首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
With the increase in silver(Ag)-based products in our lives, it is essential to test the potential toxicity of silver nanoparticles(Ag NPs) and silver ions(Ag ions) on living organisms under various conditions. Here, we investigated the toxicity of Ag NPs with Ag ions to Escherichia coli K-12 strain under various conditions. We observed that both Ag NPs and Ag ions display antibacterial activities, and that Ag ions had higher toxicity to E. coli K-12 strain than Ag NPs under the same concentrations. To understand the toxicity of Ag NPs at a cellular level, reactive oxygen species(ROS) enzymes were detected for use as antioxidant enzymatic biomarkers. We have also studied the toxicity of Ag NPs and Ag ions under various coexistence conditions including: fixed total concentration, with a varied the ratio of Ag NPs to Ag ions; fixed the Ag NPs concentration and then increased the Ag ions concentration; fixed Ag ions concentration and then increasing the Ag NPs concentration.Exposure to Ag NPs and Ag ions clearly had synergistic toxicity; however, decreased toxicity(for a fixed Ag NPs concentration of 5 mg/L, after increasing the Ag ions concentration) to E. coli K-12 strain. Ag NPs and Ag ions in the presence of L-cysteine accelerated the bacterial cell growth rate, thereby reducing the bioavailability of Ag ions released from Ag NPs under the single and coexistence conditions. Further works are needed to consider this potential for Ag NPs and Ag ions toxicity across a range of environmental conditions.Environmental Significance Statement: As silver nanoparticles(Ag NPs)-based products are being broadly used in commercial industries, an ecotoxicological understanding of the Ag NPs being released into the environment should be further considered. Here, we investigate the comparative toxicity of Ag NPs and silver ions(Ag ions) to Escherichia coli K-12 strain, a representative ecotoxicological bioreporter. This study showed that toxicities of Ag NPs and Ag ions to E. coli K-12 strain display different relationships when existing individually or when coexisting, and in the presence of L-cysteine materials. These findings suggest that the toxicology research of nanomaterials should consider conditions when NPs coexist with and without their bioavailable ions.  相似文献   

2.
The inevitable release of engineered silver nanoparticles (AgNPs) into aquatic environments has drawn great concerns about its environmental toxicity and safety. Although aggregation and transformation play crucial roles in the transport and toxicity of AgNPs, how the water chemistry of environmental waters influences the aggregation and transformation of engineered AgNPs is still not well understood. In this study, the aggregation of polyvinylpyrrolidone (PVP) coated AgNPs was investigated in eight typical environmental water samples (with different ionic strengths, hardness, and dissolved organic matter (DOM) concentrations) by using UV–visible spectroscopy and dynamic light scattering. Raman spectroscopy was applied to probe the interaction of DOM with the surface of AgNPs. Further, the photo-transformation and morphology changes of AgNPs in environmental waters were studied by UV–visible spectroscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. The results suggested that both electrolytes (especially Ca2 + and Mg2 +) and DOM in the surface waters are key parameters for AgNP aggregation, and sunlight could accelerate the morphology change, aggregation, and further sedimentation of AgNPs. This water chemistry controlled aggregation and photo-transformation should have significant environmental impacts on the transport and toxicity of AgNPs in the aquatic environments.  相似文献   

3.
The current research study focuses to formulate the biosynthesized silver nanoparticles for the first time from silver acetate using methanolic root extracts of Diospyros sylvatica, a member of family Ebenaceae. TEM analysis revealed the average diameter of Ag NPs around 8 nm which is in good agreement with the average crystallite size (10 nm) calculated from X-ray Diffraction (XRD) analysis. Further the study has been extended to the antimicrobial activity against test pathogenic Gram (+) ve, Gram (−) ve bacterial and fungal strains. The bioinspired Ag-NP showed promising activity against all the tested bacterial strains and the activity was enhanced with increased dosage levels.  相似文献   

