首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
多生态类型湖泊N_2O生成与排放的空间异质性给准确地估算湖泊N_2O通量及评估湖泊N_2O排放的重要性带来了很大的不确定性,有关多生态类型湖泊N_2O生成与排放特征及内在机制的研究相对较少.本研究对夏季太湖典型草/藻型湖区水-气界面N_2O通量、水体溶存浓度以及水-土界面N_2O通量进行了原位观测及室内分析,并针对影响N_2O生成与排放的主要环境因子进行了室内微环境实验.结果表明,夏季水-气界面N_2O通量、水体溶存N_2O浓度及水-土界面N_2O通量大致上呈现为挺水植物湖区藻型湖区沉水植物湖区,水-气界面通量分别为(115.807±7.583)、(79.768±1.842)和(3.685±0.295)μmol·(m2·h)-1;水体溶存N_2O浓度分别为:(0.051±0)、(0.029±0.001)和(0.018±0)μmol·L~(-1),水-土界面通量分别为:(178.275±3.666)、(160.685±0.642)和(75.665±1.016)μmol·(m2·h)-1;空间差异原因可归结为生长的植物以及水体中无机氮浓度的差异.水-土界面微环境实验结果表明,外加硝酸盐及有机碳源可以显著增加沉积物N_2O生成潜力,而上覆水中高浓度NH+4-N会抑制沉积物N_2O生成,随温度升高,沉积物N_2O生成速率显著增加,这表明夏季水-土界面N_2O的生成与排放主要受硝酸盐及有机碳的限制,同时也受温度的影响.  相似文献   

2.
为了研究乌梁素海水体中微塑料的分布规律,通过试验方法探究了湖泊不同点位处,不同密度、不同大小、不同形状的微塑料丰度,分析微塑料自身属性(密度、形状、尺寸)对其空间分布的影响.结果表明,密度范围为小于1.0g/cm3,1.0~1.2g/cm3和1.2~1.5g/cm3的微塑料在湖泊不同采样点处的丰度范围分别为(109.5±17.3)~(642±160) n/L,(160.5±57.3)~(588±104) n/L和(124.5±47.5)~(502.5±80.2) n/L;其中密度小于1.0g/cm3的微塑料在湖泊中丰度呈现出由北到南逐渐增多的趋势,密度为1.0~1.2g/cm3的微塑料丰度在湖泊中部多、南北部少,1.2~1.5g/cm3的微塑料呈现由北到南由多变少的趋势.尺寸为0.05~0.5mm,0.5~2mm和2~5mm的微塑料在湖泊中丰度范围分别为(70.5±8.8)~(805.5±154.7) n/L,(178.5±21.4)~(742.5±112.3) n/L和(0±0)~(217.5±22.8) n/L;尺寸在0.05~0.5mm的微塑料丰度呈现由北到南递增的趋势,尺寸为0.5~2mm和2~5mm的微塑料丰度呈现由北到南递减的趋势.形状为纤维状,碎片状、薄膜状和块状的微塑料在湖泊中丰度范围分别为(499.5±92.3)~(1126.5±228) n/L,(30±4.8)~(151.5±31.6) n/L,(4.5±0.8)~(229.5±61.6) n/L和(1.5±0.2)~(12±3.9) n/L;其中纤维状微塑料在各个采样点均占主导地位且分布均匀,碎片状、薄膜状和块状微塑料丰度较低,无明显规律.在拉曼光谱鉴定的所有微塑料中,聚丙烯(43%)是最常见的类型,其次是聚氯乙烯(18%)、聚对苯二甲酸乙二醇酯(18%)、聚乙烯(11.7%)和聚苯乙烯(9.3%).  相似文献   

3.
2005年春季(4月)对珠江口内6个站位的营养盐剖面分布及沉积物-水界面的交换通量进行了全面研究。在获取该海域沉积物间隙水营养盐剖面资料的基础上,估算了沉积物-水界面营养盐的交换通量,并且与实验测定的沉积物-水界面交换通量进行了对比。研究结果表明,珠江口内间隙水营养盐在不同站位间含量差异明显,呈现出由河口向外海逐渐降低的分布趋势。对于大多数站位营养盐,交换实验得到的通量大于利用间隙水浓度梯度法估算的结果,交换实验具有更高的分辨率。应用交换实验测定的沉积物-水界面交换通量,体现了营养盐扩散和界面反应的综合作用结果。研究区域的NH4+,NO3-,NO2-,SiO44-和PO43-的交换通量分别为-1.318 4~0.985 4,-0.558 3~0.469 2,-1.518 8~0.143 8,-1.967 3~3.883 1和-0.246 4~0.093 9 mmol.d-1.m-2。  相似文献   

