首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method for determination of technical grade isocyanates used in the production of polyurethane (PUR) is presented. The isocyanates in technical grade products were characterised as di-n-butylamine (DBA) derivatives using LC-MS and LC-chemiluminescent nitrogen detection (CLND) and the total isocyanate content was compared to a titration assay. For collection of isocyanates in air, an impinger-filter sampling technique with DBA as derivatisation reagent was used. Characterised DBA and nonadeuterium labelled DBA derivatives of isocyanates in technical products were used as calibration standards and internal standards, respectively, in the analysis of air samples. Three workplaces were studied where PUR products were produced either by spraying or by moulding. In both technical products and in air samples, a number of monomeric, oligomeric and prepolymeric isocyanates of e.g. methylenebisphenyl diisocyanate (MDI) and hexamethylene diisocyanate (HDI) were characterised. Several of these have not previously been described in workplace atmospheres. In the technical isocyanate products, between 69 and 102% of the NCO content determined by titration was accounted for by LC-CLND. Quantifications of a wide range of isocyanates in air samples were performed with correlation coefficients in the range 0.988-0.999 (n= 8) and the instrumental detection limits were 0.7-25 pg. At the two workplaces where MDI- and HDI isocyanurate-based products were sprayed, the isocyanate composition in the air reflected the composition in the technical product. At the workplace where a MDI-based product was used in a moulding process, only the monomeric isocyanates were found in the air. The advantage of using characterised technical grade isocyanates as analytical standards was clearly demonstrated and the possibility of using index compounds when monitoring isocyanate exposure is discussed.  相似文献   

2.
An air sampling method for simultaneous determination of organic acid anhydrides and isocyanates is presented. Air samples are collected in impinger flasks filled with 0.01 M di-n-butylamine (DBA) in a mixture of toluene-acetonitrile (7:3, v/v) with a 13 millimetre glass fibre filter in series. The amount of anhydrides and isocyanates are determined as their amide and urea derivatives using LC-MS. Four anhydrides, maleic anhydride (MA), phthalic anhydride (PA), tetrahydrophthalic anhydride (TA) and cis-hexahydrophthalic anhydride (HA) and 11 isocyanates could be separated in 9 minutes using gradient elution. Anhydride-DBA derivatives in standard solutions were quantified using LC with chemiluminescent nitrogen detection (CLND). Anhydride-DBA derivatives were found to be stable for at least two months when stored in acetonitrile or toluene in the freezer. The yield of DBA derivatives of anhydrides in the 0.01 M DBA in toluene-acetonitrile (7:3, v/v) was in the range of 70->95%. Using MS and negative electrospray ionisation (ES-) linear calibrations curves were obtained for the anhydrides with correlation coefficients ranging from 0.9970-0.9997. The instrumental detection limit for the anhydrides ranged from 10-30 fmol, based on a signal to noise root mean square (RMS) ratio of 3. Monitoring positive and negative ions simultaneously, both isocyanates and anhydrides could be determined as their DBA derivatives in the same chromatographic run. When air samples were collected during thermal degradation of different coated metal sheets both anhydrides and isocyanates were present in the same samples and all the studied anhydrides were found.  相似文献   

3.
The solvent-free sampler for airborne isocyanates consisted of a polypropylene tube with an inner wall coated with a glass fibre filter, coupled in series with a 13 mm glass fibre filter. The filters were impregnated with reagent solution containing equimolar amounts of di-n-butylamine (DBA) and acetic acid. Air sampling was performed with an air flow of 0.2 l min(-1). The formed isocyanate-DBA derivatives were determined using liquid chromatography and tandem mass spectrometry. The sampler was investigated in regard to collection principle and extraction of the formed derivatives with good results. The possibility to store the sampler before sampling and to perform long-term sampling was demonstrated. Field extraction of the sampler was not necessary, as there was no difference between immediately extracted samples and stored ones (2 days). In comparative studies, the sampler was evaluated against a reference method, impinger-filter sampling with DBA as reagent. The ratios between the results obtained with the sampler and the reference in a test chamber at a relative humidity (RH) of 45% was in the range of 83-109% for isocyanates formed during thermal decomposition of PUR. At RH 95%, the range was 72-101% with the exception of isocyanic acid. In two field evaluations, the ratios for fast curing 2,4'- and 4,4'-methylene bisphenyl diisocyanate (MDI) was in the range 81-113% and for the 3-ring MDI the range was 54-70%. For the slower curing 1,6-hexamethylene diisocyanate (HDI) and HDI isocyanurate, the ratios were in the range 78-145%. In conclusion, the solvent-free sampler is a convenient alternative in most applications to the more cumbersome impinger-filter sampler.  相似文献   