4.
The adsorption behaviors of ciprofloxacin (CIP), a fluoroquinolone antibiotic, onto goethite (Gt) in the presence of silver and titanium dioxide nanoparticles (AgNPs and TiO2NPs) were investigated. Results showed that CIP adsorption kinetics in Gt with or without NPs both followed the pseudo-second-order kinetic model. The presence of AgNPs or TiO2NPs inhibited the adsorption of CIP by Gt. The amount of inhibition of CIP sorption due to AgNPs was decreased with an increase of solution pH from 5.0 to 9.0. In contrast, in the presence of TiO2NPs, CIP adsorption by Gt was almost unchanged at pHs of 5.0∼6.5 but was decreased with an increase of pH from 6.5 to 9.0. The mechanisms of AgNPs and TiO2NPs in inhibiting CIP adsorption by Gt were different, which was attributed to citrate coating of AgNPs resulting in competition with CIP for adsorption sites on Gt, while TiO2NPs could compete with Gt for CIP adsorption. Additionally, CIP was adsorbed by Gt or TiO2NPs through a tridentate complex involving the bidentate inner-sphere coordination of the deprotonated carboxylic group and hydrogen bonding through the adjacent carbonyl group on the quinoline ring. These findings advance our understanding of the environmental behavior and fate of fluoroquinolone antibiotics in the presence of NPs.  相似文献   

5.
The production of silver nanoparticles (AgNPs) has increased tremendously during recent years due to their antibacterial and physicochemical properties. As a consequence, these particles are released inevitably into the environment, with soil being the main sink of disposal. Soil interactions have an effect on AgNP mobility, transport and bioavailability. To understand AgNP adsorption processes, lab-controlled kinetic studies were performed. Batch tests performed with five different Mediterranean agricultural soils showed that cation exchange capacity and electrical conductivity are the main parameters controlling the adsorption processes. The adsorption kinetics of different sized (40, 75, 100 and 200?nm) and coated (citrate, polyvinylpyrrolidone and polyethyleneglycol (PEG)) AgNPs indicated that these nanoparticle properties have also an effect on the adsorption processes. To assess the mobility and bioavailability of AgNPs and to determine if their form is maintained during adsorption/desorption processes, loaded soils were submitted to leaching tests three weeks after batch adsorption studies. The DIN 38414-S4 extraction method indicated that AgNPs were strongly retained on soils, and single-particle inductively coupled plasma mass spectrometry confirmed that silver particles maintained their nanoform, except for 100?nm PEG-AgNPs and 40?nm citrate-coated AgNPs. The DTPA (diethylenetriaminepentaacetic acid) leaching test was more effective in extracting silver, but there was no presence of AgNPs in almost all of these leachates.  相似文献   

6.
利用硼氢化钠还原硝酸银,并使用聚乙烯醇(PVA)作为分散剂,制备出分散良好、粒径为(14±3)nm的纳米银颗粒,考察了其对聚磷菌(Microlunatus phosphovorus)好氧吸磷和厌氧释磷的影响,以及产生的毒性效应.结果表明,在好氧状态下,7mg/L的纳米银能够完全抑制聚磷菌的生长(P <0.01),达到10mg/L时才能完全抑制聚磷菌的吸磷能力(P=0.01);在厌氧状态下,大于20mg/L的纳米银才使聚磷菌释磷能力受到部分抑制(P <0.05).活性氧簇(ROS)和扫描电子显微镜(SEM)的检测结果表明,纳米银使细菌体内ROS水平降低,部分细菌菌体表面塌陷,这说明,纳米银不但可以毒害聚磷菌菌体表面,还可以降低菌内ROS水平.  相似文献   

7.
Silver nanoparticles (AgNPs) are widely used in many consumer products, whereas their environmental behaviors in natural aquatic systems remain unknown, especially in natural brackish media. Therefore, it is urgent to investigate the environmental fate of AgNPs in natural brackish waters. Here, we investigated the stability of citrate-coated AgNPs in natural brackish water collected from 6 different sites with distinct salinities in the Xinglinwan Reservoir, located in Xiamen City, southeast China. The obtained results showed that AgNP colloids remained stable in low-salinity waters, which was mainly determined by the effects of dissolved organic matter (DOM) promoting the stability of the nanoparticles. However, the environmental fate of AgNPs in high-salinity waters was dominated by the salinity or ionic strength, especially the free ion concentrations of Cl?, SO42?, or S2?, resulting in rapid sedimentation and dissolution. In addition, both DOM and salinity contributed to the environmental behavior of AgNPs in moderate-salinity waters, ultimately resulting in either colloidal stability or sedimentation. Overall, these results may reveal that AgNPs remain relatively stable for a long period in low-salinity natural waters, and that the stability might gradually decrease as AgNPs are transferred from freshwaters through brackish waters and eventually end up in seawater along the bay. Our findings also further indicate that the toxicity and potential risks of AgNPs may present more serious threats to the environment and organisms in natural freshwaters than in natural estuarine systems or seawater.  相似文献   

