首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentrations of dissolved and particle-associated n-alkanes, phthalates and polycyclic aromatic hydrocarbons (PAHs) were measured in sea surface microlayer (SML) and sub-surface water (SSL) samples collected in the coastal area of Terra Nova Bay, Antarctica, during the Austral spring 1998/1999. SML concentrations of the selected organic compounds were higher than SSL values and the enrichment factors were greater in the particulate phase than in the dissolved phase. During the same campaign, "fresh" snow samples, collected at different altitudes (from sea level up to 2670 m) near the coast on Mt Melbourne, immediately after a snowy event, were analysed in order to provide more information on air/sea exchange processes. The same classes of organic compounds found in sea water were also present in "fresh" snow samples. The surfactant fluorescent organic matter (SFOM), adsorbed on the microdrop aerosol surface, could be considered the main constituent of the enrichment and the carrier at higher altitudes of organic compounds. In fact, hydrocarbons (n-alkanes and PAHs), which are not surfactants like phthalates, could interact with SFOM and follow the same fate.  相似文献   

2.
Atmospheric polycyclic aromatic hydrocarbons (PAHs) mainly originate from incomplete combustion or pyrolysis of materials containing carbon and hydrogen. They exist in gas and particle phases, as well as dissolved or suspended in precipitation (fog or rain). Current studies in atmospheric PAHs are predominantly focused on fog and rainwater samples. Some sampling difficulties are associated with fog samples. This study presented the first observation of the characteristics of PAHs in fog samples using a solid phase microextraction (SPME) technique. Eighteen fog samples were collected during ten fog events from March to December 2009 in the Shanghai area. PAHs were extracted by SPME and analyzed by gas chromatography-mass spectrometry (GC-MS). As the compounds were partially soluble in water, with solubility decreasing with increasing molecular weight, low molecular weight (LMW) PAH compounds were universally found in the fog water samples. Naphthalene (NaP), phenanthrene (Phe), anthracene (Ant) and fluoranthene (Flo) were dominant compounds in fog water. The total PAH concentration in fog water ranged from 0.03 to 6.67 μg L(-1) (mean of 1.06 μg L(-1)), and was much higher in winter than in summer. The concentration of PAHs in fog or rain water decreased after undergoing a pre-rain or pre-fog wash. The average concentration of PAHs was higher in fog than in rain. Diagnostic ratio analysis suggested that petroleum and combustion were the dominant contributors to PAHs in urban Shanghai. Backward trajectories were calculated to determine the origin of the air masses, showing that air masses were mostly from the northeast territory.  相似文献   

3.
Atmospheric particulate and gaseous polycyclic aromatic hydrocarbons (PAHs) samples were collected from an urban area in Dokki (Giza) during the summer of 2007 and the winter of 2007–2008. The average concentrations of PAHs were 1,429.74 ng/m3 in the particulate phase, 2,912.56 ng/m3 in the gaseous phase, and 4,342.30 ng/m3 in the particulate + gaseous phases during the period of study. Dokki has high level concentrations of PAH compounds compared with many polluted cities in the world. The concentrations of PAH compounds in the particulate and gaseous phases were higher in the winter and lower in the summer. Total concentrations of PAHs in the particulate phase and gaseous phase were 22.58% and 77.42% in summer and 36.97% and 63.03% in winter of the total (particulate + gaseous) concentrations of PAHs, respectively. The gaseous/particulate ratios of PAHs concentration were 3.43 in summer and 1.71 in winter. Significant negative correlation coefficients were found between the ambient temperature and concentrations of the total PAHs in the particulate and gaseous phases. The distribution of individual PAHs and different categories of PAHs based on aromatic ring number in the particulate and gaseous phases during the summer and winter were nearly similar, indicating similar emission sources of PAHs in both two seasons. Benzo(b)fluoranthene in the particulate phase and naphthalene in the gaseous phase were the most abundant compounds. Diagnostic concentration ratios of PAH compounds indicate that these compounds are emitted mainly from pyrogenic sources, mainly local vehicular exhaust emissions. Health risks associated with the inhalation of individual PAHs in particulate and gaseous phases were assessed on the basis of its benzo(a)pyrene equivalent concentration. Dibenzo(a,h)anthracene and benzo(a)pyrene in the particulate phase and benzo(a)pyrene and benzo(a)anthracene in the gaseous phase were the greatest contributors to the total health risks. The relative mean contributions of the total carcinogenic activity (concentrations) of all PAHs to the total concentrations of PAHs were 29.37% and 25.15% in the particulate phase and 0.76% and 0.92% in the gaseous phase during the summer and winter, respectively. These results suggest that PAHs in the particulate phase in the ambient air of Dokki may pose a potential health risk.  相似文献   