4.
The thermal degradation products of polyurethanes (PURs) and exposure to isocyanates were studied by stationary and personal measurements in five different occupational environments. Isocyanates were collected on glass fibre filters impregnated with 1-(2-methoxyphenyl)piperazine (2MP) and in impingers containing n-dibutylamine (DBA) in toluene. connected to a glass fibre postfilter. The derivatives formed were analysed by liquid chromatography: 2MP derivatives with UV and electrochemical detection and DBA derivatives with mass spectrometric detection. The release of aldehydes and other volatile organic compounds into the air was also studied. In a comparison of the two sampling methods, the 2MP method yielded about 20% lower concentrations for 4,4'-methylenediphenyl diisocyanate (MDI) than did the DBA method. In car repair shops, the median concentration of diisocyanates (given as NCO groups) in the breathing zone was 1.1 microg NCO m(-3) during grinding and 0.3 microg NCO m(-3) during welding, with highest concentrations of 1.7 and 16 pg NCO m(-3), respectively. High concentrations of MDI, up to 25 and 19 microg NCO m(-3), respectively, were also measured in the breathing zone during welding of district heating pipes and turning of a PUR-coated metal cylinder. During installation of PUR-coated floor covering, small amounts of aliphatic diisocyanates were detected in the air. A small-molecular monoisocyanate, methyl isocyanate, and isocyanic acid were detected only during welding and turning operations. The diisocyanate concentrations were in general higher near the emission source than in the workers' breathing zone. A sampling strategy to evaluate the risk of exposure to isocyanates is presented.  相似文献   

5.
An air sampling method for the determination of isocyanates, aminoisocyanates and amines formed during the thermal degradation of polyurethane (PUR) is presented. The method is based on the collection of air samples using impinger flasks containing di-n-butylamine (DBA) in toluene with a glass fibre filter in series. Isocyanates are derivatized with DBA to urea derivatives, and amines are derivatized in a subsequent work-up procedure with ethyl chloroformate (ET) to carbamate esters. Amine, aminoisocyanate and isocyanate derivatives were characterized using liquid chromatography-time of flight mass spectrometry (LC-TOFMS) and liquid chromatography-chemiluminescent nitrogen detection (LC-CLND). Quantification was performed by LC-MS, monitoring molecular ions [MH]+ in the electrospray mode. The instrumental detection limits for amines, aminoisocyanates and isocyanates were in the ranges 30-40, 2-3 and 3-70 fmol, respectively. Thermal degradation products of PUR were observed in high concentrations during welding in district heating pipes and PUR-coated metal sheets. Eleven isocyanates, three amines and five aminoisocyanates were identified. The concentrations of isocyanates, aminoisocyanates and amines in samples collected in the smoke close to the welding spot were in the ranges 150-650, 4-290 and 1-70 ppb, respectively. In samples collected in the breathing zone, isocyanates and aminoisocyanates were observed in the ranges 9-120 and 4-19 ppb, respectively. The compounds were present in both gas and particle phases. Volatile compounds dominated in the gas phase, whereas less volatile compounds dominated in the particle phase. The method presented makes it possible to sample and determine amines and aminoisocyanates, in addition to isocyanates. The need to monitor these compounds is clearly illustrated by the high concentrations found during the thermal degradation of PUR.  相似文献   

