首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
符传博  陈红  丹利  徐文帅 《环境科学》2022,43(11):5000-5008
基于2019年秋季海南省空气质量和气象监测数据,结合相关分析、HYSPLIT后向轨迹模型、PSCF (潜在源贡献因子)和CWT (浓度权重轨迹)等分析方法对海南省4次O3污染过程特征及潜在源区进行深入分析.结果表明:①过程1和过程3分别发生在9月21~30日和11月3~11日,持续时间达到了10 d和9 d,ρ(O3-8h)(最大8 h平均)分别为145.52 μg ·m-3和143.55 μg ·m-3.过程2和过程4出现在10月18~21日和11月20~25日,持续时间为4 d和6 d,ρ(O3-8h)分别为130.79 μg ·m-3和115.46 μg ·m-3.②气压偏高,降水偏少,相对湿度偏低,日照时数偏长和太阳辐射偏强,是造成海南省出现O3污染天气的有利气象条件.偏北风风场控制下有利于O3-8h浓度上升,不同风速大小会影响海南省O3-8h浓度高值区分布.③ O3污染较为严重的过程1和过程3的影响气流发散度较大,有来自内陆地区和东南沿海地区两支气流,而O3污染较轻的过程2和过程4的影响气流较为集中,多为东南沿海气流.④潜在贡献源区分析表明,浙江省、江西省、福建省和广东省等地是2019年秋季海南省O3污染外源输送的主要源区,其中珠三角地区和广东省西部WPSCF值和WCWT值分别为大于0.36和大于90 μg ·m-3.  相似文献   

2.
秦阳  胡建林  孔海江 《环境科学》2024,45(2):626-634
基于2015~2019年南京细颗粒物(PM2.5)和臭氧(O3)逐小时浓度数据,通过T-mode主成分分析法对南京发生PM2.5和O3污染同时高浓度并存(双高污染)时的天气形势进行了分型,利用后向轨迹聚类分析法、潜在来源贡献法(PSCF)和浓度权重轨迹分析法(CWT)研究不同天气形势对南京双高污染的输送路径及潜在源区分布.结果表明,有利于南京地区双高污染的天气形势分别为弱的低压型(Type1)和高压中心型(Type2).天气形势会对后向轨迹的方位来源产生影响.Type1时,南京地区受到东北和西南两个低气压影响,气团的聚类轨迹主要来自东西两个方位,轨迹中ρ(PM2.5)和ρ(O3)平均值分别为83.48 μg·m-3和106.85 μg·m-3.Type2时,南京及其周边在高压中心边缘,气团聚类轨迹主要来自北方和东方,轨迹中ρ(PM2.5)和ρ(O3)平均值分别为94.47 μg·m-3和92.32 μg·m-3.同时两种类型后向轨迹绝大部分属于中短距离区域输送,说明周边临近省份的污染是影响南京地区双高污染主要原因之一.PSCF和CWT分析表明,两者高值区域基本保持一致.Type1和Type2两种类型中PM2.5和O3的最主要潜在源区均出现分布并不完全一致的情况,表明双高污染中的两种污染物并非来自同一地区.  相似文献   

3.
利用2015—2018年杭州市富阳地区国控站污染数据、自动站和GDAS气象资料及对海平面气压场进行天气分型的基础上,使用HYSPLIT模型、潜在源贡献因子(WPSCF)分析法和浓度权重轨迹(WCWT)分析法,研究富阳地区冬季污染现状及不同天气形势下PM2.5的输送路径与潜在源区分布特征.结果表明,2015—2018年富阳地区冬季PM2.5浓度持续较高且变化趋势不明显,污染区域输送问题不容忽视.通过天气分型得到该地区冬季主要受高压、高压前部、高压底部、L型高压、低压和低压前部6种天气形势影响,其中,高压和高压底部控制下PM2.5浓度均值较高,分别为65 μg·m-3和58 μg·m-3.对各天气形势下气团轨迹聚类分析得到,高压和高压前部控制下污染气团主要来自山东、江苏等地,高压底部和L型高压控制下污染气团主要来自内蒙古、辽宁等地,低压和低压前部控制下污染气团主要来自浙江中部、东南部地区.不同天气形势下WPSCF和WCWT得到的分布特征类似,高压控制下潜在源区分布范围最广,位于浙江西南部、东北部、上海和江苏东南部地区,其次为高压底部控制,潜在源区位于浙江中东部、东北部和上海地区,高压前部、L型高压、低压和低压前部的潜在源区范围较小,基本位于浙江、江苏南部和上海等地.  相似文献   

