首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 75 毫秒
1.
采用中国水泥企业温室气体排放核算方法及政府间气候变化专门委员会的能源使用CO2排放计算方法,将不同粉煤灰替代率下原料及能源使用引起的CO2减排进行核算.结果表明,与燃煤电厂产业共生可减排92.676kgCO2/t水泥.而粉煤灰替代熟料是中国水泥CO2减排的主要部分,与替代生料结合可产生最大CO2减排373.303kg/t水泥.另外,粉煤灰替代部分水泥形成混凝土的碳化作用,到2050年可吸收192.015kgCO2/t水泥.粉煤灰替代后,对余热发电变化及外购清洁电力使用比例增加引起的减排进行预测,发现此项举措可有效促进水泥行业“双碳”目标达成.  相似文献   

2.
生态工业园工业共生网络的构建   总被引:2,自引:0,他引:2  
工业共生网络是生态工业园建设过程中的核心内容。本文以铜陵循环经济工业试验园为例,开展了工业共生网络构建的实证研究。研究内容主要包括:(1)试验园建设背景和产业现状分析;(2)生态产业链(硫化工产业链、冶金产业链、纺织服装产业链、铜延伸加工产业链)的构建;(3)各产业链间在物质、能量和水层面上的耦合共生。最后,从参与共生企业的所有权关系和网络构成方式两方面,对试验园工业共生网络模式的优缺点进行了讨论,并提出进一步完善的建议。  相似文献   

3.
文章主要从产业共生系统的演进阶段、产业共生系统的演进特征、产业共生系统演进的研究方法3个方面进行了综述。在此基础上,指出目前研究中存在的不足并对今后研究进行了展望。  相似文献   

4.
水泥生产过程要排放大量CO2,作为水泥生产大国,中国的水泥碳排放备受世界关注。自2003年新型干法窑在中国水泥企业普及以来,中国水泥产业结构变化巨大,然而国外学者并没有对当前中国的生产现状了解全面,导致在计算中国水泥碳排放量时与实际排放量不符甚至相差较大。该文对中国的水泥生产现状、CO2排放现状、CO2减排现状和CO2减排潜力等方面做了总结和详细分析。分析表明,由于不了解中国水泥生产的主流工艺类型,碳排放因子,替代原燃料使用情况和熟料水泥比等实际情况,国外学者过高估算了中国水泥碳排放量。另外,还指出中国水泥CO2减排措施的采取应符合中国当前的经济和科技发展水平,立即淘汰全部立窑或者采用碳捕捉与封存技术并不适合当前的中国;中国水泥行业CO2减排的主要措施应是原燃料替代,其次是技术改进。  相似文献   

5.
本文在简要介绍区域产业共生循环模式的基础上,以内蒙古乌兰察布市发展为例,分析此模式为区域发展带来的经济、环境、社会等多方面效益,并从企业及社会两个层面分别总结出多项经验与启示,为其他区域应用该模式提供借鉴.  相似文献   

6.
通过采用调查与统计年鉴数据相结合的方法,计算出辽宁省电力行业CO2排放量,结果表明,辽宁省电力行业的CO2排放量为1.52亿t,占辽宁省CO2总排放量的43.80%。其中,大连电力行业的CO2排放量居辽宁省电力行业第1位,铁岭、抚顺和葫芦岛分别排在2、3、4位。并提出削减辽宁省电力行业CO2排放量的措施  相似文献   

7.
中国水泥工业CO2产生机理及减排途径研究   总被引:1,自引:2,他引:1  
根据水泥生产的基本原理和工艺特点,推导出煤燃烧和石灰质原料煅烧时CO2排放因子分别为2.38 t·t-1和0.527 t·t-1;采用水泥工业CO2排放数学模型计算2001-2008年中国水泥工业CO2排放量,并分析了不同的生产技术水平和产品品种结构对CO2,排放量的影响.结果表明:中国水泥工业CO2排放量与单位产品的...  相似文献   

8.
为探究水泥行业的碳中和实现路径,从我国的国情出发,结合水泥行业生产特点,对水泥行业未来低碳发展进行了预测. 结果表明:①在碳中和背景下,水泥行业仍会存在约2×108~3×108 t的CO2排放,产能减量是主要的CO2减排手段,结合现阶段我国较低的水泥集约化程度和较短的熟料生产线服役年限,产能减量政策的推荐和实施应在合理的规划和政策下推进,低碳技术的发展仍是实现碳中和的关键. ②通过能效提升节能技术可实现CO2减排约1.19×108 t/a. ③未来在替代原燃料来源、种类及替代率得到全面提升的情况下,原燃料替代技术可基本实现行业10%的CO2减排量. ④目前,低碳水泥每年产量不足水泥总产量的5%,未来仍需通过产品技术创新,提高其生产及使用占比. ⑤CCUS (CO2捕集、利用与封存)技术是水泥行业实现碳中和的必要路径,混凝土固碳、钙循环等在水泥行业具有典型行业优势的技术可与生产工艺紧密结合,成为未来水泥行业CCUS技术的重要发力点. 研究显示:结合水泥行业CO2减排预测及技术路径分析,短期内我国水泥行业降碳主要思路为控制源头排放,包括流程智能化、余热利用、原燃料替代和产业结构调整等路径,实现碳达峰及CO2减排;中期随着生产线服役年限临近及低碳水泥制备技术的发展,支撑行业碳的大幅削减;后期通过CCUS、富氧燃烧、可再生能源利用等技术来实现水泥行业碳中和的目标.   相似文献   

