, then returned to the acclimation salinity over 10.4 h and held at that salinity for 2 h. The respiration rate of 30 S acclimated oyster drills (679 l O2 g dry weight–1 h–1) was significantly higher than for individuals acclimated to 10 S (534 l O2 g dry weight–1 h–1). Blue crab respiration was 170 l O2 g dry weight–1 h–1 at 30 S, and was significantly higher at 10 and 20 S than at 30 S. With the exception of the 20-10-20 S semidiurnal cycle, the respiration rate of oyster drills declined as salinity fluctuated in either direction from the acclimation salinity and increased as ambient salinity returned to the acclimation salinity. Semidiurnal cycles (12 h) of fluctuating salinity produced greater changes in the respiration rate of snails than analogous diurnal cycles (24.8 h). A 10-30-10 S pattern of fluctuation caused a greater percentage reduction in the steady state respiration rate of oyster drills than the 30-10-30 S pattern. The respiration rate of blue crabs varied inversely with fluctuating salinity. Relatively minor changes occurred in blue crab respiration rate with fluctuating salinity. Blue crab respiration rate characteristically dropped during the initial phase of declining salinity at a rate directly proportional to the rate of salinity decrease, perhaps representing a metabolic adjustment period by the blue crabs. The respiratory response of T. haemastoma to salinity is consistent with its incomplete volume regulation, while the response of C. sapidus is compatible with its ability to regulate extracellular fluid osmotic and ionic composition.  相似文献   

2.
The combined effects of salinity and temperature on survival and growth of larvae of the mussel Mytilus edulis (L.) were studied. The effects of salinity and temperature are significantly related only as the limits of tolerance of either factor are approached. Survival of larvae at salinities from 15 to 40 is uniformly good (70% or better) at temperatures from 5° to 20°C, but is reduced drastically at 25 °C, particularly at high (40) and low (20) salinities. Larval growth is rapid at a temperature of 15 °C in salinities from 25 to 35, at 20 °C in salinities from 20 to 35. Optimum growth occurs at 20 °C in salinities from 25 to 30. Growth decreases both at 25° and 10 °C; the decline is most drastic at high (40) and low (20) salinities.Part of a study completed at the Bureau of Commercial Fisheries, Biological Laboratory, Milford, Connecticut, USA, while on a UNESCO Fellowship.  相似文献   

3.
S. V. Job 《Marine Biology》1969,3(3):222-226
Tilapia mossambica (Teleostei) weighing 5 to 80 g were acclimated at 30°C to salinities of 0.4 (tap water), 12.5 (50% sea water) and 30.5 (100% sea water). Their respiration was measured at routine activity and the partial pressure of ambient oxygen gradually reduced from 250 to 50 mm Hg. Respiration is salinity-dependent; the proportionate ability to use oxygen in any one salinity is — above the critical pO2 —the same in all experimental groups. This ability is a function of temperature and increases from 15° to 30°C, becoming temperature independent from 30° to 40°C as long as the pO2 remains above 150 mm Hg. At 50 mm Hg pO2, the limiting effect of oxygen causes a decrease in metabolic rate. This limiting effect is minimal in 80 g fish kept in an isotonic medium (12.5 S), allowing greater scope for activity and a higher rate of oxygen uptake.  相似文献   

4.
Larvae of Rhithropanopeus harrisii (Gould) were reared from hatching to the first or second crab stages in 11 combinations of salinities and cyclic temperatures (5, 20, and 35 S at 20° to 25°C, 25° to 30°C, and 30° to 35°C; 25 S at 20° to 25°C and 30° to 35°C). The larvae survived to the megalops and first crab stages in all salinities and cycles of temperature other than 5 S at 30° to 35°C. The best survival to the megalops (94%) and first crab (90%) stages occurred in 20 S, 20° to 25°C. In all other combinations of salinities and temperatures there was a reduction in survival to the first crab stage. The duration of the larval stages was affected significantly by temperature, whereas the effect of salinity on the mean days from hatching to the first crab stage was not consistent at the different temperature cycles. Development to the first crab stage required the shortest time in 20 S, 30° to 35°C (mean 12.3 days), and the longest time in 5 and 35 S, 20° to 25°C (mean 22.6 days and 21.6 days, respectively). Megalops larvae reared in 35 S at all cycles of temperature, as well as larvae in 20 and 25 S, 30° to 35°C, showed a high percentage of abnormality, with the highest percentage occurring in 35 S, 30° to 35°C. It appears that larval development of R. harrisii is strongly influenced by environmental factors and not solely related to genetic differences.This research was supported by grants from the Nordic Council for Marine Biology and the U.S. Atomic Energy Commission [Grant No. At-(40-1)-4377].Contribution No. 116, Zoological Museum, University of Oslo, Norway.  相似文献   