4.
乌海市臭氧传输特征与潜在源区   总被引:3,自引:0,他引:3  
乌海是典型的西北工业城市,O3污染问题突出但缺乏研究.本文基于乌海市环境监测数据、气象数据分析了乌海市O3污染特征.结果表明:乌海市O3日最大8 h平均值(MDA8O3)第90位百分数由2015年的131 μg·m-3上升至2018年的162 μg·m-3,超标天数由2015年的8 d上升到2018年的44 d,O3超标日集中出现在4—8月;2018年4—8月乌海市近地面盛行南风,O3浓度在近地面风向位于西南-南、东南、北-东北3个风向区间,风速处于2~7 m·s-1的区间时最高.为进一步研究乌海O3传输特征、潜在源区,本文基于NCEP再分析资料,使用后向轨迹、PSCF方法与CWT方法研究了2018年4—8月O3的传输特征及潜在源区.O3非污染过程中,74%的轨迹来自北方,气团移动速度快且途经的下垫面以沙漠为主,较为清洁.O3污染过程中,来自南方的轨迹占比59%,贡献了76%的污染轨迹,这些轨迹传输距离较短、移动速度较慢且经过的下垫面多为城市及工业园区;PSCF分析与CWT分析的结果较为一致,O3非污染过程的主要源区分布在乌海市以南.O3污染过程的主要源区为鄂尔多斯西部、阿拉善东部、石嘴山、银川、吴忠、榆林西部,WPSCF值均大于0.5,WCWT值均大于120 μg·m-3.乌海市O3易受区域传输影响,O3污染过程中其主要源区为距乌海400 km以内的上风向城市,O3非污染过程则主要在200 km的范围内.分过程进行气团轨迹聚类分析和潜在源区分析有利于得到更为真实的污染物传输特征和潜在源区.  相似文献   

5.
基于2016~2022年北京市环境监测和气象观测数据,结合后向轨迹聚类和潜在源区贡献分析北京市臭氧(O3)污染特征、气象影响和潜在源区.结果表明,2016~2022年北京市共发生41次具有跳变特征的O3污染过程,平均为5.9次·a-1,发生时间集中在5~7月,跳变当日(OJD2)较跳变前一日(OJD1)的ρ(O3-8h)平均值偏高78.3%,峰值浓度偏高78.9%,OJD2区域O3浓度高值带呈现由南向北推进的特征.北京市跳变O3污染发生主要原因可归纳为不利气象条件导致的本地积累叠加区域传输影响.跳变型O3污染发生时具有偏南风频率增加、温度上升、气压降低和降水减少的特征,偏南风频率增加为O3及其前体物的传输提供条件,在本地高温作用下快速发生光化学反应,叠加降水较少,综合推高OJD2的O3浓度水平.聚类分析得到6条气团输送路径,OJD2来自偏北方向的气团减少11.2%,来自偏南和偏东方向气团增加6.7%和4.4%,气团以短距离传输为主,偏南和偏东方向对应的O3浓度较高,对北京污染贡献较大.潜在源区分析揭示OJD2的O3污染的主要潜在源区是京津冀中南部和东部,贡献了82.6%污染轨迹.跳变型O3污染区域输送贡献明显,需要加强京津冀区域联防联控.  相似文献   

