首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
南京北郊大气臭氧周末效应特征分析   总被引:4,自引:6,他引:4  
本研究根据2013-12-01~2014-11-30南京北郊臭氧(O_3)及其前体物(NO_x、CO、VOCs)的观测资料,分析了工作日与周末O_3、NO_x、CO和VOCs质量浓度变化的差异及成因.结果表明,南京北郊O_3具有明显的"周末效应":即工作日O_3质量浓度高于周末,前体物质量浓度的变化与之相反;O_3平均质量浓度分别为19.84μg·m~(-3)(冬季)、53.45μg·m~(-3)(春季)、57.17μg·m~(-3)(夏季)和40.43μg·m~(-3)(秋季),春季的周末效应较其它季节更为明显.NO_2/NO工作日与周末分别为3.63和3.46,工作日比周末高4.81%.工作日O_3累积时间更长,O_3累积速率更快,大气氧化性更强,是工作日O_3质量浓度高于周末的原因.VOCs、NO_x、NO和NO_2与O_3质量浓度的相关性均呈现出工作日大于周末的特点.  相似文献   

2.
西安地区夏季臭氧的模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用WRF-CHEM模式对关中地区2015年7月25日至30日的一次O_3污染事件进行了数值模拟。通过与地面观测数据对比发现,WRF-CHEM模式基本上可以合理模拟西安和咸阳城市群O_3和NO_2的质量浓度的时空分布。敏感性试验表明,在臭氧生成的峰值期(12:00—18:00 LT),交通源是城市重要的O_3源,无论在高浓度臭氧条件下还是低浓度臭氧条件下,贡献量都高于15μg?m~(-3),平均贡献量均高于24μg?m~(-3);工业源仅在臭氧峰值生成时期贡献明显;生物源无论在高浓度还是低浓度臭氧的条件下,平均贡献都在16μg?m~(-3)以上;居民源的贡献基本低于10μg?m~(-3);能源生产源有降低O_3质量浓度的作用,但在臭氧生成的峰值时期,能源生产源可以增加O_3质量浓度。随着交通源排放量的增加,O_3的质量浓度逐渐增加,尤其在臭氧的峰值期。在臭氧生成峰值期,当氮氧化物(NOx)减少50%时,除城市中心臭氧浓度略增加,其他地区臭氧质量浓度均在下降;当挥发性有机物(VOCs)减少50%时,城市群内臭氧质量浓度都在下降;当NO_x和VOCs同时减少50%时,臭氧质量浓度都呈现下降趋势,减少量可达20μg?m~(-3)以上。在整个研究区域内,H_2O_2/HNO_3比值均在0.6以上,这表明西安和咸阳城市群属于NO_x控制区。  相似文献   

3.
长江三角洲地区城市臭氧污染特征与影响因素分析   总被引:38,自引:9,他引:29  
为研究长三角地区城市O3污染特征及其影响因素,对长三角地区25个城市2013年国家环境监测点位和国家气象台数据进行了统计分析.结果表明:除淮安外,其余24个城市均存在不同程度的O3日超标现象,超标率在1.6%~15.1%之间,平均为5.8%,低于珠三角地区(8.9%)和京津冀地区(9.7%).5—8月是长三角地区O3污染最为严重的月份,而这一时期颗粒物污染相对较轻,因此,O3与颗粒物污染在时间上呈相反的态势.从空间分布看,长三角地区O3污染呈现较为明显的连片分布特征,上海及周边城市O3污染较重.机动车数量影响城市O3污染:各城市民用汽车保有量与各城市NO2年均浓度、O3超标天数有显著的相关性,相关系数分别为0.672和0.564;每日O3小时浓度高峰值与车流量高峰基本吻合.高温、长时间日照容易出现O3浓度的高值;随着相对湿度、风速的增加,O3超标频率和浓度均值都表现为先升后降的规律.  相似文献   

