首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 710 毫秒
1.
Determination of only total element in sediments does not give an accurate estimate of the likely environmental impacts. Speciation study of metals in sediment provides information on the potential availability of metals (toxic) to biota under various environmental conditions. In water, the toxic metal specie is the free hydrated metal ion. The toxicity of metals depends especially on their chemical forms rather than their total metal content. The present study focuses on Qaraaoun Reservoir, Lebanon. Earlier studies focused only on total metal concentrations in sediment and water. The objective of this study was to determine metal speciation (Fe, Cr, Ni, Zn, Cu, Pb, Cd) in the (operationally defined) sediment chemical fractions and metal speciation in reservoir water. This would reflect on metal bioavailability and toxicity. Water samples and bed sediments were collected from nine sites during the dry season and a sequential chemical fraction scheme was applied to the <75-??m sieve sediment fraction. Metal content in each fraction was determined by the FAAS technique. The data showed that the highest percentages of total metal content in sediment fractions were for: Fe in residual followed by reducible, Cr and Ni in residual and in reducible, Cu in organic followed by exchangeable, Zn in residual and in organic, Pb in organic and carbonate, Cd was mainly in carbonate. Total metal content in water was determined by ICP-MS technique and aqueous metal speciation was predicted using AQUACHEM software interfaced to PHREEQC geochemical computer model. The water speciation data predicted that a high percentage of Pb and Ni were present as carbonate complex species and low percentages as free hydrated ions, highest percentage of Zn as carbonate complex species followed by free hydrated ion, highest percentage of Cd as free hydrated ion followed by carbonate complex species. The sensitivity attempt of free hydrated ion of Ni, Zn, Pb, and Cd in reservoir water revealed dependence of Zn and Cd on pH and alkalinity, while Ni and Pb were only dependent on pH.  相似文献   

2.
Chemical fractionation of heavy metals in urban soils of Guangzhou, China   总被引:5,自引:0,他引:5  
Knowledge of the total concentration of heavy metals is not enough to fully assess the environmental impact of urban soils. For this reason, the determination of metal speciation is important to evaluate their environment and the mobilization capacity. Sequential extraction technique proposed by the former European Community Bureau of Reference (BCR) was used to speciate Cd, Cu, Fe, Mn, Ni, Pb, and Zn in urban soils from Guangzhou into four operationally defined fractions: HOAc extractable, reducible, oxidizable, and residual. The Cu, Fe, Ni, and Zn were predominately located in the residual fraction, Pb in the reducible fraction, and Cd and Mn within the HOAc extractable fraction. The order of Cd in each fraction was generally HOAc extractable > reducible > residual > oxidizable; Cu and Fe were residual > reducible > oxidizable > HOAc extractable; Mn was HOAc extractable > residual > reducible > oxidizable; Ni and Zn were residual > reducible > HOAc extractable > oxidizable; and Pb was reducible > residual > oxidizable > HOAc extractable. Cadmium was identified as being the most mobile of the elements, followed by Mn, Zn, Ni, Cu, Pb and Fe. Iron–Mn oxides can play an important role in binding Cd, Cu, Ni, Pb, and Zn and in decreasing their proportion associated with the residual fraction in the soils. With total concentrations of Cd, Cu, Ni, Pb, Zn, and Mn increase, these metals more easily release and may produce more negative effects on the urban environment.  相似文献   

3.
The three-stage sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb, and Zn, proposed by the Commission of the European Communities Bureau of Reference, was applied to sediment five samples collected from the Sal estuary, Sergipe State, northeast Brazil, in September 2009. The method showed satisfactory recoveries, detection limits, and standard deviations for determinations of trace metals in the sediments. Cd and Pb were the metals most prevalent in the bioavailable fractions (carbonates, Fe and Mn oxides, organic matter, and sulfides), while Ni, Zn, Cu, and Cr showed higher percentages in the inert fraction. The order of mobility of the metals was Cd (66 %) > Pb (65 %) > Zn (59 %) > Ni (57 %) = Cr (57 %) > Cu (56 %). Possible toxicity related to these metals was examined using the risk assessment code, and by comparing the chemical data with sediment quality guideline ERL-ERM values. Results obtained using the two methods were in agreement, and showed low to medium risk for all metals, indicating that adverse effects on aquatic biota should rarely occur.  相似文献   