4.
富氧-缺氧过程对氧气分布及交换过程影响   总被引:1,自引:0,他引:1  
为考察底层水体不同的氧动态对水土界面氧气交换过程影响,采用Unisence的微电极测试系统考察底层水体不同的复氧-缺氧环境(物理微曝空气供氧、添加过氧化剂的化学供氧及物理微曝氮气)中,沉积物-水界面氧气的分布及其传输机制,并评估不同富氧与厌氧过程对表层沉积物有机碳的矿化过程的影响.结果表明水体处极度厌氧状况,控制溶解氧分布和交换的水底扩散边界层(DBL)厚度明显变薄(一般在0.2~0.4mm)且溶解氧衰变相对较缓.但底层水体溶解氧丰富甚至处于过饱和状态, DBL层的厚度(一般在0.4~0.7mm)相对较厚且氧气变化迅速 (P<0.05).增加水体氧气供给的条件下,水体与沉积物间溶解氧交换过程加快,溶解氧交换通量由(4.87±0.92)增加至(5.31±0.66 )及(17.14±3.15 ) mmol O2/(m2·d)交换速率,最高提升252%,温度升高氧气交换速率可增加15%,温度效应明显.  相似文献   

5.
巢湖沉积物有效态磷与硫的DGT原位同步分析研究   总被引:1,自引:0,他引:1  
沉积物有效态磷(P)与硫(S)的含量分布是影响湖泊营养元素循环和水体富营养化的重要因子.本文利用Zr O-Ag I薄膜梯度扩散技术(Zr O-Ag I DGT)原位同步获取了南淝河-巢湖沉积物中有效态P和S的高分辨分布信息.结果发现:绝大部分沉积物有效P和S自界面向下呈急剧升高趋势,并在50 mm深度内出现峰值;河道内沉积物有效P和S的含量高于湖体,且P在界面的表观释放通量明显高于湖体,表明河道沉积物是湖体P的输入源.部分采样点出现有效P与S同步变化的现象,两者具有显著相关性,证实沉积物内部P和S存在同步释放的规律.  相似文献   

6.
滇池沉积物氮内源负荷特征及影响因素   总被引:3,自引:0,他引:3  
研究了滇池沉积物间隙水氮浓度垂向分布特征,根据Fick扩散定律定量估算了沉积物-水界面氮扩散通量,并探讨了其影响因素.结果表明:滇池沉积物间隙水溶解性总氮(DTN)主要以氨态氮(NH4+-N)形式存在,占其总量的72.30%,其浓度随深度增加而升高;其次为溶解性有机氮(DON),占其总量的24.59%,其浓度随深度的增加先升高后降低,最后趋于稳定;硝态氮(NO3--N)所占比例较低,浓度随深度的增加而降低.滇池沉积物-水界面NH4+-N扩散通量分布范围为12.73~59.74mg/(m2·d)[均值30.18mg/(m2·d)],全湖年均氨氮释放量为3305.04t,其中草海、外海北部、东北部及南部湖区扩散通量较大,达35mg/(m2·d),全湖呈由北向南逐渐降低的空间分布特征;全湖年均DON释放量为1147.55t,其全湖分布特征与氨氮一致;NO3--N扩散通量分布范围为-2.70~0.27mg/(m2·d)[均值-0.50mg/(m2·d)],总体表现为由上覆水向沉积物扩散.与我国其他湖泊相比,滇池具有较大沉积物氮内负荷,其沉积物-水界面NH4+-N扩散通量较高,对湖泊水体氨氮浓度贡献较大,且其与沉积物总氮、有机质、可交换态氮和可交换态氨氮含量呈显著正相关,即滇池沉积物NH4+-N释放主要受其可交换态氮,特别是可交换态中氨氮含量影响;同时,滇池沉积物DON潜在释放风险也较大,且与沉积物C/N有关.  相似文献   