4.
对2006~2015年北京市定陵、官园、琉璃河和前门这4个站点的O3连续监测数据进行分析,探讨其浓度水平、变化趋势、时间变化规律以及和前体物、气象要素的关系.结果表明,定陵站十年平均浓度水平最高(65.2 μg·m-3),其次为琉璃河(53.4 μg·m-3)、官园(49.6 μg·m-3)和前门(40.4 μg·m-3).定陵O3浓度呈下降趋势[0.5 μg·(m3·a)-1],而官园[0.9 μg·(m3·a)-1]、琉璃河[0.3 μg·(m3·a)-1]和前门[0.3 μg·(m3·a)-1]均呈上升趋势.从月变化来看,各站点O3浓度最高值均出现在6~8月,出现频次最高的为7月(17次),平均月均浓度为99.8 μg·m-3;最低值均出现在11、12月和1、2月,出现频次最高的为1月(14次),平均月均浓度为16.6 μg·m-3.从日变化来看,近年来O3浓度峰值出现的时间明显提前,近3年峰值均在15:00~16:00出现,提前了1~2 h.2015年定陵站O3重污染天数达到11 d,比2013年增加了10 d,表明近年来夏季北京下风向山区的O3重污染状况愈发严重.与前体物的相关性分析表明,定陵站O3浓度与NO2浓度呈正相关,其余站点两者浓度均呈负相关,暗示定陵站O3生成的前体物控制区可能为NO2控制区,而其他站点为VOCs控制区.与气象要素的相关性分析表明,O3浓度与温度呈正相关关系,与湿度和气压呈负相关关系,温度对O3浓度的影响最大,其次是气压和湿度.当日最高温度超过30℃,相对湿度介于30%至70%之间时,北京市O3日最大8 h滑动平均浓度超过200 μg·m-3的概率较高,空气质量级别会达到轻度至中度污染的级别.  相似文献   

5.
杭州市臭氧污染特征及影响因素分析   总被引:5,自引:0,他引:5  
为研究杭州市夏季臭氧(O_3)污染特征及其影响因素,统计分析了2013—2016年杭州市O_3监测数据与杭州市气象数据,并结合AIRS卫星O_3数据探讨了台风天气系统对杭州市近地面O_3浓度的影响.结果表明:2013—2016年,杭州市O_3污染逐年加重,O_3浓度高值持续时间延长.O_3浓度与太阳辐射、温度相关,每年5月和8月太阳辐射强、温度高,O_3污染最严重;全天O_3浓度呈单峰日变化,峰值出现在午后(~14:00)太阳辐射较强、温度最高时.杭州市在日降水为0且12:00—15:00太阳辐射通量均值高于200 W·m~(-2)天气条件下,风向为东、东北或东南风且风速低于3 m·s~(-1)时,O_3浓度相对较高,易出现超标情况.台风天气系统对杭州市近地面O_3浓度有明显影响,以2014年10号台风"麦德姆"为例,台风外围系统影响到杭州时,偏东气流可将杭州以东地区高浓度O_3输送到杭州,同时下沉气流导致污染物在近地层积聚不易扩散,造成近地层O_3浓度升高.  相似文献   

6.
邯郸市大气复合污染特征的监测研究   总被引:6,自引:2,他引:6  
利用邯郸市4个大气环境监测站点的PM2.5、PM10、O3等在线连续观测数据,对2013年全年的PM2.5、PM10、O3的浓度水平、变化规律和PM2.5/PM10的变化情况进行了分析,并从地形、气象、污染物排放及冬、夏季逐时PM2.5、O3和各类气体污染物浓度之间的关系等方面进行了研究.结果表明:12013年PM2.5、PM10的年均浓度分别为139和238μg·m-3,分别是国家二级标准的4.0倍和3.4倍.PM2.5、PM10日均浓度超过标准的天数均在280 d左右,全年3/4以上天数均超标.其颗粒物污染程度甚至超过北京、天津、长三角和珠三角等超大城市或城市群,属于严重超载的红色预警地区.整个采暖期PM2.5、PM10平均浓度分别为209和322.1μg·m-3,为非采暖期平均浓度的2倍和1.6倍;同时,采暖期PM2.5/PM10平均值为63%,高出非采暖期10%,采暖期细颗粒物污染问题特征明显.22013年O3日最大8小时平均浓度的最大值为238μg·m-3,是国家二级标准的1.5倍,超标天数为53 d,超标率为14.5%;最大时均浓度为288μg·m-3,是国家二级标准的1.4倍,超标小时数为148h,占全年有效数据的1.7%;与北方城市相比,其污染程度超过北京、天津等,略低于洛阳污染水平.3邯郸市大气复合污染的形成,除了区域大气环流与特殊地形叠加影响外,还主要归因于相对较高的人为源大气污染物排放,因此,要想走出复合污染的困局,减排是硬道理,解决灰霾污染需开展颗粒物、NOx、SO2等污染物的协同控制.  相似文献   