6.
钱悦  许彬  夏玲君  陈燕玲  邓力琛  王欢  张根 《环境科学》2021,42(5):2190-2201
利用2016~2019年生态环境部环境监测总站提供的江西省11个设区市的监测数据及同期的国家气象观测站常规观测资料,研究江西省臭氧污染特征与气象因子的关系.结果表明,江西省近几年臭氧污染日益严重,2016年全省臭氧(日最大8 h滑动平均值)平均浓度为80.1 μg·m-3,到2019年上升至98.2 μg·m-3,平均年增长率为6 μg·m-3.2019年江西省11个设区市O3超标总天数为475 d,占总超标天数的72.6%.2016~2018年O3月平均浓度具有典型的季节变化特征:夏季 > 春季 > 秋季 > 冬季,2019年秋季由于降水量显著减少、日照时数增多和气温升高等气象条件导致秋季近地面臭氧浓度异常升高,其平均浓度高于其它季节.臭氧浓度总体与气温、日照时数呈正相关,与相对湿度呈负相关,当气温高于30℃、相对湿度在20%~40%区间、风速在2~3 m·s-1区间时易出现高浓度臭氧污染.江西省臭氧浓度呈现一定的空间分布特征:赣东北地区低于其他地区,南部城市高于北部城市.其中,赣州市臭氧污染较为严重,其2019年平均浓度居全省最高,为104.2 μg·m-3.基于后向轨迹HYSPLIT模型和潜在源解析PSCF对赣州市进行分析,研究结果表明赣州市臭氧污染的主要潜在贡献源区存在一定的季节差异:春季臭氧污染的外来输送源主要来自广东中部和江西北部地区,夏季主要来自江西北部地区,而秋季则主要来自广东北部和安徽中部地区.  相似文献   

7.
阿克达拉大气本底站NO2输送路径及潜在源分析   总被引:1,自引:0,他引:1  
基于HYSPLIT模式和全球资料同化系统气象数据(GDAS),计算了2015年12月-2016年11月阿克达拉国家大气本底站48 h气流后向轨迹,并结合同期NO2小时监测数据,综合运用聚类分析、潜在源贡献因子法(PSCF)和浓度权重轨迹法(CWT),分析不同季节气流轨迹对阿克达拉NO2污染物浓度的影响,并揭示不同季节NO2潜在污染源区分布及其贡献水平.结果表明:冬季来自东南方向的气流轨迹占比最高,春、夏、秋季气流轨迹主要来自西北方向,来自西北的长距离气流轨迹NO2质量浓度较低;WPSCF表明重度污染网格出现在冬季的风口区如阿拉山口、达坂城谷地,四季中度污染网格出现在准噶尔盆地及周边地区、额尔齐斯河谷、哈萨克斯坦东部和俄罗斯南部;WCWT和WPSCF潜在源区分布较为一致,WCWT分析表明春、冬两季的NO2贡献高值区污染程度大于夏、秋两季,春、冬两季NO2污染网格贡献值为6~9 μg·m-3,夏、秋两季污染网格贡献值集中在5~7 μg·m-3.对于阿克达拉背景站点而言,NO2污染物总体浓度水平较低,揭示其NO2输送轨迹和污染源区,为区域大气污染联防联控提供重要参考.  相似文献   

8.
武汉市2014-2017年大气污染物分布特征及其潜在来源分析   总被引:1,自引:0,他引:1  
利用武汉市2014—2017年大气污染物(SO2、NO2、CO、O3、PM2.5和PM10)和气象要素的观测数据,分析了大气污染物的变化特征及其影响因素.使用HYSPLIT模式计算了影响武汉市的主要气团类型,并利用潜在源区贡献(PSCF)和浓度权重轨迹(CWT)分析方法,揭示了研究期内武汉市不同大气污染物的潜在源区分布及其贡献特性.结果表明,武汉市2014—2017年空气质量逐年好转,SO2、O3、PM2.5和PM10的浓度呈逐年下降的趋势,但NO2和CO的浓度先下降后上升.2017年SO2、O3、PM2.5、PM10、NO2和CO的浓度分别为9.6、50.8、52.7、89.2、47.5 μg·m-3和1.1 mg·m-3,分别比2014年降低了64.3%、23.0%、24.7%、18.8%、3.5%和5.9%.大气污染物存在显著的季节变化和月变化.大气污染物在四个季节中日变化类似,SO2和O3均为单峰型分布,NO2、CO、PM2.5和PM10均为双峰型分布.武汉市空气污染以PM2.5为主,随着污染程度的加剧PM2.5/PM10的值逐渐增大,在空气质量为严重污染时,PM2.5/PM10高达90%,比空气质量为优时高了31.34%.局地气团(45%)和来自山西、陕西和河南一带的西北气团(12.1%)下大气污染物浓度较高.大气污染物的潜在源区贡献(WPSCF)和浓度权重轨迹(WCWT)的较大值主要集中在武汉市本地及其周边地区,局地污染对武汉市大气污染物的贡献较大,但不同大气污染物受到排放源分布和停留时间等影响其WPSCF和WCWT的分布范围不同.  相似文献   