7.
以大型深水水电类水库潘家口水库为例,于2020年春季(5月)、夏季(8月)在研究区设置33个采样点,采用顶空平衡-气相色谱法和经验模型法对水柱温室气体浓度和水-气界面扩散通量进行了观测及估算,并分析了潘家口水库温室气体浓度及通量的主要影响因素.结果表明:春季潘家口水库水-气界面CH4、CO2、N2O平均通量分别为(1.11±1.60)μmol/(m2·h),(1333.31±546.43)μmol/(m2·h),(76.65±19.54)nmol/(m2·h).夏季潘家口水库水-气界面CH4、CO2、N2O平均通量分别为(0.62±1.13)μmol/(m2·h),(746.08±1152.44)μmol/(m2·h),(141.18±256.02)nmol/(m2·h).潘家口水库温室气体排放呈现出大的时空异质性,空间上春季和夏季各温室气体通量均表现为干流大于支流;季节上CH4与CO2扩散通量表现为春季大于夏季,而N2O扩散通量夏季大于春季.统计分析表明CH4扩散通量主要受电导率、风速等环境因子影响,CO2扩散通量受风速、pH及DOC影响,N2O扩散通量主要受水柱NO3--N、NO2--N的影响.  相似文献   

8.
通过云南泸沽湖──半封闭深水湖泊湖水和沉积物孔隙水中Ca2+、K+、Na+、HCO等基本组分及pH等剖面分布的研究,结果表明,这些基本组分可以自底部沉积物向上覆水体扩散迁移。定量地估算了扩散通量及其对上覆水体的影响程度,说明湖泊沉积物-水界面作用在控制整个水体水化学基本组成中起着重要的作用。  相似文献   

9.
中国近海沉积物在生源要素循环中的功能   总被引:15,自引:2,他引:15  
中国近海沉积物中生源要素的含量与其粒度、河流输入等诸多因素有关。一般沉积物粒度由粗到细 ,有机质含量由低到高 ,OC ,N ,P的含量递增 ,S和Si含量递减。沉积物的生物地球化学环境涉及到Eh ,pH ,温度 ,OC含量 ,Fe3 /Fe2 值 ,水动力条件 ,沉积物的颗粒大小和间隙水的S体系 ,以及生物扰动等因素 ,它们影响着沉积物中生源要素的早期成岩过程和循环。一般而言 ,中国近海沉积物—海水界面S2 -,HS-,H4SiO4,PO43 -,NH4 的扩散通量是从沉积物向上覆水 ,而SO42 -,HCO3 -,NO3 -,NO2 -的扩散通量从上覆水向沉积物中扩散。生物扰动对沉积物—海水界面生源要素的循环起重要作用。  相似文献   

10.
湖泊水-沉积物界面DIC和DOC交换通量及耦合关系   总被引:1,自引:1,他引:0  
王伟颖  吕昌伟  何江  左乐  颜道浩 《环境科学》2015,36(10):3674-3682
以乌梁素海和岱海为研究对象,采用柱状芯样模拟法,开展了2个湖泊水-沉积物界DIC和DOC交换通量及耦合关系研究.结果表明,在夏季90 d的时间内,乌梁素海明水区沉积物表现为上覆水中DIC和DOC的碳源,DIC和DOC的平均释放速率分别为71.07 mmol·(m2·d)-1和185.09 mmol·(m2·d)-1;岱海浅、深水区沉积物整体上表现为上覆水中DIC和DOC的碳汇,浅水区DIC和DOC的平均释放速率分别为155.75 mmol·(m2·d)-1和-1 478.08 mmol·(m2·d)-1,深水区DIC和DOC的平均释放速率分别为-486.53 mmol·(m2·d)-1和-1 274.02 mmol·(m2·d)-1;岱海浅水区和乌梁素海水-沉积物界面DIC与DOC耦合作用(含量、释放速率、总量变化量的同步变化)主要受微生物摄取、微生物或非生物降解及水生植物的影响;岱海深水区水-沉积物界面DIC与DOC耦合作用则主要与Ca CO3共沉淀作用及沉积物中无机碳形态分布特征等有关.总体上,不同类型湖泊或同一湖泊不同湖区的DIC或DOC源/汇功能差异是湖泊类型、离岸距离、湖泊水文地球化学及无机碳形态分布等多种因素综合作用的结果.  相似文献   