8.
使用硼氢化钠还原硝酸银,聚乙烯醇(PVA)作为分散剂,制备出粒径为(7 ± 3)nm的纳米银,分别使用计数法和溶解氧法,研究了纳米银对小球藻(Chlorella vulgaris)生长、光合作用和呼吸作用的影响,并调查了对叶绿素a的抑制状况.结果显示,黑暗条件下加入3mg/L的纳米银,基本抑制了小球藻的呼吸作用,当暴露于4mg/L的纳米银时,小球藻生长的抑制率为93%;而光照条件下加入10mg/L纳米银时,才能抑制其光合作用,此时对小球藻生长的抑制率达到90%.光照时,叶绿素a在10mg/L纳米银的作用下,抑制率达到77%.研究表明了纳米银对小球藻呼吸作用有很强的抑制作用,对光合作用的影响可能通过抑制叶绿素a的合成或破坏叶绿体的结构来完成;光照能够明显减弱纳米银的毒性.  相似文献   

9.
The widely use of silver nanoparticles (AgNPs) as antimicrobial agents gives rise to potential environmental risks. AgNPs exposure have been reported to cause toxicity in animals. Nevertheless, the known mechanisms of AgNPs toxicity are still limited. In this study, we systematically investigated the toxicity of AgNPs exposure using Drosophila melanogaster. We show here that AgNPs significantly decreased Drosophila fecundity, the third-instar larvae weight and rates of pupation and eclosion in a dose-dependent manner. AgNPs reduced fat body cell viability in MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. AgNPs caused DNA damage in hemocytes and S2 cells. Interestingly, the mRNA levels of the entire metallothionein gene family were increased under AgNPs exposure as determined by RNA-seq analysis and validated by qRT-PCR, indicating that Drosophila responded to the metal toxicity of AgNPs by producing metallothioneins for detoxification. These findings provide a better understanding of the mechanisms of AgNPs toxicity and may provide clues to effect on other organisms, including humans.  相似文献   

10.
The antibacterial potential of silver nanoparticles(AgNPs) resulted in their increasing incorporation into consumer,industrial and biomedical products.Therefore,human and environmental exposure to AgNPs(either as an engineered product or a contaminant)supports the emergent research on the features conferring them different toxicity profiles.In this study,30 ran AgNPs coated with citrate or poly(ethylene glycol)(PEG) were used to assess the influence of coating on the effects produced on a human hepatoma cell line(HepG2),namely in terms of viability,apoptosis,apoptotic related genes,cell cycle and cyclins gene expression.Both types of coated AgNPs decreased cell proliferation and viability with a similar toxicity profile.At the concentrations used(11 and 5 μg/mL corresponding to IC50 and-IC10 levels,respectively) the amount of cells undergoing apoptosis was not significant and the apoptotic related genes BCL2(anti-apoptotic gene)and BAX(pro-apoptotic gene) were both downregulated.Moreover,both AgNPs affected HepG2 cell cycle progression at the higher concentration(11 μg/mL) by increasing the percentage of cells in S(synthesis phase) and G2(Gap 2 phase) phases.Considering the cell-cycle related genes,the expression of cyclin B1 and cyclin E1 genes were decreased.Thus,this work has shown that citrate- and PEG-coated AgNPs impact on HepG2 apoptotic gene expression,cell cycle dynamics and cyclin regulation in a similar way.More research is needed to determine the properties that confer AgNPs at lower toxicity,since their use has proved helpful in several industrial and biomedical contexts.  相似文献   