4.
In this paper, improvements obtained by using focused microwaves for extraction, in the analysis of polycyclic aromatic hydrocarbons (PAHs) adsorbed on particulate matter, are discussed. The method was tested on the following PAHs, which are considered to be among the most harmful with regard to carcinogenicity: benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene. The extraction of PAHs and concentration of the sample can be performed in 3 h with a recovery of at least 70% and a maximum standard deviation of 4%. These steps are followed by clean-up on a SPE (solid-phase extraction) cartridge and analysis by GC-MS. Real samples collected in the urban area of Bari were analysed according to the proposed procedure.  相似文献   

5.
Sediments from twelve sea lochs on the west coast of Scotland were analysed for parent and branched 2- to 6-ring polycyclic aromatic hydrocarbons (PAHs), n-alkanes and geochemical biomarkers (triterpanes). Where possible at least fourteen sediment samples were collected at random from each sea loch. All sea lochs were remote, most had limited industrial and urban inputs, although all had fish farms. Four lochs had moderate total PAH concentrations and eight lochs had high total PAH concentrations. Total PAH concentration was related to organic carbon content and particle size distribution, with sandier sediments having lower PAH concentrations. The highest total PAH concentrations, normalised for organic carbon, were in Loch Linnhe and Ballachulish Bay (Loch Leven), close to an aluminium smelter. PAH concentration ratios showed that pyrolysis was the main source of PAHs in most lochs. Only sediments from Loch Clash showed evidence of petrogenic input based on their geochemical biomarker (triterpane and sterane) and n-alkane profiles. PAH profiles were similar across lochs apart from Loch Linnhe and Ballachulish Bay, which had a greater proportion of heavy parent PAHs. West coast sediments had a smaller proportion of heavy PAHs than sediments collected from voes in Shetland and a smaller proportion of alkylated PAHs relative to sediments collected from coastal waters around Orkney.  相似文献   

6.
A comparison between the sampling and analytical methods used by Canadian (IADN) and German (OSPAR) regional monitoring networks for persistent organic pollutants was conducted from September 2002 to October 2003 at a rural site in Ontario, Canada. Polycyclic aromatic hydrocarbons (PAHs) and the currently-used pesticide lindane were measured in precipitation and ambient air samples. Overall the two networks sampling and analytical methods agreed well in their results of deposition (wet and dry particulate). Lindane concentrations between the two networks agreed well in the air samples while too few precipitation samples could be compared to conclude on agreement. The lindane seasonal profile with a peak in spring-early summer was consistent with previous results pointing to the continued use of this pesticide in 2002-2003 in Canada. Annual lindane wet depositions were comparable between the two network methodologies. PAHs concentrations in precipitation and in gas phase agreed well while there was a discrepancy for particulate PAHs in air. This study confirmed that the use of data from the two regional POPs monitoring networks for hemispherical modelling studies is warranted.  相似文献   

7.
Exposure to diesel exhaust was evaluated in summer and winter by measuring vapour and particle phase polycyclic aromatic hydrocarbons (PAHs). Fifteen PAHs were simultaneously determined from the air samples obtained from truck drivers collecting household waste and maintenance personnel at a waste handling centre. The major compounds analysed from the personal air samples of exposed workers were naphthalene, phenanthrene and fluorene. The total PAH exposure (sum of 15 PAHs) of garbage truck drivers ranged from 71 to 2,660 ng m(-3) and from 68 to 900 ng m-3 in the maintenance work. The exposure of garbage truck drivers to benzo[a]pyrene (B[a]P) ranged from the mean of 0.03 to 0.3 ng m(-3) whereas no B[a]P in control samples or in those collected from maintenance workers was detected. A statistically significant difference in diesel-derived PAH exposure between the garbage truck drivers and the control group in both seasons (in summer p = 0.0022, degrees of freedom (df) 70.5; and in winter p < 0.0001, df = 80.4) was observed. Also, a significant difference in PAH exposure between the garbage truck drivers and the maintenance workers (in summer p < 0.0001, df = 50.1; and in winter p < 0.0001, df = 44.2) was obtained.  相似文献   