4.
The sediment in Dianchi Lake, a hypereutrophic plateau lake in southwest China, was investigated and the concentration of heavy metals (Cu, Cr, Ni, Zn, Pb, Fe, Mn, and Cd) in the sediment and sediment properties were determined. Their spatial distribution and sources were analyzed using multivariate statistics. The result indicated that the studied metals exhibited three distinct spatial patterns; that is, Cu, Pb, Zn, and Ni had a similar distribution, with a concentration gradient from the north to the south part of the lake; Cd and Cr presented a similar distribution; Fe and Mn presented a quite different distribution than other metals, which indicated their different sources and geochemistry processes. Correlation and cluster analysis (CA) provided origin information on these metals and the CA result was observed corresponding to those three spatial patterns. Principal component analysis further displayed metal source and driving factors; that is, Cu, Pb, Zn, Ni, Cd, and Cr were mainly derived from anthropogenic sources, and Fe and Mn were mainly the result of natural processes. Sediment assessment was conducted using geoaccumulation index (Igeo), potential ecological risk indices, and USEPA guidelines. The result indicated that, generally, Cd was the most serious risk metal; Pb and Cu posed moderate potential ecological risk; Cr, Zn, and Ni had slight ecological risk; Fe and Mn had little risk. Comparison of the assessment tools showed that each of the methods had its limitation and could bias the result, and the combined use of the methodologies and local knowledge on lithology or metal background value of soil in the practice would give a more comprehensive understanding of the metal risk or pollution. Statistical analysis also indicated that nutrients had different impacts on Fe, Mn, and trace elements, which implied that in the assessment of metal risk, nutrients impact should be taken into consideration especially for eutrophic waters.  相似文献   

5.
The Golden Horn Estuary located in the Istanbul region of Turkey has been thought to be a heavily polluted area since the 1950s: the concentration of the elements, which include heavy metals such as Cu2+, Mn2+, Ni2+, Zn2+, Pb2+, Cd2+, and Fe2+, was therefore investigated in sediment and water samples of the area. The resistance of Enterobacteriaceae members to some heavy metal salts was investigated to determine levels of metal-resistant bacteria in the Golden Horn Estuary after the environmental restoration project in 1998. The sediment samples were collected with an Ekman-Grab in the period from November 2002 to February 2004 from depths of 4-15 m and analyzed by means of an atomic absorption spectrophotometer. Analyses of average heavy metals of sediment samples yielded the following results: 131.5 ppm Cu, 405.5 ppm Mn, 46.5 ppm Ni, 191.2 ppm Zn, 81.5 ppm Pb and 27668 ppm Fe. As with water, Ni concentrations in sediment were found lower than that in limit values. Frequency of heavy metals resistance to Cu, Zn, Fe, Ni, Mn, Pb and Cd was detected as an average of 65.0%, 64.4%, 62.5%, 38.4%, 37.3%, 36.2% and 28.4%, respectively in a total of 192 strains isolated from sediment samples. It was observed that there was no statistically significant difference among the results of analyses with respect to sampling dates. Despite the environmental restoration project in 1998, our study results showed that heavy metal levels were still high in the sediment and this situation induced the tolerance of bacteria to some heavy metals.  相似文献   

6.
Lake Sapanca is exposed to heavy urbanization and industrialization because of its natural beauty and its proximity to the metropolitan İstanbul, Turkey. In this study, it was aimed to investigate seasonal changes of some heavy metals (Pb, Cr, Cu, Mn, Ni, Zn and Cd) concentration of surface sediment. Nine different stations were chosen as sampling points. Samples were taken every three months and the seasonal and annual average concentration of the elements were determined. Seasonal highest values of heavy metals were observed as follows; Cr, Cu, Mn, Ni and Zn in Summer, Cd in Autumn. There was no seasonal difference for Pb, Cr and Cd. It seems that Lake Sapanca has not been polluted yet. However, it was found that Cu and Ni concentrations in surface sediment exceed lowest effect level.  相似文献   