6.
Isocyanates constitute a group of highly reactive chemicals used on a large scale for the production of flexible polyurethane (PUR) foam. Exposure to isocyanates is known to produce irritation of the mucous membranes and the eyes. Isocyanates also have strong sensitizing properties and may cause occupational asthma. It is therefore important to monitor isocyanate emissions at workplaces. To obtain information for the improvement of isocyanate samplers and for health risk assessments of exposure, the emitted aerosol from two types of flexible PUR foam subjected to thermal degradation was characterized. Particle size distribution and toluene diisocyanate (TDI) concentration in the emitted aerosols were measured. Thermal degradation of flexible PUR foam at temperatures from 250 to 300 degrees C produced an aerosol with a geometric mean particle diameter of 30-50 nm. Between 5% and 9% of the PUR foam was emitted as TDI, and 2% to 6% of TDI monomers were found in the particle phase under the experimental conditions used. The 2,6-TDI isomer was more abundant in the gas phase than in the particle phase.  相似文献   

7.
A method is presented for the determination of isocyanic acid (ICA), HNCO, in air samples as a di-n-butylamine (DBA) derivative. The method is based on sampling in midget impinger flasks containing 10 ml of 0.01 mol l-1 DBA in toluene. Quantification was made using liquid chromatography (LC) and electrospray mass spectrometry (MS) monitoring positive ions. The instrumental detection limit for the LC-MS was 10 fmol of ICA-DBA. ICA was generated by thermal decomposition of urea. A standard solution containing the DBA derivatives of ICA was prepared by collecting the emitted ICA in an impinger flask containing DBA. ICA in the reference solution was characterised by LC and time-of-flight (TOF) MS and quantified by LC chemiluminescent nitrogen detection (LC-CLND). The instrumental detection limit for the LC-CLND was 1 ng of nitrogen. ICA was emitted during thermal degradation of PFU resins and polyurethane (PUR) lacquers, from car metal sheets. ICA was the most dominant isocyanate and in PUR coating up to 8% of the total weight was emitted as ICA and for PFU resins up to 14% was emitted as ICA. When air samples were collected in an iron foundry during casting in sand moulds with furan resins, concentrations of ICA in the range 50-700 micrograms m-3 were found in the working atmosphere.  相似文献   

8.
Today, many raw materials used in factories may have a dangerous effect on the physiological system of workers. One of them which is widely used in the polyurethane factories is diisocyanates. These compounds are widely used in surface coatings, polyurethane foams, adhesives, resins, elastomers, binders, and sealants. Exposure to diisocyanates causes irritation to the skin, mucous membranes, eyes, and respiratory tract. Hexamethylene diamine (HDA) is metabolite of hexamethylene diisocyanate (HDI). It is an excretory material by worker’s urine who is exposed to HDI. Around 100 air samples were collected from five defined factories by midget impinger which contained dimethyl sulfoxide absorbent as a solvent and tryptamine as reagent. Samples were analyzed by high-performance liquid chromatography with EC\UV detector using NIOSH 5522 method of sampling. Also, 50 urine samples collected from workers were also analyzed using William’s biological analysis method. The concentration of HDI into all air samples were more than 88 xxxμg/m3, and they have shown high concentration of pollutant in the workplaces in comparison with NIOSH standard, and all of the workers’ urine were contaminated by HDA. The correlation and regression test were used to obtain statistical model for HDI and HDA, which is useful for the prediction of diisocyanates pollution situation in the polyurethane factories.  相似文献   

