首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
为能更加准确地模拟出兰州市近地面臭氧浓度,在CMAQ(社区多尺度空气质量建模系统)的基础上,利用机器学习方法中的XGBoost(极限梯度提升)模型及LSTM(长短期记忆)神经网络模型建立近地面臭氧模拟结果的订正模型,并以两种方法为基础,利用误差变权倒数组合方法构建LSTM-XGBoost组合模型,以期进一步提高订正效果.本文选取兰州市4个国控站点(兰炼宾馆,铁路设计院,榆中校区,生物制品所)2019年7、8月环境空气质量监测数据及兰州市气象站同期气象数据,对CMAQ模拟的同时段兰州市近地面臭氧浓度进行订正.结果表明,CMAQ能够模拟出兰州市近地面臭氧浓度的空间及时间分布特征,但整体上对浓度有所低估.利用上述方法构建的订正模型中,LSTM-XGBoost组合模型的订正效果最好,臭氧相关性由CMAQ模拟的0.61~0.76提升至0.89~0.95,臭氧8h平均相关性由0.65~0.79提升至0.81~0.88,臭氧RMSE由44.83~70.17μg/m3提升至15.21~26.53μg/m3,臭氧8h平均RMSE由40.07~67.57μg/m...  相似文献   

2.
研究城市化、工业化和区域经济一体化进程的不断加快,对城市大气环境的影响是当前大气环境领域研究的热点问题。在此过程中,利用空气质量模型模拟系统研究大气环境污染问题成为大气环境研究中不可缺少的组成部分。在当前空气污染复杂的形势下,针对城市大气环境中臭氧的浓度尚未有效的控制措施。研究主要利用Models-3/CMAQ空气质量模式对成都市臭氧浓度数值通过不同的控制情景进行模拟,揭示城市大气中臭氧浓度控制的困难与挑战,并尝试性提出今后的研究方向,以期为控制城市大气中臭氧浓度提供建议。  相似文献   

3.
深圳地区臭氧污染来源的敏感性分析   总被引:2,自引:0,他引:2  
利用美国EPA开发的区域多尺度空气质量模式CMAQ对2008年8月发生在深圳地区的臭氧污染过程进行模拟,运用源敏感性识别工具DDM-3D分析深圳本地排放源及周边地区排放源对深圳地区臭氧污染形成的敏感性.研究表明,VOCs人为源排放对深圳臭氧形成敏感度高,控制深圳臭氧污染的关键在于控制VOCs人为源排放,控制重点应放在化学品/橡胶/塑胶、印刷、电子产品制造、家具、玩具、制鞋、建筑涂料使用、家用溶剂等方面;深圳的臭氧污染具有区域特征,在不利天气条件下,需与周边城市协调控制才能达到8h平均浓度120μg/m3的目标.  相似文献   

4.
长江三角洲地区春季臭氧异常高值的数值模拟研究   总被引:8,自引:5,他引:3       下载免费PDF全文
已有的观测与研究表明,长江三角洲地区春季的臭氧浓度为全年最高,且高浓度臭氧出现的频率也最高.采用美国环境保护局(USEPA)的区域大气质量模式(CMAQ)研究长江三角洲地区2000年5月一次臭氧异常高值事件.与地面观测资料的对比分析表明,该模式基本再现了臭氧及其前体物的变化趋势.通过个例分析,从物理和化学两方面解释了2000年5月11日佘山、嘉兴和临安均观测到高浓度臭氧的原因.模拟结果表明,气象场对区域空气污染分布形式起着至关重要的作用,同时也反应了在适当的风场作用下,上海地区的污染源可以对长江三角洲地区的空气质量造成很大影响.   相似文献   

5.
针对蒙特卡洛法在复杂环境模型进行不确定性传递分析时对计算机和时间资源需求巨大的缺点,本文引进快速高效的随机响应曲面法,并将其成功应用于CMAQ区域空气质量模型的不确定性传递分析,建立了基于CMAQ区域空气质量模型的不确定性分析概念框架.采用2阶和3阶随机响应曲面法,研究了排放清单不确定性对臭氧模拟结果的影响,并与1000次蒙特卡洛模拟结果进行对比.结果表明:3种模拟情景下臭氧浓度的均值几乎相同,模拟结果的概率分布曲线也基本一致,而采用随机响应曲面法可以极大节省模拟所需时间,提高计算效率,显示随机响应曲面法具有在复杂大气环境模型中进行不确定性传递分析的潜在价值.  相似文献   