7.
The Odiel salt marshes (Marismas del Odiel) are an important nature area declared a Biosphere Reserve, but they are greatly affected by pollution from the Odiel River. Surface sediments from this area were analysed using the latest version of the BCR sequential extraction procedure to determine the fractionation of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn among four geochemical phases (acid-soluble, reducible, oxidisable and residual). The total content of each of the metals and As was also determined. The results showed high concentrations of As, Cd, Cu, Pb and Zn, with maximums of 791 mg kg−1 of As, 8.5 mg kg−1 of Cd, 2,740 mg kg−1 of Cu, 1,580 mg kg−1 of Pb and 3,920 mg kg−1 of Zn. The concentrations of Cr, Mn and Ni were low since there are no sources of pollution by them in the area. A comparison of the metal and As levels with the sediment quality guidelines showed that the pollution is sufficient to produce noxious effects in aquatic organisms in most of the Odiel salt marshes. Based on the chemical distribution of the elements, it was found that Cd and Zn were the most mobile (i.e., elements that can pass easily into the water under changing environmental conditions). However, Cr, Fe, Ni and As were present in the greatest percentages in the residual fraction, which implies that these elements are strongly linked to the sediments.  相似文献   

8.
Heavy metal contents and contamination characteristics of the water and sediment of the Khoshk River, Shiraz, Southwest Iran were investigated. The abundance of heavy metals decreases as Zn > Mn > Cr > Ni >Pb > Cu > Cd in water samples and Mn > Cr > Pb > Ni > Zn > Cu > Cd in sediments, respectively. Based on the enrichment factor and geoaccumulation index values, sediments were loaded with Cr, Zn, Pb, Cu, and Cd. Pearson correlation matrix as well as cluster and principal components analyses and analysis of variance were implemented on data from sampling sites. Based on the locations of sampling sites in clusters and variable concentrations at these stations, it was concluded that municipal, industrial, and domestic discharges in the Shiraz urban area strongly affected heavy metals concentrations in the Khoshk River water and sediment. Results obtained from principal components analysis of sediment samples showed that the high concentration of Ni was mainly from natural origin, related to the composition of parent rocks, while the elevated values of Cr, Zn, Pb, Cd, and Cu were due to anthropogenic activities.  相似文献   

9.
The aim of this study was to elucidate the amount of metal released at each step by using different extractants in three sequential extraction schemes for the partitioning of metal contents of car park deposited dust samples. For this purpose, three different sequential extraction procedures (SEP) were employed for the metal fractionation in car park dust samples collected from the campus of Erciyes University, Kayseri, Turkey. While two of the sequential extraction procedures contain five steps the other, namely the BCR sequential extraction scheme, has three steps. The first two methods fractionate metals to be exchangeable, bound to carbonates, bound to Mn oxides, bound to Fe oxides and bound to organic matter, and the BCR protocol fractionates the metals as acid soluble and exchangeable, reducible, and oxidisable. Determination of the metals Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn was performed by flame atomic absorption spectrometry (FAAS). The results obtained by the three methods were compared and showed that the amount of metal released at each step of the leaching procedure depended both on the type of reagents used and the sequence in which they were applied. The most mobile elements were Cd, Pb and Zn which are metals potentially toxic to the environment and are also known to originate from traffic. The calculated enrichment factors for Cd and Pb were substantially high (73.5-187 and 18.4-27.5, respectively) and somewhat lower for Zn (5.1-6.8). These results confirm that they are important metal pollutants for car parks. Detection limits and recoveries were found in the range of 0.01-1.39 microg ml(-1) and 68-126%, respectively, for the metals studied and the three sequential extraction procedures.  相似文献   

10.
The present study was carried out in order to evaluate the statistical apportionment and risk assessment of selected metals (Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Pb, Sr, and Zn) in freshly deposited sediments in Rawal Lake, Pakistan. Composite sediment samples were collected, oven-dried, grounded, homogenized, and processed to assess the water-soluble and acid extractable concentrations of the metals in the water extract and acid extract of the sediments using flame atomic absorption spectrophotometer. Statistical methods were used to identify the possible sources of the metals. Sediment quality guidelines and potential acute toxicity were used to evaluate the ecotoxicological sense of selected metals. Non-carcinogenic health risk assessment was also carried out to determine the potential adverse health risks to the inhabitants. Relatively higher concentration was noted for Ca, Fe, Mg, Na, K, Mn, and Sr in the sediment samples. Principal component analysis and cluster analysis revealed anthropogenic contributions of Cd, Pb, Cr, Mn, Fe, and Li in the sediments. Enrichment factors of the metals in sediments showed severe to moderate enrichment of Cd, Pb, Ca, Fe, Li, Mn, and Sr. Geoaccumulation indices and contamination factors evidenced significant contamination by Cd and Pb, although, on the whole, low degree of contamination was noted. The levels of some metals exceeded the sediment quality guidelines, which revealed frequently adverse biological effects to the dwelling biota in the aquatic ecosystem. The sediments were found to be significantly contaminated by Cd, Pb, Cr, Mn, Fe, and Li.  相似文献   