9.
This paper evaluates the performance of the NIOSH draft method 5525 for analysis of monomeric and TRIG aliphatic isocyanates in autobody repair shops. It was found that an optimized pH gradient enhanced noticeably the resolution and, therefore, identification of aliphatic isocyanates. Samples proved to be very stable for at least a year when stored at -13 degrees C in the freezer, and no major stability problems were found for the MAP reagent. The detector response factor RSD for selected MAP ureas was 40% in the fluorescence (FLD), 3% in the UV at 254 nm (UV254), and 1% in the UV at 370 nm (UV370). The mean FLD/UV254 and UV254/UV370 detector response ratios of standards were 31.7 (RSD = 37.8) and 17.1 (RSD = 5.4), respectively. The FLD/UV254 ratio in bulks varied from 0.41 to 1.97 times the HDI monomer ratio. The mean UV254/UV370 ratio in bulks was 16.1 (range 14.1 to 19.2, N = 38). Mean (range) recovery of 92 (91.2-93.2)% was found for the N3300 (isocyanurate) spiked on 25 mm quartz fiber filters in the range 0.07 to 2.2 microg NCO ml(-1). Mean (range) recovery for impingers was 100.7 (91.7-106.0)% for N3300 in the concentration range of 0.018 to 2.5 microg NCO ml(-1) and 81.0 (76.1-89.1)% for IPDI in the concentration range of 0.016 to 1.87 microg NCO ml(-1). Analytical method precision was 3.4% and mean bias 7.4% (range = 0-25%). The NIOSH draft method 5525 provides flexibility, enhanced sensitivity and specificity, powerful resolution, and very small compound-to-compound variability in the UV254, resulting in a more reliable identification and quantification of aliphatic isocyanates.  相似文献   

10.
Isocyanates may cause contact dermatitis, sensitization and asthma. Dermal exposure to aliphatic and aromatic isocyanates can occur in various exposure settings. The fate of isocyanates on skin is an important unanswered question. Do they react and bind to the outer layer of skin or do they penetrate through the epidermis as unreacted compounds? Knowing the kinetics of these processes is important in developing dermal exposure sampling or decontamination strategies, as well as understanding potential health implications such exposure may have. In this paper the residence time of model isocyanates on hairless guinea pig skin was investigated in vitro using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry. Model isocyanates tested were octyl isocyanate, polymeric hexamethylene diisocyanate isocyanurate (pHDI), polymeric isophorone diisocyanate isocyanurate (pIPDI) and methylenediphenyl diisocyanate (MDI). Isocyanates in ethyl acetate (30 microL) were spiked directly on the skin to give 0.2-1.8 micromol NCO cm(-2) (NCO = -N=C=O), and absorbance of the isocyanate group and other chemical groups of the molecule were monitored over time. The ATR-FTIR findings showed that polymeric isocyanates pHDI and pIPDI may remain on the skin as unreacted species for many hours, with only 15-20% of the total isocyanate group disappearing in one hour, while smaller compounds octyl isocyanate and MDI rapidly disappear from the skin surface (80+% in 30 min). Isocyanates most likely leave the skin surface by diffusion predominantly, with minimal reaction with surface proteins. The significance of these findings and their implications for dermal exposure sampling and isocyanate skin decontamination are discussed.  相似文献   

11.
We investigated penetration patterns of monomeric and polymeric 1,6-hexamethylene diisocyanate (HDI), experimentally and as part of commercial products, in excised full-thickness human skin at 5, 10, 30, or 60 min after exposure. We observed that both monomeric and polymeric HDI were readily absorbed into the skin and that the clearcoat composition affects the penetration rate of the individual isocyanates. The short-term absorption rates for HDI monomer, biuret, and isocyanurate were determined and used to estimate the exposure time required to reach a body burden equal to the American Conference of Governmental Industrial Hygienists (ACGIH) inhalation threshold limit value (TLV) or Oregon State occupational exposure limit (OEL). Oregon is the only government entity in the United States to promulgate a short-term exposure limit (STEL) for HDI-based polyisocyanates biuret and isocyanurate. Based on these absorption rates for a slow-drying clearcoat after 10 min (1.33 μg cm(-2) h(-1)) or 60 min (0.219 μg cm(-2) h(-1)), we calculated that 6.5 and 40 min dermal exposure, respectively, is required to achieve a dose of HDI equivalent to the ACGIH TLV. For biuret, the time to achieve a dose equivalent to the Oregon OEL for slow-drying clearcoat was much shorter (<31 min) than that for fast-drying clearcoat (618 min). Isocyanurate had the shortest skin absorption times regardless of clearcoat formulation (14 s-1.7 min). These results indicate that the dose received through dermal exposure to HDI-containing clearcoats has a significant potential to exceed the dose equivalent to that received through inhalation exposure at established regulatory limits. A critical need exists to monitor dermal exposure quantitatively in exposed workers, to use proper protective equipment to reduce dermal exposure, and to re-evaluate regulatory exposure limits for isocyanates.  相似文献   