6.
天津市臭氧浓度时空分布与变化特征研究   总被引:3,自引:0,他引:3  
随着经济的发展和机动车保有量的增长,光化学烟雾已经成为影响城市环境空气的重要因素。利用2008年臭氧监测的小时浓度,对臭氧污染的空间分布、时间分布以及臭氧变化特征进行了分析。结果表明:臭氧浓度呈现明显的日变化规律,臭氧浓度和氮氧化物及一氧化碳浓度日变化呈现典型的负相关,臭氧浓度和温度日变化呈现典型的正相关。  相似文献   

7.
天然源排放碳氢化合物对广州地区光化学污染的影响   总被引:11,自引:0,他引:11       下载免费PDF全文
运用二维网格模式模拟天然源排放碳氢化合物对广州地区光化学污染的影响.结果表明,天然源排放碳氢化合物的减少直接引起臭氧浓度的减少.当天然源碳氢化合物排放量为零,臭氧平均浓度将减少51.0%;当人为源碳氢化合物排放量为零,臭氧平均浓度将减少34.4%.尽管模拟区内天然源碳氢化合物所占比例(45.7%)比人为源所占比例(54.3%)略小,但天然源碳氢化合物对臭氧浓度的影响却比人为源大.在广州地区东北部,天然源碳氢化合物对臭氧浓度起主要作用;在广州地区南部,人为源碳氢化合物对臭氧浓度起主要作用  相似文献   

8.
利用湖北省超级站2019年10~11月的臭氧、NOx(=NO+NO2)和102种VOCs物质的小时数据分析了军运会期间臭氧污染变化;基于DSMACC箱型模式模拟不同VOCs和NOx浓度下臭氧的光化学生成敏感性;采用PMF模型对前体物VOCs进行源解析,并估算不同源类的臭氧生成潜势.结果显示,军运会保障前臭氧日最大8小时浓度(最大MDA8:219.51μg/m3)超过国家二级标准,保障期臭氧MDA8浓度(135.11μg/m3)明显下降,保障后浓度回升(140.98μg/m3).军运会保障前中期臭氧浓度的差异受气象条件影响更明显,而保障后臭氧浓度的上升主要是因为前体物浓度的大幅增加.根据DSMACC模拟的EKMA曲线,武汉市军运会期间臭氧的光化学生成主要受VOCs浓度变化的影响.进一步对VOCs进行源解析,结果显示,保障前VOCs对臭氧生成贡献较大的源类是燃烧源、石油化工和机动车,分别占23.0%、22.8%和22.5%;保障期间VOCs的主要来源是机动车(38.4%)和燃烧源(25.5%);保障后则主要是石油化工(32.6%)和燃料挥发(25.7%).三个阶段对比发现,军运会的保障方案对石油化工源减排效果明显,但对机动车和燃烧源排放的限制效果并不显著.武汉市应该更注重对燃烧、燃料挥发和机动车排放的治理.  相似文献   

9.
王曙光  宫文亮  王效科  刁晓君 《环境科学》2011,32(10):3033-3039
在模拟的大气臭氧浓度升高环境中,用磷脂脂肪酸方法(PLFA)分析大气臭氧浓度升高和接种丛枝菌根(AM)真菌对臭氧敏感性不同的2种基因型矮菜豆(臭氧敏感性:S156;臭氧耐受性:R123)根际和菌丝际微生物量及群落结构的影响,旨在明确大气臭氧浓度变化对植物根际微生物的影响,为全面评价臭氧浓度升高对土壤-植物生态系统的影响...  相似文献   

10.
不同模式对珠三角地区细颗粒物污染模拟效果对比评估   总被引:2,自引:1,他引:1  
运用CAMxv5.4、CMAQv4.7.1、CMAQv5.0.2(AEOR5)和CMAQv5.02(AEOR6)模拟2013年12月珠三角地区空气质量,并对比评估不同模式、不同模式版本、不同气溶胶机制在PM_(2.5)模拟上的表现.各模式在PM_(2.5)的模拟上均表现良好,呈现出合理且相似的时空特征,在市区和非超标时段CAMx模式表现最优,而在郊区和超标时段则不存在表现最优的模式.CMAQ系列模式在市区和郊区、超标时段和非超标时段均表现相似,CMAQ4模式表现均优于CMAQ5系列模式,而CMAQ5AE6模式在反映PM_(2.5)的浓度水平的能力上强于CMAQ5AE5模式,但在重现PM_(2.5)小时浓度变化趋势的能力上却劣于CMAQ5AE5模式.边界条件是不同模式PM_(2.5)模拟差异的主要来源之一,且在超标时段边界条件对PM_(2.5)模拟效果的影响大于非超标时段.此外,CAMx模式与CMAQ5AE5模式之间硫酸盐、硝酸盐和有机颗粒的差异导致了其PM_(2.5)模拟表现上差异,CMAQ4模式与CMAQ5AE5模式之间硫酸盐、硝酸盐和铵盐等无机盐组分的差异是导致其PM_(2.5)模拟差异的主要原因,硝酸盐和铵盐的差异是CMAQ5AE5模式与CMAQ5AE6模式之间PM_(2.5)模拟差异的主要因素.  相似文献   