7.
关中城市群发展基础较好和开发潜力较大,是中国西部地区的重要经济和文化中心. 近年来关中地区空气质量的持续改善受到了近地面臭氧(O3)问题的显著影响,为采取有效措施防治O3污染,基于2018~2021年环境监测数据分析关中地区O3浓度年、月及日变化等特征规律;采用地理探测器研究O3浓度空间分异的驱动因素,通过后向轨迹模型和排放因子法等方法解析O3来源. 结果表明,关中地区O3浓度日、月变化呈单峰型特征,日最高值出现在15:00,最低值出现在07:00,月均峰值出现在6月,谷值出现在12月,O3浓度夏季最高,春季次之、冬季最小;O3超标天数中以轻度污染为主,且中度及以上污染呈先下降后增加趋势;关中地区O3浓度主要与前体物和气象因素关系密切,且各因子交互作用的解释力显著大于单一因子;关中地区O3浓度区域传输主要受偏东向气流影响,其次是西北方向,潜在源区主要在河南省和湖北省;挥发性有机物(VOCs)本地主要来源为溶剂使用源、工艺过程源和移动源,氮氧化物(NOx)主要排放源为移动源和工业生产燃烧源. 研究结果对关中地区O3科学防控具有指导意义.  相似文献   

8.
基于Aura/OMI卫星资料,分析了上海地区2007—2016年近十年对流层低层O_3浓度(0~3 km)、SO_2柱浓度和硫酸盐气溶胶光学厚度(0~2 km)时空演变特征.结果表明,近十年来上海地区臭氧浓度总体呈现上升的趋势,最低值在2008年,为31.57μg·m~(-3),最高值在2016年,浓度为40.72μg·m~(-3);O_3季节变化明显,夏季高、春秋次之、冬季低.十年来,硫酸盐气溶胶污染先减少后增加,2007年硫酸盐气溶胶(AOD=0.81)污染最为严重,占近十年硫酸盐气溶胶发生频率的16.41%,2010年污染最轻(AOD=0.68),比2007年下降了16.12%,且硫酸盐气溶胶污染频率为7.68%,但在2013年以后,硫酸盐气溶胶污染又出现增长趋势;污染季节特征与O_3相同,这主要是因为夏季阳光充足有利于大气光化学反应的进行,从而使O_3和硫酸盐气溶胶等光化学产物的浓度升高.SO_2浓度在2007—2014年总体呈现下降的变化趋势,且下降趋势明显,最低值(2014年)比最高值(2007年)降低了52.76%,但在2014年后SO_2浓度略有反弹;SO_2污染主要集中在冬季.  相似文献   

9.
乌海市是我国典型的煤焦化工业基地,大气污染物排放总量较大且近年来夏季O3污染问题逐渐突出,明确大气污染物排放特征,探究O3污染形成机制是客观认识其O3污染现状,科学制定污染控制措施的基础.基于"系数法"采用自下而上的方式构建了2018年乌海市高分辨率大气污染源排放清单(HEI-WH18),利用WRF-Chem对HEI-WH18的适用性和准确性进行评估,并结合模式诊断模块探究了乌海市夏季O3污染形成的原因.排放清单结果表明,2018年乌海市SO2、NOx、CO、PM10、PM2.5、VOCs、NH3、BC和OC的排放总量分别为65943、40934、172867、159771、47469、69191、1407、1491和1648 t ·a-1.与MEIC清单相比,利用HEI-WH18能更好地捕捉到O3及其前体物的排放变化规律和量级,适用于乌海市夏季O3的模拟及其来源分析研究.从O3及前体物的空间分布来看,乌海市海勃湾城区白天为O3高值区,3个工业园区无论白天和夜间均为O3低值区和NO2高值区,CO的空间分布特征与煤层及矸石堆自燃源一致.根据对O3污染过程的诊断分析,边界层中高层O3浓度的升高主要是平流输送和化学过程共同作用的结果,低层O3浓度的升高是垂直混合和平流输送导致的,化学过程在低层的贡献较为复杂,其正贡献起到了维持高O3浓度的作用,负贡献结合平流输送造成了O3污染的最终消散.  相似文献   