9.
产业共生是推进全球经济可持续发展的创新途径 ,主要实践载体是以高效的能源利用以及优化的资源配置特点的生态工业园区.目前产业共生研究现状中存在整体缺乏系统和深度,缺少可操作性的定量模型和评估方法及理论与产业实际过程的结合分析较少等问题,未来研究应该在总结大量产业共生实践案例的基础上,逐步建立各层面指标体系及量化方法,制定完善评价标准和综合评估技术,为生态工业园共生模式优化、共生网络稳定性和共生效率评估奠定科学依据.  相似文献   

10.
产业共生     
产业共生理念提倡:工业企业将其产生的废物、副产品、剩余能源、闲置资源以及企业拥有的专项技术、企业可以提供的服务(例如:工程设计、技术咨询、培训等)与区域内有再利用需求的其它企业进行有偿或无偿的转让,  相似文献   

11.
工业共生是循环经济思想实践的重要途径之一,近年来针对国民经济各行业共生模式的理论探讨也越来越多;然而,从实践角度,对各种共生模式在现实中的应用潜力及其现状问题的分析还没有深入展开。文章以燃煤电厂为例,通过现有统计数据分析和政策分析方法,对火电行业及其脱硫产品、热电联产2类共生模式的发展潜力进行了分析。结果发现,全国火电脱硫机组的比例约为80%,然而仅有约50%左右的二氧化硫被去除,其中占脱硫产品90%的脱硫石膏的利用率仅为30%左右,各个环节均有很大的发展空间;此外,热机组仅占全国火电机组装机总容量的18.2%,由于其利用形式多样,发展空间很大;通过梳理2类共生模式相关的政策体系,初步分析了目前可能影响工业共生发展的各种问题。  相似文献   

12.
燃煤工业锅炉可吸入颗粒物的排放特征   总被引:8,自引:5,他引:8  
利用基于荷电低压捕集器(ELPI)的颗粒物排放稀释采样系统,在8个燃煤工业锅炉的除尘器进、出口进行了烟气可吸入颗粒物(PM10)和细微颗粒物(PM2.5)的现场测试. 粒径分布结果表明,在所测粒径范围(0.03~10 μm)内,燃煤工业锅炉产生和排放PM10的粒数浓度和质量浓度均出现1个峰值,峰值粒径大约在0.12~0.20 μm范围内. PM2.5中碳组分和硫酸盐的含量较高,其中有机碳(OC)和元素碳(EC)含量分别为3.7%~21.4%和4.2%~24.6%,硫酸盐含量则在1.5%~55.2%之间. 在无控条件下,燃用原煤的层燃炉的PM10和PM2.5排放因子分别为0.13~0.65 kg·t-1和0.08~0.49 kg·t-1,燃用型煤的链条炉分别为0.24 kg·t-1和0.22 kg·t-1,而循环流化床的PM2.5排放因子为1.14 kg·t-1,明显高于链条炉. 由于耗煤量大,同时现有除尘设备的效率较低,燃煤工业锅炉可能成为我国最重要的PM10排放源,是今后重点控制的对象.  相似文献   

13.
燃煤电厂采用SCR(选择性催化还原)脱硝过程消耗大量的氨,同时存在氨逃逸和氨排放问题.为了掌握超低排放燃煤机组的氨排放程度、脱硝氨逃逸情况以及各环保设施对氨的协同脱除能力,为燃煤电厂氨减排政策制定和氨减排技术研发提供支持.在京津冀大气污染传输通道城市中选取11个城市中的14台机组,采用例如DL/T 260—2012《燃煤电厂烟含脱硝装置性能验收试验规范》的标准方法用稀硫酸吸收烟气中的氨再结合分光光度测试方法,对环保设施多个位置的烟气中氨进行浓度测试.结果表明:①氨排放浓度介于0.05~3.27 mg/m3之间,平均约0.95 mg/m3,通过烟气排入大气中氨的浓度不高;②测试的14台机组中有7台机组(约50%)脱硝氨逃逸值高于设计值(2.28 mg/m3),说明脱硝氨逃逸超过设计值呈普遍现象,个别电厂脱硝氨逃逸严重,氨逃逸亟待解决;③环保设施对逃逸氨具有较好的协同脱除能力,平均脱除率约为64.86%.建议对于SCR脱硝氨逃逸严重的机组,对SCR出口烟道截面氮氧化物(NOx)实施网格式测试,在此基础上实施精细化精准喷氨、优化流场、提高SCR脱硝运行水平(或采用专业化运维),从源头上减少氨耗量,降低系统能耗和氨排放.   相似文献   