5.
Mayzaud  P.  Dallot  S. 《Marine Biology》1973,22(4):307-312
The effects of sublethal concentrations of mercury in combination with stressful temperature-salinity regimes were considered for larval development of the fiddler crab Uca pugilator (Bosc.). Control organisms were compared to those treated with 1.8 ppb Hg for the following suboptimal regimes: 30°C, 30 S; 30°C, 20 S; 20°C, 30 S, and 20°C, 20 S. As physiological indicators of larval response, the survival rate, the O2 consumption rate, and phototactic response were measured, following either acute 24 h doses of Hg, or chronic rearing in Hg. All response parameters were modified in larvae maintained under the suboptimal conditions; mercury compounded the effects.Supported by Grant No. 18080 FYI from the Environmental Protection Agency.  相似文献   

6.
Tigriopus brevicornis (O. F. Müller) were collected in 1992 from rock pools close to U.M.B.S. Millport, Isle of Cumbrae, U.K. and acclimated to various combinations of salinity and temperature for at least 1 wk prior to laboratory experiments. Higher salinities of acclimation enhanced tolerance to high salinity stress, while tolerance of low salinities was hardly affected by acclimation salinity. Acclimation to low temperature (10°C) extended the survivable salinity range for T. brevicornis. High-salinity acclimation enhanced the survivable temperature range. Copepods acclimated to 60 survived significantly lower and higher temperatures than did 34-acclimated individuals. At high temperature, 75-acclimated female copepods had the highest median lethal temperature, 38.9°C. Females were significantly more resistant to high temperatures than males. The copepods were seen to have a very low median lethal temperature when frozen into solid ice for 2 h; 50% mortality occurred at-16.9°C in 10°C, 34-acclimated T. brevicornis. Salinity preference experiments demonstrated an ability to discriminate between salinities differing by as little as 3. Copepods acclimated to 34 chose salinities near their acclimation salinity; individuals acclimated to 5 favoured slightly higher salinities, while copepods acclimated to 60 chose rather lower salinities.  相似文献   

7.
Mussels, Mytilus edulis L., were subjected to high temperatures, low salinities and dissolved zinc in order to investigate possible environmental hazards of a discharge of heated effluent near Newport on the Yarra River estuary, Victoria, Australia. Exposure to zinc at 0.8 mg l-1 for 14 d in otherwise favourable conditions significantly increased mortality resulting from subsequent exposure to temperatures between 29° to 31°C for 24 h without added zinc. Mussels collected from water of temporarily lowered salinity (8–16 S) showed significantly lower thermal resistance than controls collected from marine salinities (35 S). Mussels taken from a marine environment and exposed to 10 S died at a rate which increased with temperature. Mussels acclimated for 14 d to combinations of 10°, 16° and 22°C and 22 and 35 S, and subsequently exposed to increased zinc concentrations accumulated zinc to levels which were independent of temperature and salinity. The zinc was lethal more quickly at 22°C and 35 S than at the lower temperatures and salinities. The modes of toxic action of the salinity, zinc and temperature factors are discussed and it is argued that zinc which has been found accumulated in mussels near Newport could be reducing their resistance to raised temperatures and perhaps other stresses, probably as a result of effects on lysosomal functioning. The evidence suggests that the heated effluent will accelerate any toxic effects of zinc or low salinities which occur near Newport and so poses a hazard in winter as well as in summer.  相似文献   

8.
Rainbow trout (Salmo gairdneri Richardson) which had been maintained for 120 days in salinities of fresh water, 7.5, 15.0 and 32.5 at 10°C were fasted for up to 48 days under these same environmental conditions. Live weight loss between Days 7 and 48 of starvation could be described by a straight line, as could the decrease in condition factor . Trout maintained in 32.5% S showed a significantly greater weight loss than those in salinities of 15.0 and below. Muscle water content increased slightly during fasting in fresh water, 7.5 and 15.0 S. In 32.5 S, however, muscle water fell significantly between Days 19 and 37. Liver water content also increased slightly during fasting, except in 32.5 S, where water content again decreased between Days 19 and 37. The volume of the gall bladder contents increased during fasting.  相似文献   