10.
为解决鹤壁市臭氧(O3)污染问题,基于2022年夏季(6~9月)常规污染物及挥发性有机物(VOCs)在线小时分辨率监测数据,采用OFP-PMF源解析-EKMA相结合的方法,进行O3污染及其前体物VOCs来源与减排的污染控制策略分析. 结果表明,O3多发生于高温低湿低压条件,芳香烃和含氧挥发性有机物(OVOCs)对臭氧生成潜势(OFP)及VOCs组分贡献较大,是活性和浓度优势物种. 源解析结果表明机动车尾气源(25.3%)是鹤壁市VOCs的主要来源,其次是工艺过程源(17.7%)和生物质燃烧源(17.6%). 因此,与化石燃料及工业生产相关的排放源是鹤壁市大气VOCs的亟待控制源. 在O3污染时期,鹤壁市臭氧生成处于VOCs控制区,基于EKMA的减排模拟结果显示,对VOCs和氮氧化物(NOx)进行协同减排,且VOCs减排75%和NOx减排10%时可以达到国家环境空气质量二级标准.  相似文献   

11.
上海市夏季颗粒物污染过程数值模拟研究   总被引:2,自引:1,他引:2  
利用观测资料和嵌套网格空气质量模式(Nested Air Quality Prediction Model System,NAQPMS)模拟研究了2010年7月26日—8月26日上海市及周边城市PM10、PM2.5及其无机盐组分的浓度变化趋势及时空分布特点.结果表明,NAQPMS模式较为合理的重现了上海各方位站点及其周边城市PM10、PM2.5及其硫酸盐、硝酸盐等无机化学组分的浓度水平与变化趋势,相关系数在0.7以上.研究期间造成上海颗粒物污染的主要原因是:弱气旋低压系统控制下,西南或西北气流将内陆污染物输送至上海市,当低压中心移至上海附近时带来的辐合气流使得污染进一步累积上升.长三角地区PM2.5主要无机盐组分分布特征表明,上海市及周边城市的硫酸盐、硝酸盐和铵盐的总和占PM2.5浓度的40%~60%,二次气-粒转化过程贡献明显,且以SO2向SO2-4的氧化转换为主;污染上升过程中NO-3/SO2-4比率增大,说明流动源的贡献有所增加.  相似文献   

12.
石家庄市臭氧污染的时空演变格局和潜在源区   总被引:5,自引:0,他引:5  
基于石家庄市46个国控、省控环境自动监测站在2019年4—10月的大气O3-8 h和O3-1 h浓度数据,在对其进行反距离加权插值(IDW)的基础上,分析了石家庄市域5—9月O3浓度月度和时域空间演变格局,并结合全球资料同化系统(GDAS)气象资料和大气污染物数据(PM2.5、NO2、PM10、SO2及CO),进行了空间自相关和后向轨迹分析,探讨了石家庄市O3污染的空间积聚特征和潜在源区分布.结果表明:(1)石家庄市域大气O3稳定程度较低,5—9月变动呈以6月为峰值的单峰型态势,时域变化呈以15:00—16:00为峰值的单峰型趋势;(2)5—9月O3浓度为207~260μg·m-3,呈中西部高、外围区域低的空间格局;O3质量浓度在0:00—6:00呈西北至东南向降幅逐渐增加的趋势,在6:00—12:00和12:00—15:00...  相似文献   

13.
The reaction mechanism of ozone (O3) addition to the double bonds of gas phase keto-limonene was investigated using ab initio methods. Two different possibilities for O3 addition to the double bond were considered and two corresponding van derWaals complexes (Complex 1 and Complex 2) were found for 1-endo and 2-endo. The rate constants were calculated using the transition state theory at the CCSD(T)/6-31G(d) + CF//B3LYP/6-31G(d,p) level. The high-pressure limit of the total rate constant at 298 K was 3.51 × 10-16 cm3/(molecule sec), which was in a good agreement with the experimental data.  相似文献   

14.
上海市臭氧污染的大气环流客观分型研究   总被引:4,自引:0,他引:4  
利用T-mode主成分分析法(PCT)对上海2013—2017年3—10月925 hPa低层位势高度和全风速场进行大样本客观分型,总结了有利于和不利于促发上海地面臭氧污染的大气环流类型.发现有利于促发臭氧污染的环流形势都和副高有关,分别为副高控制(HC)和副高西北侧(HW),对应的臭氧超标率分别为68%和24.2%.前者的气象特点表现为辐射最强、温度最高有利于臭氧的光化学生成,臭氧浓度较弱副高形势平均偏高约50%;而后者以西向风为主,呈现明显的输送效应.相反不利于促发臭氧污染的环流类型都和低值系统相关,分别为低压北侧(LN)、低压东侧(LE)和低压西侧(LW),臭氧超标率均低于7%.其中LN影响下上海水平风速最大、扩散条件最好,不利于臭氧积聚;LE和LW影响下上海多云雨天气导致辐射降低,抑制了臭氧的光化学生成.  相似文献   