14.
通过采集671台次燃煤火电机组NO_x排放实时监控数据,对非超低排放与超低排放机组总体及相应各等级机组启动过程中NO_x排放特征进行了对比分析.结果表明,非超低排放机组启动阶段NO_x超标率为81.53%,平均超标小时数为2.64 h,平均最大排放小时均值为284.06 mg·m~(-3);超低排放机组启动阶段NO_x超标率为79.86%,平均超标小时数为2.52 h,平均最大排放小时均值为231.61 mg·m~(-3);非超低与超低排放机组总体及相应各等级机组间NO_x超标率和平均超标时长无统计学意义上的差异,但平均最大排放小时均值浓度存在显著差异;非超低排放机组中,除300 MW等级机组平均最大排放小时均值浓度显著低于200 MW等级机组外,其余对比组在超标率、超标小时数及平均最大排放小时均值浓度上均无显著差异;不同等级超低排放机组之间在超标率、超标小时数和最大排放小时均值浓度上都有统计学意义上差异的情况, 600 MW等级机组超标时长控制最优, 1 000 MW等级机组排放浓度控制较好.  相似文献   

15.
为研究燃煤电厂在燃煤发电机组结构优化调整和不同末端控制措施条件下PM2.5的排放情况,以2012年为基准年,设计了分阶段、分地区不断优化的控制情景(基准、适中、加严和最严情景),并依据《大气细颗粒物一次源排放清单编制技术指南(试行)》建立的减排潜力模型对2017年、2020年和2030年我国燃煤电厂PM2.5减排潜力及空间分布进行预测分析. 结果表明:通过燃煤发电机组结构优化调整,2017年、2020年和2030年我国燃煤电厂PM2.5排放量与调整前相比可分别减少3.62×104、8.52×104和24.43×104 t,但相对于基准年而言,PM2.5排放量并未减少;进一步结合末端控制措施优化进行控制,PM2.5最大减排潜力(相对于基准年而言)可分别达到59.42×104±7.83×104、82.83×104±5.82×104和81.89×104±6.76×104 t,最高减排比例分别达到66.5%±8.8%、92.8%±6.5%和91.6%±7.6%. 我国各省(市/区)燃煤电厂PM2.5减排潜力与其煤耗量和采取的控制措施有关,燃煤量越大,控制措施越严格,则减排潜力越大. 京津冀、长三角和珠三角地区燃煤电厂在实现超低排放,即最严情景下2017年PM2.5减排潜力分别为5.93×104、12.04×104和4.70×104 t;2017年、2020年和2030年这3个区域PM2.5总减排潜力分别为22.68×104、22.36×104和22.07×104 t. 内蒙古、江苏、山东、广东、河北和山西等地在实施超低排放后,其PM2.5减排潜力均超过4×104 t,并且在全国范围内实施超低排放可显著降低我国燃煤电厂PM2.5排放量.   相似文献   

16.
An analysis of the impacts on Mexican energy demand and associated carbon dioxide (CO2) emissions in the year 2005 due to efficient lighting in the commercial and residential sectors and cogeneration in the industrial sector is presented. Estimation of CO2 abatement costs and an incremental cost curve for CO2 mitigation options are considered. These technologies are cost effective opportunities, and together are projected to reduce CO2 emissions in 2005 by nearly 13 percent. Implementation of efficient lighting is already part of the demand side management (DSM) programs of the Mexican state-owned utility. However, there are important barriers that may hinder the implementation of large scale cogeneration plants.  相似文献   

17.
2007年火电行业温室气体排放量估算   总被引:1,自引:1,他引:1       下载免费PDF全文
为了解我国火电行业温室气体排放情况,参考《IPCC国家温室气体排放清单指南》中固定源燃烧温室气体排放量计算方法学部门方法的相关内容,利用实测的温室气体排放因子以及2007年火电行业活动水平数据,计算火电行业温室气体排放量. 排放因子测算及排放量计算过程均遵循IPCC关于温室气体排放计算的质量保证和质量控制内容. 结果表明,2007年我国火电行业CO2与N2O排放量分别为2.81×109和1.56×105 t.同时使用参考方法,利用国家级能源统计数据直接计算火电行业CO2排放量.将部门方法与参考方法计算结果进行比对发现,原煤、原油和天然气燃烧温室气体排放量2种方法的相对偏差分别为7.5%,98.8%和1.6%,除原油外,原煤和天然气燃烧CO2排放量与参考方法相差并不大.   相似文献   