11.
深圳市影响空气质量的污染物包括PM2.5、O3和NO2。运用CMAQ空气质量模型,对深圳市周边城市设置了4套达标情景并开展模拟评估。结果表明,要降低PM2.5浓度应以控制颗粒物一次排放为重点,在2012年基础上PM10和PM2.5分别减排45%和55%以上才可较好地实现大气污染防治目标。达标情景对O3污染的控制效果并不显著,可能与周边城市VOCs控制力度不足相关,要降低O3浓度,必须控制VOCs污染排放。  相似文献   

12.
We assessed the ability of the MM5/CMAQ model to predict ozone (O3) air quality over the Kanto area and to investigate the factors that a ect simulation of O3. We find that the coupled MM5/CMAQ model is a useful tool for the analysis of urban environmental problems. The simulation results were compared with observational data and were found to accurately replicate most of the important observed characteristics. The initial and boundary conditions were found to have a significant e ect on simulated O3 concentrations. The results show that on hot and dry days with high O3 concentration, the CMAQ model provides a poor simulation of O3 maxima when using initial and boundary conditions derived from the CMAQ default data. The simulation of peak O3 concentrations is improved with the JCAP initial and boundary conditions. On mild days, the default CMAQ initial and boundary conditions provide a more realistic simulation. Meteorological conditions also have a strong impact on the simulated distribution and accumulation of O3 concentrations in this area. Low O3 concentrations are simulated during mild weather conditions, and high concentrations are predicted during hot and dry weather. By investigating the e ects of di erent meteorological conditions on each model process, we find that advection and di usion di er the most between the two meteorological regimes. Thus, di erences in the winds that govern the transport of O3 and its precursors are likely the most important meteorological drivers of ozone concentration over the central Kanto area.  相似文献   

13.
CMAQ模式及其修正预报在珠三角区域的应用检验   总被引:7,自引:0,他引:7  
为检验CAMQ空气质量数值预报模式对区域性空气质量的预报准确度,通过对珠江三角洲地区16个监测站点数据进行聚类分析,对划分的评价区域进行预报误差分析。结果表明,CMAQ模式输出的污染物浓度水平存在明显偏低的现象,且可吸入颗粒物的浓度偏离最大,这与污染源清单削减程度有关。污染物浓度时变规律分析表明,CMAQ模式能较好地模拟可吸入颗粒物、二氧化氮和臭氧小时浓度的日变化特征,但对二氧化硫的模拟能力较弱,反映污染源时间分配因子存在不适应性。为提高预报的初始浓度值,采用预报日前一天的监测数据作为修正项,并考虑CMAQ模式预报的浓度变化趋势,从而进行修正预报。误差统计表明,修正预报的准确度显著提高,反映了引入实际监测数据对空气质量数值预报模式进行修正的研究意义和可行性。  相似文献   

14.
针对芘(Pyr)和苯并[a]芘(BaP),以京津冀地区2014年为例分别构建CMAQ和BETR模型系统开展数值模拟,对比评估两种模型对PAHs大气迁移转化的模拟效果,并利用XGBoost模型识别CMAQ中影响PAHs环境行为的关键大气物理化学过程和参数.结果表明,BETR和CMAQ模拟年均值与实测年均值比值基本在1/2~2之间,且CMAQ模拟值和实测值季节变化趋势相同,验证了两类模型结果的可靠性.同时,将CMAQ模型9 km网格模拟浓度平均至27 km网格并和BETR模拟浓度的对比结果显示,BETR模型Pyr和BaP模拟浓度平均分别约为CMAQ年均模拟浓度的1.59倍和1.38倍,两类模型在年均浓度水平和空间分布方面具有较好的可比性.基于XGBoost模型的SHAP变量重要性分析表明,边界层高是对Pyr和BaP迁移转化影响最大的气象因素,其重要性在所有因素中占比高达22%~35%,在部分城市和污染物中对浓度变化的贡献甚至超过排放量,且和两种PAHs浓度呈显著负相关;PAHs浓度水平其次受风速影响最大,且风速和PAHs浓度呈负相关关系;风向对不同城市污染物浓度的影响则各不相同.  相似文献   