15.
Effects of elevated O3 on the yields of rice and winter wheat were studied by using open-top chambers(OTCs).Results showed that compared to the control treatment,200 ppb,100ppb,50ppb treatments caused a 80.4%,58.6%and 10.5% decrease in grain yields per winter wheat plant and a 49.1%,26.1% and 8.2% decrease in grain yield per rice plant,respectively.According to the dose-response relation educed from OTCs experiment and the monitor data of O3 concentrations in spots,it was estimated that the yield losses of rice and winter wheat resulted by O3 pollution in the Yangtze River Delta region in 1999 were 0.599 million ton and 0.669 million ton,economic losses were 0.539 billion RMB Yuan and 0.936 billion RMB Yuan,respectively.  相似文献   

16.
2013年12月上海市PM2.5重污染过程数值模拟研究   总被引:1,自引:0,他引:1  
基于2013年11月30日-12月13日上海一次PM2.5重污染过程,利用Model-3/CMAQ模式及过程分析技术,定量评估不同时段各大气过程对上海PM2.5浓度变化的影响.结果表明:Model-3/CMAQ模式系统能较好的模拟出实况PM2.5的浓度变化趋势与特点.研究期间,白天源排放的增强和大气传输的影响、加上较强的气溶胶和云过程生成贡献,是造成上海PM2.5浓度上升至重污染的主要原因.不同污染时段对PM2.5浓度上升贡献率最大的过程均为输送,其中,西北部点位(青浦淀山湖和虹口凉城输送)的贡献率最大,且重污染时段输送的贡献率明显高于非重污染时段.  相似文献   

17.
Ambient volatile organic compounds pollution in China   总被引:1,自引:0,他引:1  
Owing to rapid economic and industrial development, China has been suffering from degraded air quality and visibility. Volatile organic compounds (VOCs) are important precursors to the formation of ground-level ozone and hence photochemical smog. Some VOCs adversely affect human health. Therefore, VOCs have recently elicited public concern and given new impetus to scientific interest. China is now implementing a series of polices to control VOCs pollution. The key to formulating policy is understanding the ambient VOCs pollution status. This paper mainly analyzes the species, levels, sources, and spatial distributions of VOCs in ambient air. The results show that the concentrations of ambient VOCs in China are much higher than those of developed countries such as the United States and Japan, especial benzene, which exceeds available standards. At the same time, the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) of various VOCs are calculated. Aromatics and alkenes have much higher OFPs, while aromatics have higher SOAFP. The OFPs of ambient VOCs in the cities of Beijing, Guangzhou and Changchun are very high, and the SOAFP of ambient VOCs in the cities of Hangzhou, Guangzhou and Changchun are higher.  相似文献   

18.
台风“妮妲”过程对广州臭氧浓度的影响分析   总被引:3,自引:0,他引:3  
为研究台风天气系统对广州地区臭氧浓度的影响,选取2016年7月27日—8月2日台风"妮妲"过程,结合气象要素资料和空气质量数据进行了分析.结果表明:①7月27日—8月2日台风过程期间,7月27—29日和8月1—2日空气质量未超标,7月30日和31日分别达到轻度污染和中度污染,首要污染物均为O_3,其中,31日O_3小时浓度峰值达293μg·m~(-3),O_3_8 h (8 h滑动平均)浓度达249μg·m~(-3),期间PM_(2.5)及前体物NO_2和CO浓度也略有升高,但总体升幅不大,都在良范围内.②台风过程期间,O_3浓度与温度、风速呈正相关(p0.01),与气压、相对湿度呈负相关(p0.01).高温低湿、风速1.0~2.0 m·s~(-1)、气压低有利于大气光化学反应,容易导致O_3浓度超标.③受台风外围下沉气流影响,大气存在垂直输送;同时混合层顶低,30日和31日混合层高度白天最高在1300 m以下,夜间在200 m左右,最低不足60 m;同时,2 km高度内均有持续逆温存在,逆温高度主要在700 m以下.地面处于均压场,同时存在逆温,大气层结稳定,使得污染物在近地层堆积不易扩散,导致O_3浓度超标.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号