12.
This work was undertaken to investigate the usefulness of diisocyanate-related protein adducts in blood samples as biomarkers of occupational exposure to toluene diisocyanate (TDI; 2,4- and 2,6-isomers) and 4,4'-methylenediphenyl diisocyanate (MDI). Quantification of adducts as toluene diamines (TDAs) and methylenedianiline (MDA) was performed on perfluoroacylated derivatives by gas chromatography-mass spectrometry (GC-MS/MS) in negative chemical ionisation mode. TDI-derived adducts were found in 77% of plasma and in 59% of globin samples from exposed workers manufacturing flexible polyurethane foam. The plasma levels ranged from 0.003 to 0.58 nmol mL(-1) and those in globin from 0.012 to 0.33 nmol g(-1). The 2,6-isomer amounted to about two-thirds of the sum concentration of TDA isomers. MDI-derived adducts were detected in 3.5% of plasma and in 7% of globin samples from exposed workers manufacturing rigid polyurethane foam. A good correlation was found between the sum of TDA isomers in urine and that in plasma. The relationship between globin adducts and urinary metabolites was ambiguous. Monitoring TDI-derived TDA in plasma thus appears to be an appropriate method for assessing occupational exposure. Contrary to TDI exposure, adducts in plasma or globin were not useful in assessing workers' exposure to MDI. An important outcome of the study was that no amine-related adducts were detected in globin samples from TDI- or MDI-exposed workers, alleviating concerns that TDI or MDI might pose a carcinogenic hazard. Further studies are nevertheless required to judge whether diisocyanates per se could be such a hazard.  相似文献   

13.
A denuder/filter system constructed for solvent-free personal exposure measurements was evaluated for separation of vapour and particulate 4,4'-methylenediphenyl diisocyanate (4,4'-MDI) generated from heated PUR-foam. The two different phases were collected in the denuder and on the filter, respectively, by chemosorption on a polydimethylsiloxane (SE-30)-dibutylamine (DBA) stationary phase. Both repeatability and the total mass concentration of 4,4'-MDI were similar to that obtained from the reference method, in this case an impinger/filter system. The penetration of particles through the denuder at 300 ml min(-1) was nearly 100% in the particle size range 25 to 700 nm, which fits well with the Gormley-Kennedy equation. Denuder/filter sampling of the 4,4'-MDI aerosol at 500 ml min(-1) yielded a phase distribution that was in accordance with the results from the reference method. The method limit of detection was 6 ng m(-3) and 4 ng m(-3) for the denuder and filter, respectively, when using an air sampling flow rate of 300 ml min(-1) and a sampling period of 15 min. This is well below the Swedish occupational exposure limit (OEL) of 50 and 100 microg m(-3) for an 8-hour working day and a 5-min period, respectively.  相似文献   

14.
Respiratory sensitization and occupational asthma are associated with exposure to 1,6-hexamethylene diisocyanate (HDI) in both monomeric and oligomeric forms. The monomer and polymers of diisocyanates differ significantly in their rates of absorption into tissue and their toxicity, and hence may differ in their contribution to sensitization. We have developed and evaluated a liquid chromatography/mass spectrometry (LC-MS) method capable of quantifying HDI and its oligomers (uretidone, biuret, and isocyanurate) in air, tape-stripped skin, and paint samples collected in the automotive refinishing industry. To generate analytical standards, urea derivatives of HDI, biuret, and isocyanurate were synthesized by reaction with 1-(2-methoxyphenyl)piperazine and purified. The urea derivatives were shown to degrade on average by less than 2% per week at -20 degrees C over a 2 month period in occupational samples. The average recovery of HDI and its oligomers from tape was 100% and the limits of detection were 2 and 8 fmol microl(-1), respectively. Exposure assessments were performed on 13 automotive spray painters to evaluate the LC-MS method and the sampling methods under field conditions. Isocyanurate was the most abundant component measured in paint tasks, with median air and skin concentrations of 2.4 mg m(-3) and 4.6 microg mm(-3), respectively. Log-transformed concentrations of HDI (r = 0.79, p < 0.0001) and of isocyanurate (r = 0.71, p < 0.0001) in the skin of workers were correlated with the log-transformed product of air concentration and painting time. The other polyisocyanates were detected on skin for less than 25% of the paint tasks. This LC-MS method provides a valuable tool to investigate inhalation and dermal exposures to specific polyisocyanates and to explore relative differences in the exposure pathways.  相似文献   