8.
A composite random sampling design was used to estimate the concentrations of hydrocarbons in sediments from two near-shore areas of Scotland (Firth of Clyde and Firth of Forth). The aim of this work was to estimate a mean value for each parameter in these areas, and to determine whether this can be done with more thorough coverage (better representation), better precision and less variance at lower analytical cost through a composite random sampling scheme rather than a simple random sampling scheme, and thereby contribute to the re-design of the UK National Marine Monitoring Programme (NMMP), re-named the UK Clean Seas Environmental Monitoring Programme (CSEMP) in 2006. Samples were collected using a simple random sampling design during 2005. All sediment samples were analysed for their particle size distribution and total organic carbon (TOC). All sediments were analysed for polycyclic aromatic hydrocarbons (PAHs) and n-alkanes. The concentrations of PAHs and n-alkanes in the study areas are described, and sources of PAHs were investigated through the PAH distributions and n-alkane profiles. Individual sediment samples from each area were combined to give a series of composite sub-samples, each comprised of 5 individual sediment samples. These composite samples were re-analysed for the same parameters as the individual samples. Mean total PAH (2- to 6-ring parent and branched) concentrations, based on the individual original sediment samples collected through simple random sampling, were 1858 microg kg(-1) dry weight (SE = 196 microg kg(-1) dry weight, n = 25) and 532.4 microg kg(-1) dry weight (SE = 59 microg kg(-1) dry weight, n = 25) in the Clyde and Forth, respectively. Mean total PAH concentrations of the composite samples were 1745 microg kg(-1) dry weight (SE = 121.0 microg kg(-1) dry weight, n = 5) in the Clyde and 511.6 microg kg(-1) dry weight (SE = 37.4 microg kg(-1) dry weight, n = 5) in the Forth. No significant differences were found between the mean PAH concentrations from the two sampling designs. This study demonstrated that the composite random sampling design gave a mean value with less variance than the simple random sampling design, at significantly reduced analytical effort (and cost).  相似文献   

9.
Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants derived from pyrolysis and pyrosynthesis processes. Industrial activity, motor vehicle emission, and domestic combustion are the main sources of PAHs in the urban atmosphere. In this work, samples collected during the day and night in the urban area of Sarajevo are analyzed separately for gaseous and particle-bound PAHs; the possible origin of PAHs at the receptor site was suggested using different methods applied to the solid phase and to the total PAHs (gaseous + particulate phase). Finally, the risk level in Sarajevo associated to the carcinogenic character of the studied PAHs has been assessed. The result of this study suggests that (a) the total PAH concentrations were higher than those reported in other European cities; (b) the PAH daytime concentrations are higher than nocturnal concentrations: the sum of the PAH day/night ratios is 1.52 (gas) and 1.45 (particle phase); (c) stationary combustion and traffic were suggested to be the main sources of PAHs; (d) the average particle-bound benzo(a)pyrene (BaP) concentration (5.4 ng/m3) is higher than EU target annual value (1 ng/m3); and (e) PAH cancer risk exceeds the carcinogenic benchmark level recommended by the EPA mainly due to BaP during both the day and night periods.  相似文献   