9.
P. Natarajan 《Marine Biology》1989,101(3):347-354
Phasing of persistent circatidal rhythmicity to an artificial tidal cycle was assessed in the prawns Penaeus indicus Milne Edwards and P. monodon (Fabricius) collected from the Vellar estuary, South India, in the period between June and December 1984. Simulated 6 h cycles of 20 and 30 S, and 6 h cycles of 20° and 30°C induced a persistent tidal rhythmicity after 20 cycles. The imposed 6 h cycles of 25 and 30 S, and 25° and 30°C induced tidal rhythms after 30 cycles. In both cases, re-established tidal activity rhythms were evident for at least 48 h — higher activity occurring during the higher salinity and lower temperature phases of the simulated tidal cycles. Artificial tidal cycles of still water and running water synchronized the tidal rhythm after 20 cycles. Combined 30 S, 20°C, for 6 h and 20 S and 30°C for 6 h established a persistent tidal rhythm after 10 cycles, whereas wave action had no influence on tidal synchronization. The influence of possible interactions of tidal rhythms and in situ tidal variables on circatidal activity is discussed.  相似文献   

10.
Adult Patiriella pseudoexigua were collected in October 1989 from Wanlitung, Taiwan and then induced to spawn in the laboratory. Post-metamorphosed juvenile P. pseudoexigua were reared on a diet of benthic algae Navicula sp. at 25°C and salinity (34). Six weeks after metamorphosis, juvenile P. pseudoexigua at ca. 400 m in radius were reared on a diet of benthic algae Navicula sp. at different combinations of temperatures (20, 25, 30°C) and salinities (26, 30, 34) for 40 d. Both temperature and salinity had a significant effect on juvenile survival and growth. Juveniles survived best (>90%) at 25°C and 34 and grew best (to ca. 750 m in radius) at 30°C and 34. Variation in juvenile size was small immediately after metamorphosis and increased with time.  相似文献   

11.
Adult silversides, Menidia menidia menidia (Linnaeus), were collected in early March, 1974 and maintained in 3 recirculating seawater tanks in the laboratory. Respective groups were fed Moore-Clark Fry Fine at 3, 7 and 10% of their body weight per day. The photoperiod (light intensity approximately 2000 lux) was increased in increments of 10 min/day from 12 h light to 14 h light. The water temperature was increased by 1C°/day from the ambient collection temperature, 14°C, to 22°C. Twenty-four days after beginning laboratory conditioning, fish in each tank were stripped. There was a significant increase (2, =0.05) in the number of ripe males at all three feeding levels, compared to an initial field-collected group that was checked at the beginning of the conditioning period. Females also showed significant increases in ripeness at the 7 and 10% but not at the 3% feeding level. The gonadal indices (gonad weight expressed as percentage of body weight) of both sexes were significantly greater than those measured for the initial field-collected group, but did not differ from those of adults collected from the field at the time laboratory conditioning was terminated. Techniques for maintaining eggs from field-ripened adults in the laboratory have been developed, and the effect of salinity on the percentage emergence of larvae determined. The highest emergence rate of larvae was 61% when eggs were maintained at 30 S. Emergence was 56% at 20 S and 47% at 10 S. The effect of delayed feeding on survival and growth of larvae was determined at 20 and 30 S and 25°C. Survival and growth was best for larvae fed Artemia sp. nauplii immediately after emergence at 30 S.Contribution No. 252, Gulf Breeze Environmental Research Laboratory.Associate Laboratory of the National Environmental Research Center, Corvallis, Oregon, USA.  相似文献   

12.
S. V. Job 《Marine Biology》1969,2(2):121-126
In a series of experiments 174, 120 and 139 individuals of the teleost Tilapia mossambica (Peters), were acclimated to 30°C and to salinities of 0.4, 12.5 and 30.5, respectively. The effect of temperature and salinity upon oxygen consumption was studied by abruptly transferring fish of different wet weights to temperatures from 15° to 40°C at an average initial pO2 of 250mm Hg. At each salinity, the proportionate response to temperature is size-independent. The metabolic rate increases as a function of temperature at 15° and 30°C but not at 40°C. Oxygen consumption is, however, salinity dependent; maximum rates are obtained at 12.5S. This salinity is isotonic in the 80 g fish and, to a lesser extent, in the 5 g fish. Reduction in osmotic load is suggested as the probable cause for a greater scope for activity and greater rate of oxygen consumption in 12.5 salinity.  相似文献   