11.
A sequential extraction procedure was carried out to determinate the concentrations of 11 elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in different geochemical phases of sediments collected along the Hugli (Ganges) River Estuary and in the Sundarban mangrove wetland, eastern coastal part of India. The chemical speciation of elements was determined using the three-step sequential extraction procedure described by the European Community Bureau of Reference. Total metal concentration was determined using a microwave-assisted acid digestion procedure. Metal concentrations were near the background level except for As for which a moderate pollution can be hypothesized. The mobility order of the metals was: Cd?>?Mn?>?Cu?>?Zn?>?As?>?Co?>?Pb?>?Ni?>?Fe?>?Cr?>?Al. The highest percentage of Cd (>60%) was found in the most labile phase. Residual fraction was prevailing for Fe, Cr and Al, while Pb was mainly associated with the reducible fraction. Data were compared with Sediment Quality Guidelines to estimate the relationship between element concentrations and adverse biological effects on benthic community, finding the possibility of some toxic effects due to the presence of As in the entire studied area and Cd, only in Calcutta.  相似文献   

12.
To examine the state of pollution of Bizerte Lagoon which is exposed to intense anthropogenic pressure, two sediment cores were taken at two sites, one undergoes the dual effects of both marine waters arriving from the Mediterranean Sea through the Channel, and also of freshwater from the Tinja River; the other core is located at the center of the lagoon where water depth is maximal (12 m). Heavy metal concentrations in the two cores were assessed, with calculated enrichment factors and geo-accumulation indexes. Core sediments were also studied for chemical speciation and their monosulfide contents were measured. Results from enrichment factors and geo-accumulation indexes show an accumulation of Cd, Zn, Cr, and Pb, while chemical speciation revealed a risk only from Cd and Mn. Comparison of sequential extraction values with those of acid volatile sulfides revealed that non-toxic effects may be caused by any of the studied metals in the sediment.  相似文献   

13.
The concentrations of Mn, Fe, Ni, Cr, Cu, Pb, Zn, As, and Cd were determined to evaluate the level of contamination of To Lich River in Hanoi City. All metal concentrations in 0–10-cm water samples, except Mn, were lower than the maximum permitted concentration for irrigation water standard. Meanwhile, concentrations of As, Cd, and Zn in 0–30-cm sediments were likely to have adverse effects on agriculture and aquatic life. Sediment pollution assessment was undertaken using enrichment factor and geoaccumulation index (I geo). The I geo results indicated that the sediment was not polluted with Cr, Mn, Fe, and Ni, and the pollution level increased in the order of Cu < Pb < Zn < As < Cd. Meanwhile, significant enrichment was shown for Cd, As, Zn, and Pb. Cluster and principal component analyses suggest that As and Mn in sediment were derived from both lithogenic and anthropogenic sources, while Cu, Pb, Zn, Cr, Cd, and Ni originated from anthropogenic sources such as vehicular fumes for Pb and metallic discharge from industrial sources and fertilizer application for other metals.  相似文献   

14.
Heavy metal (Fe, Mn, Zn, Cu, Ni, Pb, and Cd) concentrations and their chemical speciations were investigated for the first time in bed sediments of Bharali River, a major tributary of the Brahmaputra River of the Eastern Himalayas. Levels of Fe, Mn, Pb, and Cd in the bed sediments were much below the average Indian rivers; however, Cu and Zn exhibit levels on the higher side. Enrichment factors (EF) of all metals was greater than 1 and a higher trend of EF was seen in the abandoned channel for most metals. Pb showed maximum EF of 32 at site near an urban center. The geoaccumulation indices indicate that Bharali river is moderately polluted. The metals speciations, done by a sequential extraction regime, show that Cd, Cu, and Pb exhibit considerable presence in the exchangeable and carbonate fraction, thereby showing higher mobility and bioavailability. On the other hand, Ni, Mn, and Fe exhibit greater presence in the residual fraction and Zn was dominant in the Fe?CMn oxide phase. Inter-species correlations at three sites did not show similar trends for metal pairs indicating potential variations in the contributing sources.  相似文献   