10.
Commercial cooking emissions are important air pollution sources in a heavily urbanized city. Exhaust samples were collected in six representative commercial kitchens including Chinese restaurants, Western restaurants, and Western fast-food restaurants in Hong Kong during peak lunch hours. Both gaseous and particulate emissions were evaluated. Eight gaseous and twenty-two particulate polycyclic aromatic hydrocarbons (PAHs) were quantified in this study. In the gaseous phase, naphthalene (67-89%) was the most abundant PAH in all of the exhaust samples. The contribution of acenaphthylene in the gaseous phase was significantly higher in emissions from the Chinese restaurants, whereas fluorene was higher in emissions from the Western cooking style restaurants (i.e., Western restaurants and Western fast-food restaurants). Pyrene is the most abundant particulate PAH in the Chinese restaurants (14-49%) while its contribution was much lower in the Western cooking style restaurants (10-22%). Controlled cooking conditions were monitored in a staff canteen to compare the emissions from several different local cooking styles, including deep frying, steaming, and mixed cooking styles (combination of steaming and frying). Deep frying produced the highest amount of total gaseous PAHs, 6 times higher than the steaming. However, steaming produced the highest particulate emissions. The estimated annual gaseous PAH emissions for the Chinese restaurants, Western restaurants, and Western fast-food restaurants were 255, 173, and 20.2 t y(-1) whereas 252, 1.9, and 0.4 t y(-1) were estimated for particulate phase PAH emissions. The study provides useful information and estimates for PAH emissions from commercial cooking exhaust in Hong Kong.  相似文献   

11.
Inhalation of emissions from petrol and diesel exhaust particulates is associated with potentially severe biological effects. In the present study, polycyclic aromatic hydrocarbons (PAHs) were identified from smokes released by the automobile exhaust from petrol and diesel. Intensive sampling of unleaded petrol and diesel exhaust were done by using 800-cm3 motor car and 3,455-cm3 vehicle, respectively. The particulate phase of exhaust was collected on Whatman filter paper. Particulate matters were extracted from filter paper by using Soxhlet. PAHs were identified from particulate matter by reverse phase high performance liquid chromatography using C18 column. A total of 14 PAHs were identified in petrol and 13 in case of diesel sample after comparing to standard samples for PAH estimation. These inhalable PAHs released from diesel and petrol exhaust are known to possess mutagenic and carcinogenic activity, which may present a potential risk for the health of inhabitants.  相似文献   

12.
Air pollution has become a serious problem in the Pearl River Delta, South China, particularly in winter due to the local micrometeorology. In this study, atmospheric polycyclic aromatic hydrocarbons (PAHs) were monitored weekly in Shenzhen during the winter of 2006. Results indicated that the detected PAHs were mainly of vapor phase compounds with phenanthrene dominant. The average vapor phase and particle phase PAHs concentration in Shenzhen was 101.3 and 26.7 ng m???3, respectively. Meteorological conditions showed great effect on PAH concentrations. The higher PAHs concentrations observed during haze episode might result from the accumulation of pollutants under decreased boundary layer, slower wind speed, and long-term dryness conditions. The sources of PAHs in the air were estimated by principal component analysis in combination with diagnostic ratios. Vehicle exhaust was the major PAHs source in Shenzhen, accounting for 50.0% of the total PAHs emissions, whereas coal combustion and solid waste incineration contributed to 29.4% and 20.6% of the total PAHs concentration, respectively. The results clearly indicated that the increasing solid waste incinerators have become a new important PAHs source in this region.  相似文献   

13.
Total suspended particulate (TSP) samples were collected weekly over a period of one year at four European sites during 1995/6. Two sites were in London-a Central London site (CL, St Paul's Cathedral) and a suburban North London site (NL, Bounds Green); the other two sites were in Porto, Portugal and Vienna, Austria. TSP was collected using a low volume sampler. Organic carbon (OC) and elemental carbon (EC) concentrations were measured using a thermal-optical carbon analyser. Parallel samplers collected TSP for subsequent GC-MS analysis of thirty-nine combustion-associated organic compounds; 16 polyaromatic hydrocarbons (PAHs) and 23 n-alkanes. OC and EC correlate well at all sites (r2 = 0.39-0.65), although the London inter-site correlations were low, suggesting that local sources of OC and EC have a significant influence on local concentrations. Concentrations do not vary widely across the four urban sites, despite the significant differences in urban characteristics. Seasonal patterns of OC:EC ratios were similar at the London and Vienna sites, with highest ratios in autumn and winter, and annual mean OC:EC ratios were identical at these sites. The Carbon Preference Index (CPI) indicated vehicle emissions to have a stronger influence over particulate concentrations at the Vienna and central London sites; there was a stronger biogenic signature in north London and Porto. In addition, two PAH compounds (pyrene and fluoranthene) previously associated with diesel exhaust, were correlated with OC and EC concentrations at the London and Vienna sites.  相似文献   