9.
2015年12月中国长三角区域经历了4次高浓度、大范围、长时间的颗粒物污染.本研究基于HYSPLIT后向轨迹模式结合GDAS(Global Data Assimilation System,全球资料同化系统)气象数据和长三角区域15个主要城市的PM2.5质量浓度数据,利用轨迹聚类、潜在源贡献因子法(Potential Source Contribution Function,PSCF)和浓度权重轨迹法(Concentration-Weighted Trajectory,CWT)分析了2015年12月长三角区域主要气流轨迹方向和重污染过程中细颗粒物的潜在来源分布,探讨了不同污染过程的气象特征和影响气团分布.结果表明,2015年12月长三角区域主要受到来自西北和北方气流影响(B、C、D类),其出现概率分别为39.5%、20.0%和25.8%;西方内陆(A类)出现概率最低,仅为14.7%.西北内陆方向长距离输送(B类)对长三角区域空气质量影响较大,在此类气团主导下,长三角区域颗粒物(PM2.5、PM10)质量浓度和气态污染物(SO2、NO2、CO)质量浓度平均值分别为90.9、135.1、32.4、54.4和1200 μg·m-3,且粗颗粒物比重较其它3类聚类高;经过东北海面气团(C类)携带的颗粒物浓度也较高,且PM2.5/PM10比值最高,可能是其水汽含量较高加剧了污染物的二次生成.PSCF和CWT分析结果表明,污染过程1(12月5-8日)期间,长三角区域PM2.5浓度主要受内蒙东部、京津冀、山东和江苏东部等地影响;污染过程2(12月10-11日)和污染过程3(12月13-15日)期间,京津冀地区对长三角区域PM2.5浓度的贡献都较低,污染过程2的主要潜在源区较为集中,主要为内蒙东部、辽宁、山东东部、江苏和上海;而污染过程3的潜在源区较广,内蒙西南地区、甘肃、山西、陕西、河南、河北南部、山东、安徽北部等地及长三角本地对区域PM2.5浓度均有重要贡献;污染过程4(12月20-27日)持续时间最长,相较前3次污染过程,京津冀地区和西南地区对长三角区域PM2.5浓度的贡献相对增加.总体来说,2015年12月4次污染过程期间长三角区域PM2.5污染的潜在贡献源主要集中在华北和华东(长三角)地区,区域性污染和长距离输送对冬季长三角区域空气质量有重要影响.  相似文献   