15.
The major and trace element component of 48 recent sediment samples in three distinct intervals (0–10, 10–20, and 20–30 cm) from Lake Ac?göl is described to present the current contamination levels and grift structure of detrital and evaporate mineral patterns of these sediments in this extreme saline environment. The spatial and vertical concentrations of major oxides were not uniform in the each subsurface interval. However, similar spatial distribution patterns were observed for some major element couples, due mainly to the detrital and evaporate origin of these elements. A sequential extraction procedure including five distinct steps was also performed to determine the different bonds of trace elements in the <?60-μ particulate size of recent sediments. Eleven trace elements (Ni, Fe, Cd, Pb, Cu, Zn, As, Co, Cr, Al and Mn) in nine surface and subsurface sediment samples were analyzed with chemical partitioning procedures to determine the trace element percentage loads in these different sequential extraction phases. The obtained accuracy values via comparison of the bulk trace metal loads with the total loads of five extraction steps were satisfying for the Ni, Fe, Cd, Zn, and Co. While, bulk analysis results of the Cu, Ni, and V elements have good correlation with total organic matter, organic fraction of sequential extraction characterized by Cu, As, Cd, and Pb. Shallow Lake Ac?göl sediment is characteristic with two different redox layer a) oxic upper level sediments, where trace metals are mobilized, b) reduced subsurface level, where the trace metals are precipitated.  相似文献   

16.
Surface sediment samples (n = 18) were collected from the Algerian Mediterranean coasts and analyzed for seven metals using inductively coupled plasma-optical emission spectrometry in order to asses the distribution and bioavailability of metals and to study the anthropogenic factors affecting their concentrations. Sediment samples were size-fractionated into three sizes: 1,080–500 (coarse), 500–250 (medium), and <250 mm (fine). Bulk sediments were subjected to both sequential extraction and total digestion to evaluate the reliability of the sequential extraction procedure (SEP), while the fractions have been only sequentially extracted for metals speciation. The metals were sequentially extracted into five phases namely exchangeable (P1), carbonates (P2), Fe–Mn oxides (P3), organic (P4) and residual (P5). Metal recoveries in sequential extractions were ±20% of the independently measured total metal concentrations; the high recovery rates indicate the good reliability of the SEP used in this study. Correlation coefficients indicated that the grain size has an effect on the distribution of metals in the investigated samples. The order of metal levels in the fractions was medium > fine > coarse for all the metals. The average total extractable metal concentrations for Cd, Cr, Cu, Fe, Ni, Pb, and Zn were 1.1, 8.8, 4.7, 1,291.3, 13.9, 5.7 and 20.4 μg/g, respectively. The northeastern shelf had the lowest metal levels while the highest were in northwestern part mainly due to the significant tourism activities in the northwestern part. Comparison of our results to Earth’s crust values and to previous studies points out that our samples were relatively unpolluted with respect to the heavy metals investigated; most of the metals are not from anthropogenic sources. Enrichment factors as the criteria for examining the impact of the anthropogenic sources of heavy metals were calculated, and it was observed that the investigated samples were not contaminated with Cr, Cu, and Fe, moderately contaminated with Ni, Pb, and Cd, and contaminated with Cd in some sites. The P5 phase had the highest percents of Cr, Cu, Fe, Ni, and Zn. Cadmium and lead were predominant in the P4 phase, while Cu, Fe and Zn were distributed in the order P5 > P3 > P4 > P2 > P1. The following order of bioavailability was found with the heavy metals Pb > Cr > Cd > Ni > Zn > Cu > Fe.  相似文献   

17.
The concentration and speciation of heavy metals (Cr, Ni, Cu, Zn, Cd, Pb) in surface sediments (??≤ 63 μm) of Jinjiang River tidal reach are determined to evaluate the metal behavior. A modified BCR three-step sequential extraction procedure is carried out, and the residual fraction is undertaken by microwave-assisted acid digestion. The index of geo-accumulation indicates that Cd appeared highest among all these heavy metals in surface sediments, Cr, Cu, Zn lower, and Ni, Pb the least. The percentage of Zn, Cd is comparatively higher in the acid soluble fraction, Pb and Cu higher in the reductive fraction, indicating larger potential danger to the environment. So it is essential for developing the future remediation plans and pollution control strategies.  相似文献   