13.
M. Nagaraj 《Marine Biology》1988,99(3):353-358
The calanoid copepodEurytemora velox was collected from rock pools at Castletown, Isle of Man, UK. Its optimum environmental requirements, particularly temperature and salinity, were determined, with a view to its possible future use as living food in intensive fish and shellfish farming. The species was cultured in 21 different temperature and salinity combinations. Investigations covered a period of two years from December 1983 to December 1985. Complete development from hatching to adult stage was followed in 21 temperature and salinity combinations. Nauplii suffered relatively high mortalities, indicating the sensitivity of this development stage to variations in temperature and salinity. Highest nauplii survival was observed in the combinations 15°C with 25 and 20 S and 20°C with 20 S, the highest copepodite survival at 10°C and 20 S. Lower salinities were tolerated better at higher temperatures and higher salinities at lower temperatures. Development time varied with the temperature and salinity combinations. Lower salinities at the lower temperatures of 10° and 15°C and both lower and higher salinities at 20°C prolonged development, particularly of the naupliar stage. Highest Q5 values (i.e., rate of change of development with a 5 C° increase in temperature) were recorded for the naupliar stage. Statistical analysis indicated that salinity influences the survival of both nauplii and copepodites; however, this effect is not linear.  相似文献   

14.
Measurements of net photosynthesis of benthic estuarine diatoms were made by polarographic registration of oxygen saturation. A measuring cell was constructed in which media with salinities of 2.0 to 100.7 were pumped over the algae between measurements. Diatoms from unialgal cultures and mixed populations from intertidal flats appeared to be highly tolerant of extreme salinities. During short-term exposures (20 min) the net photosynthesis of the algae did not drop below 70% of the initial values, within the salinity range 4.0 to 60.0. Prolonged exposure (up to 6 h) gave essentially the same results. Populations of benthic diatoms, sampled from field stations with mean salinities of about 30, 12, and below 5, showed only gradual differences in their tolerance of salinities between 2.0 and 33.7. Two species, Navicula arenaria and Nitzschia sigma, were cultured in media ranging in salinity from 8.0 to 45.0 and from 2.0 to 45, respectively. The tolerance to changing salinity was only slightly affected by the salinity of the medium in the preculture. The role of salinity in the production and distribution of intertidal diatoms is discussed.  相似文献   

15.
This study documents the effects of short-term (24h) sublethal copper exposures on undirected swimming activity and photobehavior of Balanus improvisus stage II nauplii. All Cu treatments were static, with temperature and salinity conditions at 20°C and 15 or 30. The 24h LC 50 estimate for Cu is 88 ppb at 15 and >200 ppb at 30. Sub-lethal Cu concentrations cause reductions in swimming speed, which decrease progressively with increasing Cu dose. At 50 ppb Cu, this was significant primarily at light intensities below the phototactic threshold. At higher Cu concentrations, significant reductions in mean linear velocity occurred at most light intensities tested. At 30, 50 and 100 ppb Cu also reduce the positive phototactic response and 150 ppb Cu causes reversal of phototaxis at optimal intensities. Photokinesis is reduced at 100 ppb Cu and disappears at 150 ppb Cu. At 15, the behavioral effects of 50 ppb Cu resemble those occurring with 150 ppb Cu at 30. Swimming speed and photobehavior show promise as sensitive behavioral indicators of copper toxicity. Additional research is required to determine if these responses apply to a broad range of pollutants and to other planktonic organisms. There is also a need to further evaluate the significance of these behavioral effects ecologically.Contribution No. 181 from the EPA Environmental Research Laboratory, Narragansett, RI 02882, USA  相似文献   

16.
Temperature and salinity affected both length of larval development and mortality inNecora puber collected in the Ría de A Coruña during December 1984 and January 1985. Development time decreased considerably with increased temperature. This decrease was sharper when temperature increased from 15° to 20°C than when it increased from 20° to 25°C. At 35S, average development took 48, 32 and 28 d at 15°, 20° and 25°C, respectively. At the three salinities tested (25, 30 and 35), larval development was completed only at 15°C, at 20°C/30 and 35S, and at 25°C/35S. Development times at 15° and 20°C were highly significantly different at both 35 and 30S (P 0.01). However, there were no significant differences between development times at 20° and 25°C (P > 0.05). Within any one specific temperature series, no significant difference was observed between the salinity values tested (P > 0.05). The duration of each of the five zoeal stages was similar within each and the same temperature/salinity combination, whereas the duration of the megalop was twice as long as any of the zoeal stages. The combination of the lowest temperature (15°C) and the highest salinity (35) tested resulted in the greatest larval survival of 28%. Highest mortality occurred at 25°C, at which temperature development was completed only at 35S. A sharp drop in larval survival was observed in the transition period Zoea V — megalop in all combinations of temperature and salinity tested. Within the limits of tolerance to temperature and salinity, the former effected more pronounced differences in the duration of larval development, while salinity appeared to constitute a limiting factor for survival.  相似文献   