10.
基于粤港澳珠江三角洲区域空气监测网络12个监测子站的大气污染物数据,梳理2013~2017年大气光化学氧化剂Ox(NO2+O3)与PM2.5质量浓度的变化趋势.Ox+PM2.5复合超标污染定义为NO2和PM2.5质量浓度日平均值以及O3浓度日最大8 h平均值(O3 MDA8)同时超过二级浓度限值,分析了不同类型站点复合超标污染的时空分布特征以及气象因素影响.结果表明,2013~2017年珠三角PM2.5年均质量浓度由(44±7)μg·m-3下降至(32±4)μg·m-3,实现PM2.5连续3 a达标.Ox年均质量浓度由2013年(127±14)μg·m-3下降至2016年(114±12)μg·m-3,2017年反弹至(129±13)μg·m-3,O3浓度上升明显(10 μg·m-3).以O3为首要污染物的污染过程占比由2013年33%增多至2017年78%,多个城市同时发生污染的区域特征明显.研究时段内Ox+PM2.5复合超标污染事件共发生60次,主要在城区站点(78%)和郊区站点(22%).秋季发生复合超标污染天数最多(52%),是因为强太阳辐射有利于臭氧生成,大气氧化性增加,进而促进了PM2.5二次生成.造成珠三角复合超标污染的天气形势主要为高压出海型(43%)、高压控制型(30%)和热带低压型(27%).就具体气象因素而言,气温在20~25℃且相对湿度在60%~75%的范围内时,复合超标污染事件发生占比最高(22%).在O3重污染过程中,夜间高湿和低风速使得NO2和PM2.5浓度显著上升,日间高温加剧了复合超标污染.  相似文献   

11.
中国的近地面臭氧(O3)浓度在2015~2018年间持续升高,已成为仅次于颗粒物的重要大气污染物.基于中国337个城市2015~2018年暖季(4~9月)的实时O3浓度数据和气象数据,利用趋势分析、空间自相关、热点分析和多尺度地理加权回归(MGWR),研究了2015~2018年中国暖季地表O3浓度的空间演变格局,探讨了气象因素对其驱动的空间差异性.结果表明:①中国暖季O3浓度整体呈显著升高趋势(P<0.05),平均升高速率为0.28 μg·(m3·a)-1,其中超过55%的城市O3浓度每年升高0.50 μg·m-3;②O3浓度存在明显的区域差异,高值区(平均浓度>60 μg·m-3)分布在华东、华北、华中和西北部分地区;低值区(平均浓度<20 μg·m-3)分布在华南和西南地区;③O3浓度变化趋势在空间上存在位于华东、华北、西北以及华中地区的热点区域和位于西南、华南(广西)以及东北地区的冷点区域;④气温是中国暖季O3变化的主要气象驱动因素,其对华北、西北和东北地区O3浓度的影响显著高于其他地区;除广西、云南和江西部分地区外,O3浓度与气温呈显著正相关;O3浓度在华南、华东和华中大部分地区与风速呈显著负相关,O3浓度在华北和东北部分地区与风速呈显著正相关;除辽宁、山东、河北、甘肃、广东及西南部分地区外,O3浓度与云层覆盖度呈显著负相关;除西北和西南部分地区外,O3浓度与降水呈显著负相关.  相似文献   

12.
利用苏码罐采样-气相色谱/质谱联用仪(GC/MS)监测石家庄市2019年、 2021年和2022年春季挥发性有机物(VOCs),并收集同期臭氧(O3)和PM2.5在线监测数据,分析了挥发性有机物(VOCs)浓度水平特征和时序变化,并利用臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAFP)评估了VOCs的化学活性,通过潜在源贡献因子法(PSCF)和浓度权重轨迹分析(CWT)识别石家庄市春季VOCs潜在源区,通过特征比值法对VOCs进行来源解析.结果表明:①2019年、 2021年和2022年石家庄市春季(即观测期)污染期ρ(VOCs)均值为191.17 μg·m-3,清洁期ρ(VOCs)均值为122.18 μg·m-3. ②OFP在污染期为361.23 μg·m-3,在清洁期为266.96 μg·m-3;SOAFP在污染期为1.98 μg·m-3,在清洁期为1.61 μg·m-3,控制好苯系物,尤其是苯、甲苯、乙苯和二甲苯是减少PM2.5和O3污染的关键. ③观测期VOCs潜在源区主要分布在裕华区东部、高新区和栾城区北部,权重CWT分布与主要权重PSCF分布相统一,除本地排放外还受到临近区域传输的影响. ④由B/T/E及X/B的值,石家庄市春季VOCs的主要来源为移动源和燃烧源,且气团老化较严重,控制机动车排放、开展区域联防联控是改善石家庄市空气质量的有效手段.  相似文献   