15.
空气净化器可有效改善雾霾天气下室内空气质量,颗粒物去除效果与洁净空气量(CADR)是衡量其性能的主要参数。在典型室内环境下,以香烟源颗粒物为目标,开展空气扰动对净化器去除颗粒物效果和CADR的影响实验与评价分析。结果显示,在室内空气扰动下,净化器对粒径≥5μm的颗粒物去除率为75.6%,在无空气扰动情况下的去除率为46.6%。空气净化器对粒径0.3μm^5μm的颗粒物有较好的去除效果,而对于粒径10μm的较大颗粒物,空气扰动造成CADR增加。空气扰动在一定程度上提升了空气净化器的净化能力,同时在性能方面也存在影响。  相似文献   

16.
Solid-phase microextraction (SPME) was evaluated for the detection and quantification of the gas-phase carbonyls: citronellal, glyoxal, methylglyoxal, and beta-ionone. Prepared air samples containing the carbonyl compounds were collected at a flow rate of 2.8 L min(-1) in an impinger containing a 25% reagent water/75% methanol collection liquid. The aqueous samples were then derivatized with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA), extracted with a PDMS/DVB coated SPME fiber, and analyzed by GC-MS. Detection limits with a sample air volume of 76 L were calculated to be 0.03 ppbv, 0.34 ppbv, 0.12 ppbv, and 0.28 ppbv for citronellal, glyoxal, methylglyoxal, and beta-ionone, respectively.  相似文献   

17.
Air samples were collected from 4 field sites in Europe: 2 sites from the UK, Hazelrigg (semi-rural) and Manchester (urban); 1 site from Ireland: Mace Head (rural); and 1 site from Norway: Kjeller (rural). Additionally, air samples were taken from indoor locations in Troms?, Norway. Air samples were collected using high-volume air samplers employing sampling modules containing glass-fibre filters (GFFs, particle phase), and glass columns with a polyurethane foam (PUF)-XAD-2-PUF sandwich (gaseous phase). Typical outdoor air volumes required for the determination of per- and polyfluorinated alkyl substances (PFAS) ranged from 500-1800 m3. GFFs and PUF-XAD columns were analysed separately to obtain information on phase partitioning. All air samples were analysed for volatile, neutral PFAS, with selected GFF samples halved for analysis of both neutral and airborne particle-bound ionic PFAS. Volatile PFAS were extracted from air samples by cold-column immersion with ethyl acetate, and were analysed by gas chromatography-mass spectrometry in the positive chemical ionisation mode (GC-PCI-MS). Ionic PFAS were extracted from GFFs by sonication in methanol, and were analysed by liquid chromatography-time-of-flight-mass spectrometry (LC-TOF-MS) using electrospray ionisation in the negative ion mode (ESI-). Perfluorooctanoate (PFOA) was often the predominant analyte found in the particulate phase at concentrations ranging from 1-818 pg m(-3), and 8:2 fluorotelomer alcohol (FTOH) and 6:2 FTOH were the prevailing analytes found in the gas phase, at 5-243 pg m(-3) and 5-189 pg m(-3), respectively. These three PFAS were ubiquitous in air samples. Many other PFAS, both neutral and ionic, were also present, and levels of individual analytes were in the 1-125 pg m(-3) range. Levels of some PFAS exceeded those of traditional persistent organic pollutants (POPs). In this study, the presence of 12:2 FTOH and fluorotelomer olefins (FTolefins), and ionic PFAS other than perfluorooctane sulfonate (PFOS) and PFOA, are reported in air samples for the first time. Concentrations of neutral PFAS were several orders of magnitude higher in indoor air than outdoor air, making homes a likely important diffuse source of PFAS to the atmosphere. Our repeated findings of non-volatile ionic PFAS in air samples raises the possibility that they might directly undergo significant atmospheric transport on particles away from source regions, and more atmospheric measurements of ionic PFAS are strongly recommended.  相似文献   