11.
太湖水土界面氮磷交换通量的时空差异   总被引:19,自引:5,他引:14  
张路  范成新  王建军  郑超海 《环境科学》2006,27(8):1537-1543
利用原柱样静态释放实验及间隙水分子扩散模型对太湖典型草型湖区(东太湖)及藻型湖区(梅梁湾)的氮磷释放通量进行了逐月研究.原柱样氮磷静态界面交换通量(Fi)在同一湖泊不同生态类型湖区有差异性,东太湖氨态氮和可溶性磷酸盐的年平均交换通量分别为(44.9±21.9)mg·(m2·d)-1(平均值±标准偏差)和(2.06±1.71)mg·(m2·d)-1,梅梁湾为(16.2±12.0)mg·(m-1·d)-1和(0.53±0.52)mg·(m2·d)-1.2湖区的分子扩散通量(Fm)同样表现为这样的差异,但是其绝对值与静态释放通量相比有数量级的差异,该模型不能用于太湖这样风浪显著且底栖生物活性较高的湖泊水土界面氮磷营养盐交换通量的估算.仅从不同生态类型的湖区比较结果看,草型湖区比藻型湖区有更高的氮磷交换通量.Fi/Fm比值作为1种反映底栖生物活性的指标反映出东太湖有更高的底栖活性.在水体溶解氧水平通常保持在较高的水平,即好氧状态下,氮磷界面交换通量与溶解氧水平(DO)无显著相关.同样,在现有浓度水平下,其水土界面交换通量与水体氮磷浓度无显著相关.东太湖较高的释放通量与相对较低的水体营养盐负荷的差异来自于大型水生植被的消浪促沉降及其本身的吸附吸收作用,这是恢复水生植被以重建健康水生生态系统的重要理论依据.  相似文献   

12.
反硝化(DNF)和硝酸盐异养还原为氨(DNRA)是水域生态系统中硝酸盐异养还原的2个主要过程.DNF和DNRA之间的竞争控制着硝酸盐在水域生态系统中的异养还原方式和最终归趋.选取太湖流域的傀儡湖为研究对象,采用室内培养实验和稳定氮同位素示踪技术,考察傀儡湖沉积物-水界面的DNF和DNRA速率及其对硝酸盐异养还原过程的贡献.结果显示,沉积物表现为NH4+-N的源和NO3--N的汇,潜在DNF速率为18.89~54.00μmol/(kg·h)[均值(36.39±3.86)μmol/(kg·h)],DNRA反应速率为1.02~5.89μmol/(kg·h)[均值(3.21±1.15)μmol/(kg·h)].DNF与沉积物有机质含量和含水率存在显著的正相关关系,DNRA与沉积物需氧量(SOD)之间存在相关性.反硝化是傀儡湖中硝酸盐异养还原的主导过程,贡献率为84.23%~96.90%,而DNRA过程只占3.10%~15.77%.与海洋河口区域相比,淡水湖泊生态系统中DNRA速率和DNRA在硝酸盐异养还原中所占的比重均较小.  相似文献   

13.
利用改进的沉积物有机磷提取方法和液相31P核磁共振(NMR)分析方法,研究了巢湖表层沉积物有机磷形态.结果表明:西部湖区表层沉积物总磷含量高于东部湖区,其平均含量分别为(1089.82±108.14) mg·kg-1和(497.80±51.59) mg·kg-1;东部湖区沉积物中有机磷百分含量(31.88%±2.41%)高于西部湖区(20.86%±1.65%);表层沉积物主要磷份组成包括膦酸盐(Phon-P)、正磷酸盐(Ortho-P)、磷酸单酯(Mono-P)、磷脂(Lipid-P)、DNA(DNA-P)、焦磷酸盐(Pyro-P);磷酸单酯为有机磷的主要组分,平均含量占总磷的22.12%±5.32%;磷酸单酯和DNA百分含量东部湖区大于西部湖区,磷酸单酯百分含量分别为25.99%±2.29%和16.30%±1.06%,DNA百分含量分别为5.61%±0.24%和3.85%±1.01%.31P核磁共振技术可以有效的应用于巢湖等富营养化湖泊沉积物磷形态分析;巢湖表层沉积物以无机磷为主,有机磷种类丰富,以磷酸单酯为主.  相似文献   