13.
利用2015—2021年广州地区近地面逐时臭氧(O3)观测资料及同期地面气象站常规观测数据,分析了广州地区近地面O3浓度污染特征及其与气象因素的关系.结果表明:2015—2021年广州地区O3浓度呈缓慢上升趋势,增速为1.9 μg?m-3?a-1,2015和2019年O3浓度超标天数 最多;O3平均浓度季节变化明显:秋季>冬季>夏季>春季;O3浓度空间分布不均匀,城郊地区高于中心城区;峰值中心位于城郊地区白云区,低值中心位于中心城区荔湾区.O3浓度高峰期是7—10月,9月浓度最高,3月浓度最低;四季O3浓度日变化均呈“单峰型”结构,最低值出现在7:00—8:00,14:00—16:00达到峰值.近地面O3平均浓度和O3超标率均与气温呈正比,当气温>15 ℃开始出现臭氧超标现象.相对湿度<50%时,O3超标率与相对湿度呈正比;相对湿度为40%~50%时,O3超标率达峰值为16.3%.当风速<2 m?s-1时,O3超标率与风速呈正比;当风速> 2 m?s-1时,O3超标率与风速呈反比.高温、低湿、风小是广州地区产生高浓度O3的主要气象因子.  相似文献   

14.
利用HYSPLIT模式计算了2016—2018年西宁市逐日72 h气团后向轨迹,采用聚类分析方法,结合同期颗粒物PM10和PM2.5质量浓度数据,分析逐年和3年平均西宁市颗粒物输送特征及差异,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT)对影响西宁市PM10和PM2.5质量浓度的污染潜在源区及不同潜在源区贡献进行了分析.结果表明,2016—2018年,西宁市颗粒物最主要输送路径源自青海北部的聚类2、甘肃中部的聚类6和甘肃东部的聚类8,占同期总轨迹比例分别为28.1%、27.4%和27.5%;3年平均则源自青海北经青海东折回西宁的聚类2,占比45.3%.最主要输送路径对应颗粒物质量浓度最低,输送距离较短、垂直高度较低、气团移速较慢;影响气团由西北向偏东转变,3年平均则以西北气团为主.2018年源自甘肃经青海东至西宁的短距离输送处于突出地位,所含轨迹占总轨迹的比例高达49.6%.PM10和PM2.5主要输送路径和污染路径由较长距离向较短距离过渡,较长距离输送路径出现比例逐年较小.PM2.5/PM10小于0.3时,主要输送路径与PM10污染轨迹有很好的对应关系;PM2.5/PM10大于0.6时,主要输送路径与PM2.5污染轨迹有较好的对应关系.PSCF和CWT分析发现,影响西宁市颗粒物质量浓度的主要污染潜在源区分布在新疆南部和青海北部,对PM10质量浓度贡献大于100 μg·m-3,对PM2.5质量浓度贡献大于45 μg·m-3.潜在源区分布年变化差异明显,2016年最广,2018年最小.印度北部主要贡献源区虽分布范围逐年减小,但在2017年局部贡献增大,对PM10贡献超250 μg·m-3,对PM2.5贡献超60 μg·m-3.主要贡献区周边区域及西宁至兰州一带为中等贡献源区,对PM10贡献为50~100 μg·m-3,对PM2.5贡献为15~45 μg·m-3.  相似文献   