18.
美国加州南岸地区空气质量监测系统运行管理与借鉴   总被引:1,自引:1,他引:0  
借鉴加州南岸空气质量监测管理经验(特别是运行管理模式)对于现阶段我国城市环境空气质量监测管理具有极高的参考价值。简要介绍了加州南岸空气质量管理局( SCAQMD)的空气质量监测现状、监测网络布局、颗粒物采样方法和相关质量管理体系。对现行的环境空气质量指数、管理架构和PM2?5考核方法进行了综合比较,建议从4个方面借鉴SCAQMD经验:试行“空气质量管理区”模式;开展专项研究网络建设;逐步开展手工监测采样和颗粒物化学组分分析;提升数据挖掘水平,服务管理决策。  相似文献   

19.
Effect of Temperature on Absorption Efficiency of NO2 in Arsenite Method   总被引:1,自引:0,他引:1  
The sodium arsenite method developed by Jacobs andHochheiser is one of the most widely used manualmethods for nitrogen dioxide (NO2) monitoring inambient air, particularly in developing countries. Asreported, the method gives 82% NO2 absorptionefficiency (NAE) in the concentration range from 40 to750 g/m3, when only one impinger tube isemployed in the sampling train at a flow rate of 0.2lpm and for 24 h sampling duration. Accordingly,a uniform correction factor (0.82) is used indenominator to calculate the ultimate concentration ofNO2 in ambient air.In the present investigation, the effect oftemperature on absorption efficiency of NO2 isstudied employing four impinger tubes in series tocollect the maximum NO2 generated in the gasstream. The study conducted at 16, 26 and 36 °Ctemperatures shows maximum absorption efficiency(average) of 87.8% at 26°C in 1st impingertube. At lower and higher temperatures, it is foundconsiderably less. A suitable correction factor,therefore, must be applied to estimate actual NO2concentration in ambient air using arsenite method, intropical countries like India, where atmospherictemperature variations are large (less than 5°Cin winter and more than 45°C in summer).  相似文献   

20.
In a cross-sectional study, 96 welders were compared with 96 control subjects. Also 27 former welders, all diagnosed as having manganism, were examined. Exposure to welding fumes was determined in the 96 welders, while the concentration of elements in whole blood and urine was determined in all subjects. The geometric mean (GM) concentrations of manganese (Mn) and iron in the workroom air were 97 microg m(-3) (range 3-4620 microg m(-3); n=188) and 894 microg m(-3) (range 106-20 300 microg m(-3); n=188), respectively. Thus the Mn concentration in the workroom air was on average 10.6% (GM) of that of the Fe concentration. No substantial difference was observed in the air Mn concentrations when welding mild steel as compared to welding stainless steel. The arithmetic mean (AM) concentration of Mn in whole blood (B-Mn) was about 25% higher in the welders compared to the controls (8.6 vs. 6.9 microg l(-1); p < 0.001), while the difference in the urinary Mn concentrations did not attain statistical significance. A Pearson's correlation coefficient of 0.31 (p < 0.01) was calculated between B-Mn and Mn in the workroom air that was collected the day before blood sampling. Although the exposure to welding fumes in the patients had ceased on average 5.8 years prior to the study (range 4 years-7 years), their AM B-Mn concentration was still higher than in referents of similar age (8.7 microg l(-1) vs. 7.0 microg l(-1)). However, their urinary concentrations of cobolt, iron and Mn were all statistically significantly lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号