14.
程昕煜  杨丽虎  宋献方 《环境科学》2023,44(8):4344-4352
为探究我国白洋淀淡水环境中微塑料的赋存特征,于2021年10月通过野外采样、实验室预处理、显微镜观察和激光红外光谱测定等方法鉴定了淀区10份上覆水及10份沉积物样品中微塑料的丰度分布、形状、粒径和聚合物类型,并通过Stokes沉降公式研究了微塑料在上覆水-沉积物界面的沉降规律,对其污染特征及潜在来源进行分析.结果表明,淀区上覆水及沉积物中微塑料丰度范围分别为474~19 382 n·m-3和95.3~29 542.5 n·kg-1,平均值为6 255.4 n·m-3和11 088 n·kg-1.上覆水中的微塑料主要聚合物为聚对苯二甲酸乙二醇酯[PET,(17.20±0.26)%],沉积物中微塑料以氯化聚乙烯[CPE,(46.11±1.30)%]为主.淀区内微塑料的沉降速度从0.079 3~111.754 7 mm·s-1不等,粒径大的颗粒沉降速度较高,易沉降并保留在沉积物中.研究区微塑料污染主要来源为洗涤废水产生的纺织纤维排放,船舶漆、船舶橡胶和建筑材料磨损等过程.  相似文献   

15.
聚藻区高有机负荷表层底泥已被证实是西巢湖黑臭频发的主要因素,但能否借鉴像控制湖泊内源污染的翻耕方式对黑臭进行预控,则有待于与过程有关的试验研究.基于湖泊底泥再悬浮特征和耕作性能设计的底泥翻耕措施,借助能够模拟湖泊风浪与沉积物再悬浮的大型装置,通过藻体堆积诱发试验,研究黑臭诱发过程中上覆水水色,ρ(Fe2+)、ρ(S2-)的动态,新生沉积物-水界面底泥关键物化指标以及底泥间隙水Fe、S变化对底泥翻耕的响应过程.结果表明:①翻耕深度对黑臭影响较大,PT15(15 cm深度的翻耕处理组)达到了对湖泛黑臭的控制,当第8~14天PT2、PT5、PT10(2、5和10 cm翻耕处理组),CK(对照组)和Blank(空白组)相继发生黑臭时,PT15上覆水主要致黑物质为Fe2+和S2-,其质量浓度分别为PT2、PT5、PT10、CK和Blank的68.6%、79.5%、48.1%、46.7%、51.3%和75.2%、65.7%、57.1%、74.5%、75.0%.②PT15可明显提升新生泥-水界面对蓝藻堆积及缺氧环境的耐受力,黑臭诱导模拟后,其底部水体及泥-水界面的ρ(DO)、Eh和pH均远高于发生湖泛黑臭处理组,ρ(∑H2S)却明显低于发生湖泛黑臭处理组,表层底泥间隙水中ρ(Fe2+)为0.54 mg/L,仅为发生湖泛黑臭处理组的25.3%~33.7%,ρ(Fe2+)占ρ(TFe)的比例为25.2%,远低于发生湖泛黑臭处理组(约40.0%),表层底泥中w(AVS)(AVS表示酸可挥发性硫化物)为0.51 μg/g,仅为发生湖泛黑臭处理组的14.6%~17.2%.研究显示,底泥翻耕作为一种底泥物理改良方式,对于聚藻区内底泥,因其将有机污染负荷较重的表层翻转至了下层,阻隔了表层污染底泥中物质迁移供给和对厌氧微生物参与的控制,在藻体大量聚集和死亡的水柱环境中可较好地阻止致黑致臭物的形成,有效控制了湖泛黑臭的发生.   相似文献   

16.
选择乌梁素海和洱海沉积物样品,利用XAD-8树脂分离和三维荧光光谱技术,在室内培养条件下,研究了其溶解性有机氮(DON)不同组分的藻类可利用性.结果表明:①DON分组后,所研究湖泊沉积物DON及DOC平均损失低于5%,即XAD-8树脂分离技术可以用于湖泊沉积物DON的分组研究.②通过三维荧光光谱分析,湖泊沉积物DON亲水组分以类蛋白质为主,疏水组分以类腐殖质为主.③亲水组分培养条件下,来自乌梁素海和洱海沉积物的DON处理,其藻类生长分别呈"S"型曲线和直线上升趋势,最大藻密度分别达到535.5×104个·mL-1和709.5×104个·mL-1;其ρ(DON)均呈显著降低趋势,培养后ρ(DON)分别降低了2.46 mg·L-1和2.98 mg·L-1,表明湖泊沉积物亲水DON组分是藻类可利用的有机氮形态.④疏水组分培养条件下,来自乌梁素海和洱海沉积物的DON处理,其藻类生长均呈"单峰"曲线变化,最大藻密度分别达到113.5×104个·mL-1和275.5×104个·mL-1;ρ(DON)均在培养初期迅速下降,培养后期几乎不变,表明湖泊沉积物疏水DON组分在短时间内藻类可利用性较低,对藻类生长几乎无贡献作用.  相似文献   