11.
The increasing production and use of engineered silver nanoparticles (AgNP) in industry and private households are leading to increased concentrations of AgNP in the environment. An ecological risk assessment of AgNP is needed, but it requires understanding the long term effects of environmentally relevant concentrations of AgNP on the soil microbiome. Hence, the aim of this study was to reveal the long-term effects of AgNP on soil microorganisms. The study was conducted as a laboratory incubation experiment over a period of one year using a loamy soil and AgNP concentrations ranging from 0.01 to 1?mg?AgNP/kg soil. The short term effects of AgNP were, in general, limited. However, after one year of exposure to 0.01?mg?AgNP/kg, there were significant negative effects on soil microbial biomass (quantified by extractable DNA; p?=?0.000) and bacterial ammonia oxidizers (quantified by amoA gene copy numbers; p?=?0.009). Furthermore, the tested AgNP concentrations significantly decreased the soil microbial biomass, the leucine aminopeptidase activity (quantified by substrate turnover; p?=?0.014), and the abundance of nitrogen fixing microorganisms (quantified by nifH gene copy numbers; p?=?0.001). The results of the positive control with AgNO3 revealed predominantly stronger effects due to Ag+ ion release. Thus, the increasing toxicity of AgNP during the test period may reflect the long-term release of Ag+ ions. Nevertheless, even very low concentrations of AgNP caused disadvantages for the microbial soil community, especially for nitrogen cycling, and our results confirmed the risks of releasing AgNP into the environment.  相似文献   

12.
Silver nanoparticles(AgNPs) have been widely used in many fields,which raised concerns about potential threats to biological sewage treatment systems.In this study,the phosphorus removal performance,enzymatic activity and microbial population dynamics in constructed wetlands(CWs) were evaluated under a long-term exposure to Ag NPs(0,50,and 200 μg/L) for 450 days.Results have shown that Ag NPs inhibited the phosphorus removal efficiency in a short-term exposure,whereas caused no obviously negativ...  相似文献   

13.
Physical, chemical and biochemical properties of silver nanoparticles(AgNPs) depend to a great extent on their size, shape, size distribution, and stabilizers located on their surface. This study focused on two typical stabilizers, namely citrates(cit), low molecular ions protecting nanoparticles by electrostatic repulsion, and polyvinylpyrrolidone(PVP), a hydrophilic, neutral, high molecular polymer protecting nanoparticles by steric stabilization. Natural bacterioplankton was collected from a eutrophic, downtown lake and exposed to five concentrations(0.1–5 mg/L) of AgNPs-PVP and AgNPs-cit. Responses were monitored after 1, 3, 5 and 7 days of exposure, by evaluating the survival rate of bacteria, their respiratory activity, and the general activity of extracellular esterases. A significantly better(greater) survival rate of bacterioplankton was observed in water with an addition of AgNPs-cit. The inhibition of extracellular esterases was observed only in samples containing AgNPs-PVP. The inhibitory effect increased proportionally to the concentration of AgNPs-PVP applied. Within the studied concentration range, there was no statistically significant inhibition of bacterioplankton respiratory activity by AgNPs-PVP and AgNPs-cit.  相似文献   

14.
15.
采用硼氢化钠还原方法制备了不同载银量的银纳米粒子/施氏矿物复合催化剂(AgNPs/Sch),利用扫描电镜(SEM)、X射线能谱(EDS)和X射线衍射(XRD)等测试方法对所制备催化剂的表面形貌、元素组成和物相组成进行了表征,证明了Ag成功负载于施氏矿物上.以甲基橙为目标污染物,硼氢化钠为还原剂,考察了不同载银量施氏矿物对甲基橙的催化降解性能,并探究了载银施氏矿物的投加量、硼氢化钠浓度、 甲基橙初始浓度、溶液初始pH等因素对甲基橙的催化还原降解效果的影响.结果表明,在甲基橙浓度为20 mg?L-1、NaBH4浓度为10 mmol?L-1、初始pH=6条件下,反应90 min后,未载银的施氏矿物对甲基橙的降解率仅为7.5%,然而硝酸银添加量为0.10 g制备的AgNPs/Sch对甲基橙的降解率可达97.0%,该催化剂作为电子介质,能够将电子从还原剂(NaBH4)转移到甲基橙中,进而加速甲基橙的降解.AgNPs/Sch在最佳的实验条件下5次循环性反应后,仍具有较高的催化稳定性.由此可见,载银施氏矿物作为一种新型的催化剂,在有机染料废水净化方面具有良好的应用前景.  相似文献   