18.
魏军晓  耿元波  王松 《环境科学学报》2016,36(11):4234-4244
作为水泥生产大国和CO_2排放大户,中国水泥行业的CO_2排放在国际上受到越来越广泛的重视,然而不同的研究结果之间存在不同程度的差异.为了定量研究中国水泥碳排放测算的影响因素,对碳排放因子的测算、运营边界的界定及水泥熟料或水泥成品的产量这3个影响因素做了详细分析,并对碳排放因子的不确定度做了定量计算.结果发现,影响中国水泥碳排放测算的最主要因素是碳排放因子,而该因素又与生产工艺、燃料和熟料水泥比等密切相关.本研究结果比IPCC、EDGAR、CDIAC和WBCSD/CSI等研究结果均低,并且差异逐年显著,以水泥碳排放来自碳酸盐分解的部分为例,2000年相差约65 Mt,而2012年差值接近450 Mt.计算表明,中国水泥碳排放不确定度为12%~22%.因此,水泥碳排放测算的影响因素较多,在计算中国水泥碳排放量时不可照搬国外研究的参数.  相似文献   

19.
燃煤电厂产生和排放的PM2.5中水溶性离子特征   总被引:3,自引:2,他引:3  
为了认识我国燃煤电厂一次PM2.5排放特征,并定量评估大规模开展烟气脱硫与脱硝对其影响,本研究选取了国内一个煤粉炉电厂和一个循环流化床电厂,对其产生和排放的PM2.5进行现场测试,并进行水溶性离子组分的分析.结果表明,在所测的这两个电厂中,循环流化床电厂产生的PM2.5的质量浓度高于煤粉炉电厂产生的PM2.5的质量浓度,但是这两个电厂排放的PM2.5的质量浓度相当.产生此结果的主要原因是该循环流化床电厂配备的电袋复合除尘器比煤粉炉电厂的普通电除尘器对PM2.5去除效率更高.煤粉炉电厂产生PM2.5中水溶性离子浓度低于循环流化床电厂,但是煤粉炉电厂排放PM2.5中水溶性离子浓度却远远高于循环流化床电厂,表明煤粉炉电厂排放的PM2.5受脱硫和脱硝设施的影响较大.煤粉炉烟气脱硝过程中可能形成硫酸雾,烟气中的部分硫酸雾和过剩的NH3反应生成NH4HSO4进入颗粒相,同时降低了PM2.5的p H值;而脱硫过程中脱硫液的夹带也会导致NH+4和SO2-4进入PM2.5.所以,虽然两个电厂产生的PM2.5中水溶性离子均以Ca2+和SO2-4为主,但煤粉炉排放PM2.5中的水溶性离子则以NH+4和SO2-4为主.  相似文献   

20.
工业碳减排绩效及其影响因素动态分解   总被引:1,自引:0,他引:1  
进入21 世纪以来,中国工业碳排放总量仍在波动中增长。为了考查近10 a 来中国工业碳减排绩效,并定量分析影响工业碳减排的主要因素对碳减排的贡献变化情况,论文通过构建中国工业碳排放数据库并运用“精确”的Laspeyres 分解方法,对中国2001-2010 年36 个工业行业CO2减排的影响因素进行了动态分解,研究结果表明:①虽然中国工业CO2排放总量在不断增加,但CO2排放增长率和工业碳排放强度双双降低,在考察周期内,CO2排放总量从2001 年 2.89×109 t 增长到2010 年7.16×109 t,工业碳排放量增长率则从2003 年最高值18.86%持续下降至2009 年的5.77%,工业整体碳排放强度由2001 年的29.14 t/104元下降到2010 年的18.12 t/104 元;②工业经济规模不断增加是工业CO2排放增加的主导因素,技术进步和结构调整则有效抑制了CO2的增加,10 a 间规模效应对CO2排放总量增加的贡献度年均达到191.81%,但是由于受到技术进步效应和结构调整效应的共同作用,10 a 来总效应值年均只有109.15%;③较之技术进步效应,结构调整效应对工业CO2减排的贡献度更大,结构调整效应累计促进碳减排达2.07× 109 t,而技术进步效应促进减排的总量只有1.14×109 t。论文认为,着力中长期减排政策的制定,以保证技术进步在碳减排中持续发挥作用,同时充分挖掘结构调整对减排作用潜力是中国实现工业碳减排的务实选择。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号