17.
为了更好的认识不同富营养化区域甲烷(CH4)排放通量及途径的时空异质性,本文以我国典型富营养化浅水湖泊-巢湖为研究对象,设置西北湖湾、西湖心和中湖心3个研究点位,采用漂浮通量箱和经验模型分析等方法对其水-气界面CH4排放通量与途径进行季节性研究.结果表明水体与沉积物中CH4溶存浓度、水-气界面CH4排放通量同水体营养盐水平及叶绿素a含量的空间变化相一致,且均表现为西北湖湾最高,其水体CH4溶存浓度为(0.178 ±0.002)~(1.123 ±0.026)μmol/L、表层沉积物中CH4含量为(70.5 ±30.7)~(189 ±97.0)μmol/L、CH4总排放通量为(50.1 ±2.93)~(1232 ±28.6)μmol/(m2·h);3个点位的CH4扩散通量占总排放量的7.3%~42.9%,冒泡通量占57.1%~92.7%,富营养化程度最高的西北湖湾冒泡通量占比最高;CH4排放通量大小与途径同时受季节变化影响,夏季CH4冒泡与总排放通量均最高,其中冒泡对总通量的贡献高达98.1%.  相似文献   

18.
氧化还原循环过程中沉积物磷的形态及迁移转化规律   总被引:8,自引:6,他引:2  
为研究沉积物在氧化还原循环过程中磷循环迁移转化机制,通过控制实验模拟分析氧化还原条件下,上覆水理化性质变化特征、沉积物各形态磷变化及机制研究,并量化沉积物中磷的重新分配和沉积物磷酸盐的释放通量影响.结果表明:(1)氧化还原电位Eh和p H体系、硫体系、碳体系以及与磷相关性密切的铁体系变化规律具有周期性,并对解释沉积物-水两相界面磷的迁移转化机制有重要作用;(2)在氧化还原循环过程中,各形态磷含量随着氧化还原条件和时间变化,根据水-沉积物磷素变化量化分析可得,可还原态磷(BD-P)和铁铝结合态磷(Na OH-rP)是可逆地重新分配到弱吸附态磷(NH4Cl-P)、聚磷/有机磷(Na OH-nrP)、残渣态磷(Rest-P)和间隙水溶解性活性磷(SRP)中,且沉积物中变化量93. 7%的磷在还原反应时不会释放到水体中;(3)上覆水总磷(TP)浓度变化的92%为上覆水的SRP,表明水-沉积物在该循环过程中以水溶性磷交换为主;(4)根据Fick第一定律得,还原阶段磷扩散通量最大值为0. 58 mg·(m~2·d)-1,而氧化阶段第7 d扩散通量约为0. 16~0. 22 mg·(m~2·d)-1;氧化反应阶段,扩散通量随时间逐渐降低,还原阶段的变化趋势相反,表明还原状态会加速沉积物磷的扩散程度,而曝氧降低了沉积物磷扩散通量.  相似文献   

19.
太湖北部湖区COD浓度空间分布及与其它要素的相关性研究   总被引:10,自引:1,他引:9  
利用2004年夏季在太湖北部湖区的采样数据,分析了化学需氧量(COD)浓度的空间分布,建立了COD浓度与有色可溶性有机物(CDOM)吸收、荧光、溶解性有机碳(DOC)浓度之间的定量关系.并以2004-01、2005-01、2007-06的数据探讨了COD的来源.结果表明,夏季COD浓度的变化范围为3.77~7.96 mg·L-1,均值为(5.90±1.54)mg·L-1. COD浓度从梅梁湾内往湾口再往大太湖呈现逐渐降低趋势,梅梁湾和大太湖的均值分别为(6.93±0.89)ms·L-1、(4.21±0.49)mg·L-1,梅梁湾的值显著要高于大太湖开阔水域. COD浓度与CDOM吸收、荧光、DOC浓度存在显著的正相关.通过对光学活性物质CDOM浓度的反演,可以外推水体有机物污染程度,为日后利用遥感影像反演和评估太湖水体有机物污染状况奠定基础.夏季COD浓度与叶绿素a浓度存在极显著正相关,而冬季没有相关或这种相关性很弱,并且夏季的值明显要高于冬季的值,反映了除入湖河流带来外源COD的输入外,夏季浮游植物大量生长死亡腐烂后的降解产物也是水体中COD的重要来源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号