14.
A method based on SPME is described for assessing the gaseous dichlorvos concentration in confined atmospheres like a greenhouse after a pesticide application. Sampling was made by using SPME with PDMS fibres immersed into a 250 mL sampling flask into which air samples were dynamically pumped from the analysed atmosphere. Sampling duration was 40 min and samples were then analysed by GC-MS. Calibration was performed from a vapour saturated air sample and gas phase diluted samples, and this procedure afforded a curve with a regression coefficient (R2) higher than 0.98. The repeatability of these measurements was observed with an RSD of 2.5%. This analysis procedure was then applied for the determination of gaseous dichlorvos concentrations versus time, in the atmosphere of an experimental 8 m2 and 20 m3 greenhouse. The pesticide was sprayed according to real cultivation conditions and measurements were made from 2 up to 74 h after application affording observed concentrations in the range of decades and hundreds of microg m(-3) (corresponding limits of detection and quantification were found at the level of a few microg m(-3)).  相似文献   

15.
Surficial sediment samples collected from Kaohsiung Harbour and its nearby coast were analyzed for aliphatic hydrocarbons and parent polycyclic aromatic hydrocarbons (PAHs). According to our results, the average total concentrations of n-alkanes (n-C12 to C35) and aromatics (15 PAHs) were 4.33 µg g–1 dry weight (ranged 0.46–22.60) and 0.59 µg g–1 dry weight (ranged 0.09–1.75), respectively. The highest concentrations of aliphatic and aromatic hydrocarbons were recorded in stations near the estuaries of Qianzhen River and Love River, respectively. Aliphatic hydrocarbons in the samples indicate that there has been significant non-petrogenic, possibly terrestrial, contribution in the sediment of the open coast of Kaohsiung Harbour and that there has been dominant contribution from petrogenic sources in the sediment of the inner harbour. PAHs, detected in the samples, however, indicated a higher pyrolytic contribution in open-coast samples and a higher petrogenic contribution in the inner harbour. Overall, sediment concentrations of total alkanes in this study were comparable to those found in Victoria Harbour, Hong Kong and are higher than those found in Xiamen Harbour, China. Concentrations of total PAHs in inner Kaohsiung Harbour sediments were relatively lower than those found in Victoria Harbour, Hong Kong and Xiamen Harbour, China, but comparable to those found in Hsin-ta Harbour, Taiwan and Incheon Harbour, Korea. In comparison with several effect-based sediment quality guidelines, most PAH concentrations found in samples taken from inner harbour stations exceeded the Threshold Effect Level of Florida indicating a slight possibility of adverse effects.  相似文献   

16.
天津城郊土壤中PAHs含量特征及来源解析   总被引:4,自引:1,他引:3  
以天津市郊环城四区为研究对象,系统采集了环城四区95个表层土壤样品,利用高效液相色谱仪对16种PAHs进行分析测定,结果表明,西青、东丽、津南和北辰土壤中16种PAHs的总量范围分别为62.6~1 994.9、36.1~4 074.7、20.1~2 502.5、22.1~707.7μg/kg;平均含量分别为445.8、841.8、509.5、242.5μg/kg。四区中都以高环多环芳烃为主,西青、东丽、北辰和津南高环多环芳烃分别占多环芳烃总比例的45.4%、42.2%、38.8%和38.7%。空间分析的结果表明,靠近天津市市区样点土壤中多环芳烃的含量要明显高于远离市区土壤中多环芳烃的含量。利用环数PAHs的相对丰度和比值法对天津市郊环城四区土壤中多环芳烃的污染来源进行了解析,研究区土壤监测样点的PAHs主要来自燃烧源,少部分来自石油类来源或几种污染源的共同复合累加的作用。  相似文献   