15.
王晓雯  刘旻霞  王扬  宋宜凯 《环境科学》2023,44(9):4809-4818
通过OMI遥感卫星数据分析华东地区2005~2021年大气对流层臭氧(O3)、二氧化氮(NO2)和甲醛(HCHO)柱浓度的时空特征,利用后向轨迹模型(HYSPLIT)探究其来源.结果表明:① 17年间,对流层O3柱浓度平稳增加,2010年上升到最大值,之后呈现一种波动起伏的状态;NO2在2005~2012年呈增加趋势,2012~2021年缓慢下降;HCHO柱浓度由2005年的1.15×1016 molec ·cm-2呈现增长趋势,上升到2021年的1.8×1016 molec ·cm-2.②在空间上,3种污染物柱浓度总体上呈现北高南低的空间格局,北部为高高聚集区域,中部为无特征区域,南部为低低聚集区域.③ O3的敏感性呈现为:春季η<2.3,属于VOCs控制区;夏季η<4.2,表现为大部分地区是NOx-VOCs协同控制区,少部分地区是VOCs控制区;秋季η<4.2,主要为VOCs控制,极少部分为NOx-VOCs协同控制区;冬季η<2.3,为VOCs控制区,山东省以VOCs控制为主.④因2005~2021年O3在山东省呈现为高高聚集,所以选取2021年山东省的省会城市济南市进行O3来源解析,2021年济南市的O3浓度增加有两个方面,一是通过远距离的气团输送主要来自于江苏省的连云港市和河北省的沧州市;二是近距离的气团输送来自于济南市附近城市的污染和黄海、渤海经济区,且聚集性分析与潜在源贡献因子算法(PSCF)和权重轨迹分析法(CWT)有相同的结果.  相似文献   

16.
2004~2015年北京市清洁点臭氧浓度变化特征   总被引:3,自引:1,他引:3  
利用2004~2015年北京市自动监测网络O3浓度数据,综合探讨了北京市清洁点定陵站O3浓度的变化特征,结果表明,定陵站2004~2015年O31h浓度整体呈上升的趋势,年均浓度增长率为4.40 μg·m-3,定陵站O38h浓度整体呈下降的趋势,年均浓度增长率为-1.0 μg·m-3,5~9月O38h平均浓度增长率为-1.5 μg·m-3. 近3年来定陵站O38h重度污染天数增加明显,O3污染形势严峻. 定陵站每年6月左右O3浓度达到一年中的峰值,日变化上15:00~18:00左右出现小时浓度峰值且O3日峰值浓度是中心城区的1.01~1.56倍;不同年份5~9月定陵站O3日峰值浓度与城区站明显存在1 h滞后的现象,定陵站峰值浓度与城区峰值浓度之差近年来明显缩小,这可能一方面与O3区域污染输送有关,另一方面可能与北京市城镇化扩张有关.  相似文献   

17.
近年来环渤海地区城市环境空气臭氧(O3)污染问题引起广泛关注.在对2017~2022年环渤海地区代表性城市东营市O3浓度时空分布特征进行分析的基础上,评估了气象因素及海陆风环流对O3浓度的影响.结果表明:①2017~2022年,东营市O3年评价值呈波动上升趋势,以O3为首要污染物的污染天数增加. O3污染主要出现在春夏秋三季,其中5~6月最为严重,且O3污染季持续时间变长. O3浓度日最大8 h滑动平均值(MDA8 O3)的月际变化呈双峰分布,第5和25百分位数增加明显,空间分布呈现“南北高,中部低”的特征.此外,近年来东营市夜间O3浓度也表现出明显增加的趋势. ②气象因素对东营市O3浓度变化有较大影响.在温度 > 30℃、相对湿度 < 50%、风向为西南偏南或东北偏东时易出现O3高值.研究期间东营市气象因素贡献了MDA8 O3变化的30%;在O3中度污染与重度污染的情况下,气象因素对MDA8 O3变化的贡献率可高达40%. ③海陆风对O3超标日的发生具有一定贡献.海陆风日午后O3浓度比非海陆风日高20 μg·m-3左右.在O3中度及重度污染日,海陆风日10:00~16:00的O3浓度比非海陆风日O3浓度高,且20:00~23:00 O3浓度也处于较高水平.可见海陆风能够显著影响沿海地区城市O3浓度,为该地区的O3污染防控带来极大的挑战.建议未来环渤海地区城市进一步加强区域O3污染联防联控联治,加大氮氧化物和挥发性有机物的减排力度,以减少陆风气团中污染物浓度,从而降低海风气团对环渤海地区城市空气质量的影响.  相似文献   