16.
以纳米银(AgNPs)为研究对象,Ag+(AgNO3)为对照,通过添加半胱氨酸(L-cysteine)探讨小麦对AgNPs的吸收累积和毒性响应.小麦幼苗于不同浓度的AgNPs悬浮液中培养4h后,根系出现氧化应激反应和细胞膜损伤,丙二醛(MDA)和过氧化氢酶(CAT)含量分别由对照组的(2.9±0.5)nmol/L/mgprot和(8.6±1.2)U/mgprot增加至(4.9±1.5)nmol/L/mgprot和(12.4±1.2)U/mgprot.半胱氨酸缓解了AgNO3对小麦的毒性并使小麦对AgNO3的吸收速率常数从(275.4±12.3)L/(kg×h)降低到(210.8±11.2)L/(kg×h).然而,半胱氨酸并没有缓解AgNPs对小麦的毒性,且AgNPs的吸收速率常数没有显著性变化[(12.6±0.8)和(11.2±0.6)L/(kg×h)].这说明AgNPs对小麦的有效性和毒性不仅来源于其释放的Ag+,还来源于纳米颗粒本身.通过进一步计算AgNPs暴露液中不同形态Ag的吸收速率常数,发现Ag+吸收速率常数最高[(275.4±12.3)L/(kg×h)],Ag-cysteine络合物吸收速率常数次之[(210.8±11.2)L/(kg×h)],纳米颗粒吸收速率常数最低[1.6L/(kg×h)].实验中建立了吸收速率常数预测方程,该方程预测结果与实验观测结果一致,说明该方程能够较好地描述小麦吸收AgNPs的具体过程.  相似文献   

17.
In this present study, we reported broccoli (Brassica oleracea L.) as a potential candidate for the synthesis of gold and silver nanoparticles (NPs) in green chemistry method. The synthesized metal nanoparticles are evaluated their antimicrobial efficacy against different human pathogenic organisms. The physico-chemical properties of gold nanoparticles were analyzed using different analytical techniques such as a UV-Vis spectrophotometer, Field Emission Scanning Electron Microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and a Fourier Transform Infrared spectrophotometer. In addition, gold and silver NP antimicrobial efficacy was checked by disc diffusion assay. UV-Vis color intensity of the nanoparticles was shown at 540 and 450 nm for gold and silver nanoparticles respectively. Higher magnification of the Field Emission Scanning Electron Microscopy image shows the variable morphology of the gold nanoparticles such as spherical, rod and triangular shapes and silver nanoparticles were seen in spherical shapes. The average spherical size of the particles was observed in 24- 38 nm for gold and 30-45 nm for silver NPs. X-ray diffraction pattern confirmed the presence of gold nanoparticles and silver nanoparticles which were crystalline in nature. Additionally, the functionalmetabolites were identified by the Fourier TransformInfrared spectroscopy. IR spectra revealed phenols, alcohols, aldehydes (sugar moieties), vitamins and proteins are present in the broccoli extract which are accountable to synthesize the nanoparticles. The synthesized gold and silver NPs inhibited the growth of the tested bacterial and fungal pathogens at the concentration of 50 μg/mL respectively. In addition, broccoli mediated gold and silver nanoparticles have shown potent antimicrobial activity against human pathogens. © 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.  相似文献   