15.
2013年12月上海市PM2.5重污染过程数值模拟研究   总被引:1,自引:0,他引:1  
基于2013年11月30日-12月13日上海一次PM2.5重污染过程,利用Model-3/CMAQ模式及过程分析技术,定量评估不同时段各大气过程对上海PM2.5浓度变化的影响.结果表明:Model-3/CMAQ模式系统能较好的模拟出实况PM2.5的浓度变化趋势与特点.研究期间,白天源排放的增强和大气传输的影响、加上较强的气溶胶和云过程生成贡献,是造成上海PM2.5浓度上升至重污染的主要原因.不同污染时段对PM2.5浓度上升贡献率最大的过程均为输送,其中,西北部点位(青浦淀山湖和虹口凉城输送)的贡献率最大,且重污染时段输送的贡献率明显高于非重污染时段.  相似文献   

16.
CMAQ模式及其修正技术在上海市PM_(2.5)预报中的应用检验   总被引:3,自引:1,他引:2  
利用CMAQ空气质量数值预报模式对上海市PM2.5浓度进行预报,选取10个囯控站点监测数据对预报进行验证评估.结果表明,CMAQ模式开展能够较好地模拟出PM2.5的时间变化趋势及浓度水平,但总体处于低估的水平,偏低幅度约25%,尤其在高污染阶段,模式的低估更为突出,达32%,这与污染源清单的不确定性有关.为提高PM2.5预报准确度,采用学习型线性回归方法对PM2.5浓度的数值预报结果进行修正,统计检验结果显示修正预报准确率由原来的76.4%提高到了79.3%,污染预报成功指数由56.4%提高至72.1%,明显提高了PM2.5浓度的预报效果,反映了引入实际监测数据对空气质量数值预报模式进行修正的研究意义和可行性.  相似文献   

17.
长江三角洲地区大气O3和PM10的区域污染特征模拟   总被引:14,自引:10,他引:14  
以TRACE-P污染源资料及上海市地方排放清单为基础,采用Models-3/CMAQ环境空气质量模型和中尺度气象模式MM5,模拟研究了2001-01和2001-07长三角近地面二次污染物O3及PM10的浓度分布及输送状况,并以上海市国控点2001年冬、夏季各10 d的小时监测数据对模型进行了验证.验证结果显示,Models-3/CMAQ对O3和PM10的模拟结果与监测值的相关系数分别为0.77和0.52;一致性指数分别达到0.81和0.99.模型对O3小时最高浓度的估算偏低27%,标准偏差为-3.1%;对PM10小时平均浓度的估算偏低10%,标准偏差为46%.模型已具备再现和模拟长三角大气污染输送过程的能力,且误差落在可接受的范围之内.模拟结果显示,2001-07长三角区域16个主要城市中,有14个城市O3小时最大浓度超过国家二级标准,高浓度O3可覆盖苏南和浙北广大区域.2001-01泰州、扬州、南京、镇江、常州等城市受本地排放源和北部大气污染输送的影响显著,大气PM10日均浓度超过PM10国家二级标准.长三角地区环境空气质量与污染类型受大气污染传输与化学转化的影响十分明显.夏季太阳辐射较强时,南部城市排放的污染物常以二次污染物的形式影响下风向城市;太阳辐射较弱的情况下,则以一次污染物输送为主的形式影响周边地区.冬季长三角区域颗粒物污染总体水平较高,这与我国北方地区排放的颗粒物在西北风作用下向长三角输送造成的影响密切相关.长三角地区的大气污染已逐渐从局地转为区域问题.  相似文献   

18.
为精准识别深圳市典型商业、居住与工业混合功能区的PM2.5污染来源,选取深圳市北部地区5个点位于2017年9月~2018年8月全年进行PM2.5的样品采集和组分分析,利用优化的多元线性引擎模型(ME-2)对其主要来源及其时空变化特征进行探索.结果显示,研究区域研究时段的大气PM2.5年均浓度为29.0μg/m3,解析出了SO2二次转化(19.9%)、机动车(15.1%)、生物质燃烧(11.2%)等10种来源,其中SO2二次转化、生物质燃烧、NOx二次转化、VOCs二次转化、工业排放、老化海盐和远洋船舶源具有显著的区域传输特征,而机动车源、燃煤和扬尘具有本地源特征,受到局地排放的影响较大.重污染天气下机动车源、NOx二次转化、工业排放及生物质燃烧源的增加最为显著,加强这些源的控制是此类混合功能区PM2.5污染精细化防治的关键.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号