17.
The characteristics of polycyclic aromatic hydrocarbons (PAHs) in water, suspended particulate matter (SPM), sediments, and hydrophytes from Lake Baiyangdian, a shallow freshwater lake in China were studied. The low-molecular-weight PAHs (2-3 ring PAHs) predominated (61.2 to 84.5%) in all samples. Principal component analysis (PCA) of individual PAHs and the ratios of selected PAHs showed that the PAHs in the lake were mainly petrogenic inputs. The solid-liquid distribution coefficient (K(d)) in the water phase was much higher than the bioconcentration factor (BCF), and the leaf concentration factor (LCF) was higher than the root concentration factor (RCF) and stem concentration factor (SCF) in plant-sediment phase. Good linear log/log relationships were observed between the equilibrium partitioning coefficient (K(oc)) and the octanol-water partitioning coefficient (K(ow)), between RCF and K(ow), and between LCF and the octanol-air partitioning coefficient (K(oa)). These results indicated that PAHs accumulated more easily in SPM than in submerged aquatic plants, and some low-molecular-weight PAHs could accumulate and be translocated in the lake's media. Media characteristics, contamination sources, and physicochemical properties all affect the partitioning of PAHs among water, SPM, sediments, and hydrophytes.  相似文献   

18.
This study was performed to elucidate the distribution, concentration trend and possible source of polycyclic aromatic hydrocarbons (PAHs) in surface water and bed sediments of the Hungarian upper section of the Danube River and the Moson Danube branch. A total of 217 samples (water and sediments) were collected from four different sampling sites in the period of 2001–2010 and analysed for the 16 priority US Environmental Protection Agency PAHs. Concentrations of total 16 PAHs (∑PAHs) in water samples ranged from 25 to 1,208 ng/L, which were predominated by two- and three-ring PAHs. The ∑PAH concentrations in sediments ranged from 8.3 to 1,202.5 ng/g dry weight. Four-ring PAHs including fluoranthene and pyrene were the dominant species in sediment samples. A selected number of concentration ratios of specific PAH compounds were calculated to evaluate the possible sources of PAH contamination. The ratios reflected a pattern of pyrogenic input as a major source of PAHs. The levels of PAHs determined were compared with other sections of the Danube and other regions of the world.  相似文献   

19.
A field campaign was conducted to measure and analyze 13 polycyclic aromatic hydrocarbons (PAHs) in six major zones in the city of Shanghai, P.R. China from August 2006 to April 2007. Ambient air samples were collected seasonally using passive air samplers, and gas chromatography–mass spectroscopy was used in this field campaign. The results showed that there was a sequence of 13 PAHs at Phen > FA > Pyr > Chr > Fl > An > BaA > BbFA > BghiP > IcdP > BkFA > BaP > DahA and the sum of these PAHs is 36.01 ± 10.85 ng/m3 in gas phase. FL, Phen, FA, Pyr, and Chr were the dominant PAHs in gas phase in the city. They contributed 90% of total PAHs in the gas phase. Proportion of measured PAHs with three, four, five, and six rings to total PAHs was 53%, 42%, 3%, and 2%, respectively. The highest concentration of ΣPAHs (the sum of 13 PAHs) occurred in the wintertime and the lowest was in the summer. This investigation suggested that traffic, wood combustion, and metal scrap burn emissions were dominant sources of the concentrations of PAHs in six city zones compared with coal burning and industry emissions. Further, the traffic emission sources of PAHs in the city were attributed mostly to gasoline-powered vehicles compared with diesel-powered vehicles. It was revealed that the seasonal changes in PAHs in the city depended on different source types. Metal scrap burn was found to be the major source of PAHs during the autumn, while the PAH levels in the atmosphere for winter and spring seasons were mainly influenced by wood and biomass combustion. Comparisons of PAHs among different city zones and with several other cities worldwide were also made and discussed.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) were measured in surface sediments and dated core sediments from the Nansi Lake of China to investigate the spatial and temporal distribution characteristics. The concentrations of 16 kinds priority PAH compounds were determined by GC-MS method. And 210Pb isotope dating method was used to determine the chronological age of the sediment as well as the deposition rate. The results indicated that the total PAHs concentration ranges in surface and core sediment samples were 160 ~32,600 and 137 ~ 693 ng/g (dry wt.), respectively. The sediment rate and the average mass sedimentation were calculated to be 0.330 cm·year???1 and 0.237 g·cm???2·yr???1 and the sediment time of the collected core sample ranged from 1899 to 2000. The peak of PAH concentrations came at recent years. The source analysis showed PAHs mainly came from the contamination of low temperature pyrogenic processes, such as coal combustion. The PAHs concentrations were lower than ERL and LEL values for most collected samples. However, in several surface sediment samples especially in estuary sites, the PAHs concentrations were not only higher than ERL and LEL values, but also higher than ERM values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号