18.
In this present study, we reported broccoli (Brassica oleracea L.) as a potential candidate for the synthesis of gold and silver nanoparticles (NPs) in green chemistry method. The synthesized metal nanoparticles are evaluated their antimicrobial efficacy against different human pathogenic organisms. The physico-chemical properties of gold nanoparticles were analyzed using different analytical techniques such as a UV–Vis spectrophotometer, Field Emission Scanning Electron Microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and a Fourier Transform Infrared spectrophotometer. In addition, gold and silver NP antimicrobial efficacy was checked by disc diffusion assay. UV–Vis color intensity of the nanoparticles was shown at 540 and 450 nm for gold and silver nanoparticles respectively. Higher magnification of the Field Emission Scanning Electron Microscopy image shows the variable morphology of the gold nanoparticles such as spherical, rod and triangular shapes and silver nanoparticles were seen in spherical shapes. The average spherical size of the particles was observed in 24–38 nm for gold and 30–45 nm for silver NPs. X-ray diffraction pattern confirmed the presence of gold nanoparticles and silver nanoparticles which were crystalline in nature. Additionally, the functional metabolites were identified by the Fourier Transform Infrared spectroscopy. IR spectra revealed phenols, alcohols, aldehydes (sugar moieties), vitamins and proteins are present in the broccoli extract which are accountable to synthesize the nanoparticles. The synthesized gold and silver NPs inhibited the growth of the tested bacterial and fungal pathogens at the concentration of 50 μg/mL respectively. In addition, broccoli mediated gold and silver nanoparticles have shown potent antimicrobial activity against human pathogens.  相似文献   

19.
In order to reduce the level of transmission of diseases caused by bacteria and fungi, the development of antimicrobial additives for use in personal care, hygiene products, clothing and others has increased. Many of these additives are based on metals such as silver and titanium. The disposal of these products in the environment has raised concerns pertaining to their potential harmfulness for beneficial organisms. The objective of this study was to evaluate the influence of the shape, surface chemistry, size and carrier of three additives containing silver and one with titanium dioxide (TiO2) on microcrustacean survival. Daphnia magna was used as a bioindicator for acute exposure test in suspensions from 0.0001 to 10,000 ppm. Ceriodaphnia dubia was used for chronic test in TiO2 suspensions from 0.001 to 100 ppm. D. magna populations presented high susceptibility to all silver based additives, with 100% mortality after 24 hr of exposure. A different result was found in the acute experiments containing TiO2 suspensions, with mortality rates only after 48 hr of incubation. Even on acute and chronic tests, TiO2 did not reach a linear concentration-response versus mortality, with 1 ppm being more toxic than 10,000 ppm on acute test and 0.001 more toxic than 0.01 ppm on chronic assay. Silver based material toxicity was attributed to silver itself, and had no relation to either form (nano or ion) or carrier (silica, phosphate glass or bentonite). TiO2 demonstrated to have a low acute toxicity against D. magna.  相似文献   

20.
To use stabilized nanoparticles(NPs) in water as disinfectants over a very long period, the amount of coating agent(for NP stabilization) needs to be optimized. To this end, silver nanoparticles(Ag-NPs) with two different coating densities of tri-sodium citrate(12.05 and46.17 molecules/nm~2, respectively), yet of very similar particle size(29 and 27 nm, respectively)were synthesized. Both sets of citrate capped NPs were then separately impregnated on plasma treated activated carbon(AC), with similar Ag loading of 0.8 and 0.82 wt.%, respectively. On passing contaminated water(containing 10~4 CFU Escherichia coli/m L of water) through a continuous flow-column packed with Ag/AC, zero cell concentration was achieved in 22 and 39 min, with Ag-NPs(impregnated on AC, named as Ag/AC) having lower and higher coating density, respectively. Therefore, even on ensuring similar Ag-NP size and loading, there is a significant difference in antibacterial performance based on citrate coating density in Ag/AC.This is observed in lower coating density case, due to both:(i) higher Ag~+ ion release from Ag-NP and(ii) stronger binding of individual Ag-NPs on AC. The latter ensures that, Ag-NP does not detach from the AC surface for a long duration. TGA-DSC shows that Ag-NPs with a low coating density bind to AC with 4.55 times higher adsorption energy, compared to Ag/AC with a high coating density, implying stronger binding. Therefore, coating density is an important parameter for achieving higher antibacterial efficacy, translating into a faster decontamination rate in experiments, over a long period of flow-column operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号