18.
Characterization of heavy metals in water and sediments in Taihu Lake, China   总被引:11,自引:0,他引:11  
To explore a comprehensive status of heavy metals in the Taihu Lake, which is one of the most important waters in China, water and sediment samples were taken throughout the lake during April to May of 2010, and metal elements (Cu, Cd, Cr, Ni, Pb, Sn, Sb, Zn, Mn) were analyzed in the water column, interstitial water and sediment. Relevant standards were used to assess the sediment and water quality. Results show that, in the lake water column, the average concentration of all metals ranged from 0.047 μg/l (Cd) to 8.778 μg/l (Zn). The concentration in the river water was usually higher than in the lake water for many metals. In the interstitial water Mn was significantly higher than that in water column, and other metals had no significant difference between the two media. In the surface sediment, average metal content ranged from 1.325 mg/kg (Cd) to 798.2 mg/kg (Mn). Spatially, contents of many metals were higher in Zhushan Bay than in other lake areas, and there existed a clear content gradient from the river to the lake for both water and sediment. On the sediment profiles, many metals presented an increasing trend from the depth of 15-20 cm to the top, which is indicative of the impact of increasingly intensive human activities from that period. Quality assessment indicates that metals in water phase are generally safe compared with USEPA "National Recommended Water Quality Criteria," with the exception of Mn in the interstitial water and Sb in the river water. Whereas the sediment is widely contaminated with metals to some extent compared with the "Consensus-Based Sediment Quality Guidelines," and Cu, Cr, and Ni are more likely to raise ecological risks. This work could be a basis for the ongoing China's criteria strategy.  相似文献   

19.
In this study, the concentrations of 13 elements (Al, Fe, Mn, Cr, Ni, Zn, Co, As, Pb, Cu, Mo, Hg, and Cd) were determined in the sediments of three different sites in the Kapulukaya Dam Lake between May 2007 and November 2008. They ranged from 1.47 to 4.64 for Al, 0.92 to 3.48 for Fe (in percent), 326.60 to 1053.00 for Mn, 98.00 to 1,116.00 for Cr, 24.70 to 127.10 for Ni, 14.80 to 124.20 for Zn, 11.0 to 43.20 for Co, 5.00 to 29.30 for Cu, 9.10 to 69.70 for As, 8.60 to 34.00 for Pb, 2.50 to 5.20 for Mo, 1.00 to 1.60 for Hg, and 0.50 to1.80 for Cd in microgram per gram dry weight sediment. The contamination degree of the sediment was assessed on the basis of enrichment factor and corresponding sediment quality guideline. The calculated enrichment factors (EF, measured metal vs. background concentrations) indicated that the effect of man-made activities on the occurrence of concentrations could be accounted for the majority of heavy metals namely Mn, As, Ni, Cu, Zn, Cr, Co, Mo, and Cd, whereas such affect was not detected for Hg and Pb. The maximum values of the EF were represented by As, minimum values by Hg at all sites. Mean EF values were 36.60 and 0.70 for As and Hg, respectively. This study has clearly assessed a certain level of heavy metal pollution in the region, based particularly on the findings from sediment.  相似文献   

20.
In the last three decades, the industrial and human activities in the coastal area of Saudi Arabia have increased dramatically and resulted in the continuous invasion of different types of pollutants including heavy metals. Seven sediment cores were collected from three major industrialized areas; Jeddah, Rabigh and Yanbu, along the coast of Saudi Arabia to determine the spatial and temporal distribution of metals and to assess the magnitude of pollution and their potential biological effects. Sediments were analyzed for texture, calcium carbonate contents, organic matter and metals (Al, Fe, Mn, Cd, Cr, Cu, Ni, Pb and Zn). Some metals like, Cr, Mn, Ni and Zn, were enriched in the upper 15 cm of core samples (recent deposition of sediments). Cadmium concentrations showed high fluctuations with depth and reverse pattern to that for Al, Fe and Mn which indicated land based sources of this element to the studied areas. Elevated concentrations of lead were recorded in the bottom layers of cores in Jeddah that indicated the most dramatic increase in usage of gasoline in early 1970s. The calculated contamination factors (CF's) were found in the following sequences: Cd > Pb > Ni > Cu > Zn > Cr > Mn for all studied areas. Results of Pollution Load Index (PLI) revealed that Jeddah is the most polluted area, followed by Rabigh while Yanbu is the least contaminated area. Except for Ni, the concentrations of most metals in the majority of sediment samples were believed to be safe for living organisms. As no data were available on the concentration of metals in core sediments in the coastal area of Saudi Arabia, the results of this study would serve as a baseline against which future anthropogenic effects can be assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号