18.
2013-2015年上海市霾污染事件潜在源区贡献分析   总被引:6,自引:0,他引:6  
周沙  刘宁  刘朝顺 《环境科学学报》2017,37(5):1835-1842
统计分析2013-2015年上海市每个月不同空气质量等级天数比重,根据HYSPLIT(Hybrid Single Particle Lagrangian Integrated Trajectory)后向轨迹模型对3年内的12月份影响上海地区的污染气团进行了综合聚类分析和逐年聚类分析.在综合12次严重霾事件的后向轨迹基础上,结合上海实时公布的PM2.5小时浓度资料,对潜在源贡献因子PSCF(Potential Source Contribution Function)和浓度权重轨迹CWT(Concentration-weighted Trajectory)进行分析与比较,研究重霾期间影响上海PM2.5质量浓度的潜在源区及不同源区对PM2.5质量浓度的贡献差异.结果显示,上海市3年期间12月份霾颗粒物外来源主要输送渠道为西北路径和北方路径,源自于西北方向的气团比重占总气团的50.4%,北方向的气团几乎都经过海洋后进入上海地区.影响上海地区PM2.5质量浓度的潜在源区主要分布在安徽、江苏和山东地区,此外江西北部、浙江北部、河北南部及山西少部分地区也对重霾事件中的污染物颗粒有一定程度的贡献.  相似文献   

19.
关中城市群发展基础较好和开发潜力较大,是中国西部地区的重要经济和文化中心. 近年来关中地区空气质量的持续改善受到了近地面臭氧(O3)问题的显著影响,为采取有效措施防治O3污染,基于2018~2021年环境监测数据分析关中地区O3浓度年、月及日变化等特征规律;采用地理探测器研究O3浓度空间分异的驱动因素,通过后向轨迹模型和排放因子法等方法解析O3来源. 结果表明,关中地区O3浓度日、月变化呈单峰型特征,日最高值出现在15:00,最低值出现在07:00,月均峰值出现在6月,谷值出现在12月,O3浓度夏季最高,春季次之、冬季最小;O3超标天数中以轻度污染为主,且中度及以上污染呈先下降后增加趋势;关中地区O3浓度主要与前体物和气象因素关系密切,且各因子交互作用的解释力显著大于单一因子;关中地区O3浓度区域传输主要受偏东向气流影响,其次是西北方向,潜在源区主要在河南省和湖北省;挥发性有机物(VOCs)本地主要来源为溶剂使用源、工艺过程源和移动源,氮氧化物(NOx)主要排放源为移动源和工业生产燃烧源. 研究结果对关中地区O3科学防控具有指导意义.  相似文献   

20.
长沙地区是长江中下游重要的经济发展核心区,受本地排放与外来源输送等多因素的共同作用,其大气污染状况一直都是区域乃至国家高度重视的生态环境问题.前期研究揭示了长沙地区大气污染的扩散规律,为进一步研究该地区大气细颗粒物(PM2.5)外来源特征,采用拉格朗日混合型单粒子轨迹模式(HYSPLIT)探究2013—2020年长沙地区PM2.5外来源区分布特征,继而采用轨迹聚类、潜在源贡献因子分析(PSCF)、浓度权重轨迹(CWT)方法等从年、季节等不同尺度分析区域PM2.5时空分布规律及其外来污染物输送源特征.结果表明,在国家与地区大气污染联防联控等政策的驱动下,2013—2020年长沙地区年均PM2.5浓度由81.80 μg·m-3下降至42.96 μg·m-3并呈显著季节差异,大气污染防治措施成效显著.季节尺度上,PM2.5浓度主要呈现冬高夏低的态势,冬季最高(81.48 μg·m-3),其次为秋季(50.90 μg·m-3)与春季(47.39 μg·m-3),最小值出现在夏季(25.74 μg·m-3);另一方面,2013—2020年长沙地区外来源潜在源区主要分布于湘东北、赣西北、豫南和鄂中地区.具体而言,春、秋、冬三季大气污染物主要来源于蒙古国西南部的长距离西北气流,分别占当年轨迹比重的4.73%、12.93%、12.66%,而夏季大气污染物主要来源于南海南部的中长距离南方气流,占当年轨迹比重的19.06%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号