17.
Stable carbon isotope measurements (13C) were used to assess the importance of kelp carbon (-13.6 to-16.5) versus phytoplankton carbon (-25.5 to-26.5) to resident fauna of an isolated kelp bed community on Alaska's north arctic coast from 1979 to 1983. The predominant kelp, Laminaria solidungula, showed some seasonal variation in 13C which was correlated with changes in the carbon content of the tissue. Animals that showed the greatest assimilation of kelp carbon (>=50%) included macroalgal herbivores (gastropods and chitons,-16.9 to-18.2), a nonselective suspension feeder (an ascidian,-19.0) and a predatory gastropod (-17.6). Animals that showed the least incorporation of kelp carbon into body tissues (<=7%) included selective suspension-feeders (hydroids, soft corals and bryozoans,-22.8 to-25.1). Sponges, and polychaete, gastropod and crustacean omnivores exhibited an intermediate dependence on kelp carbon (15 to 40%). Within some taxonomic groups, species exhibited a broad range in isotopic composition which was related to differences in feeding strategies. In the polychaete group alone, 13C values identified four major feeding habits: deposit-feeders (-18.0), omnivores (-20.4), predators (-22.2) and microalgal herbivores (-23.0). Distinct seasonal changes in the 13C values of several animals indicated an increased dependence on kelp carbon during the dark winter period when phytoplankton were absent. Up to 50% of the body carbon of mysid crustaceans, which are key prey species for birds, fishes and marine mammals, was composed of carbon derived from kelp detritus during the ice-covered period.  相似文献   

18.
Adult male Uca rapax, collected from the central coast of Venezuela in early 1994 were gradually acclimated to salinities ranging from 1.7 to 139S. The hemolymph osmolality (791±15 mOsmol in crabs from 26S) changed less than three-fold over the entire range of concentrations tested. The urine was isosmotic with the hemolymph in crabs exposed to dilutions <26S, and significantly hyperosmotic in those exposed to media >34.8S. The hemolymph levels of Na+, Cl, K+, Ca2+ and Mg2+ (320±13, 405±17, 7.8±0.7, 7.2±0.1 and 31±2.2 mmol l–1, respectively, in crabs acclimated to 26S) were maintained fairly constant over the range from 8.7 to 99S, decreasing by 15% in the more dilute media or increasing sharply to about twice those values in crabs from 139S. The excretory organs contributed to the osmoionic regulation of the hemolymph in crabs exposed to <3.5 or to >34.8S, by means of the partial reabsorption or excretion, respectively, of salts from or into the urine. The results described place U. rapax among the most powerful hypo/hyper-regulating crustaceans known.  相似文献   

19.
Routine oxygen uptake (QO2) by yolk-sac and firstfeeding larvae of herring (Clupea harengus L.) and plaice (Pleuronectes platessa L.) was studied after acute change of temperature (8°, 13°, 18°C) and salinity (5, 12.7, 32, 40). In both species, QO2 (l mg-1 dry wt h-1) of both larval stages increased with increasing temperature. Salinity effect on QO2 varied: for yolk-sac larvae of both species a lower QO2 was found at lower combined salinities (5 and 12.7); for feeding larvae a lower QO2 was observed at 12.7 for both species, possibly due to the relatively smaller size of larvae used at this salinity. For both species, oxygen uptake increased as larvae grew and weight regression coefficients were between 0.74 and 1.33. At 32 S, no difference was found in oxygen consumption between species as a function of temperature.Based on a dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science at the University of Stirling, Stirling, Scotland. The work was performed at the Dunstaffnage Marine Research Laboratory, Oban, Scotland  相似文献   

20.
Larvae of Lithodes antarcticus Jacquinot were reared in October, 1981 from hatching to the glaucothoe stage at 16 temperature/salinity combinations (5.5°; 7.5°; 9.5° and 13.5°C; 26, 29, 32 and 35 S) to determine optimal environmental conditions for larval development. The highest survival percentage was obtained in the culture at 7.5°C and diminished according to temperature increase or decrease. High temperature cultures significantly shorten the larval life duration, but produce large mortalities. At 5.5°C mortality occurred almost exclusively during the moult to glaucothoe stage. Higher survival percentages were obtained as salinity was increased. In the lowest salinity culture (26 S) no zoea reached the post-larvae stage at culture temperatures. The best T/S combination was obtained at 7.5°C and 35 S, with a survival percentage of 29%. The shortest zoeal developments were obtained at 32 S in all culture temperatures. Salinity also affects larvae coloration: there is a pigment concentration on erythrophores, which causes a color decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号