首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fox JW 《Ecology》2006,87(11):2687-2696
Species loss can impact ecosystem functioning, but no general framework for analyzing these impacts exists. Here I derive a general partitioning of the effects of species loss on any ecosystem function comprising the summed contributions of individual species (e.g., primary productivity). The approach partitions the difference in ecosystem function between two sites (a "pre-loss" site, and a "post-loss" site comprising a strict subset of the species at the pre-loss site) into additive components attributable to different effects. The approach does not assume a particular experimental design or require monoculture data, making it more general than previous approaches. Using the Price Equation from evolutionary biology, I show that three distinct effects cause ecosystem function to vary between sites: the "species richness effect" (SRE; random loss of species richness), the "species composition effect" (SCE; nonrandom loss of high- or low-functioning species), and the "context dependence effect" (CDE; post-loss changes in the functioning of the remaining species). The SRE reduces ecosystem function without altering mean function per species. The SCE is analogous to natural selection in evolution. Nonrandom loss of, for example, high-functioning species will reduce mean function per species, and thus total function, just as selection against large individuals in an evolving population reduces mean body size in the next generation. The CDE is analogous to imperfect transmission in evolution. For instance, any factor (e.g., an environmental change) causing offspring to attain smaller body sizes than their parents (imperfect transmission) will reduce the mean body size in the next generation. Analogously, any factor causing the species remaining at the post-loss site to make smaller functional contributions than at the pre-loss site will reduce mean function per species, and thus total function. I use published data to illustrate how this new partition generalizes previous approaches, facilitates comparative analyses, and generates new empirical insights. In particular, the SCE often is less important than other effects.  相似文献   

2.
The cross-scale resilience model states that ecological resilience is generated in part from the distribution of functions within and across scales in a system. Resilience is a measure of a system's ability to remain organized around a particular set of mutually reinforcing processes and structures, known as a regime. We define scale as the geographic extent over which a process operates and the frequency with which a process occurs. Species can be categorized into functional groups that are a link between ecosystem processes and structures and ecological resilience. We applied the cross-scale resilience model to avian species in a grassland ecosystem. A species' morphology is shaped in part by its interaction with ecological structure and pattern, so animal body mass reflects the spatial and temporal distribution of resources. We used the log-transformed rank-ordered body masses of breeding birds associated with grasslands to identify aggregations and discontinuities in the distribution of those body masses. We assessed cross-scale resilience on the basis of 3 metrics: overall number of functional groups, number of functional groups within an aggregation, and the redundancy of functional groups across aggregations. We assessed how the loss of threatened species would affect cross-scale resilience by removing threatened species from the data set and recalculating values of the 3 metrics. We also determined whether more function was retained than expected after the loss of threatened species by comparing observed loss with simulated random loss in a Monte Carlo process. The observed distribution of function compared with the random simulated loss of function indicated that more functionality in the observed data set was retained than expected. On the basis of our results, we believe an ecosystem with a full complement of species can sustain considerable species losses without affecting the distribution of functions within and across aggregations, although ecological resilience is reduced. We propose that the mechanisms responsible for shaping discontinuous distributions of body mass and the nonrandom distribution of functions may also shape species losses such that local extinctions will be nonrandom with respect to the retention and distribution of functions and that the distribution of function within and across aggregations will be conserved despite extinctions.  相似文献   

3.
Vaughn CC  Spooner DE  Galbraith HS 《Ecology》2007,88(7):1654-1662
We asked whether species richness or species identity contributed more to ecosystem function in a trait-based functional group, burrowing, filter-feeding bivalves (freshwater mussels: Unionidae), and whether their importance changed with environmental context and species composition. We conducted a manipulative experiment in a small river examining the effects of mussel assemblages varying from one to eight species on benthic algal standing crop across two sets of environmental conditions: extremely low discharge and high water temperature (summer); and moderate discharge and water temperature (fall). We found strong species identity effects within this guild, with one species (Actinonaias ligamentina) influencing accrual of benthic algae more than other species, but only under summer conditions. We suspect that this effect is due to a combination of the greater biomass of this species and its higher metabolic and excretion rates at warm summer temperatures, resulting in increased nitrogen subsidies to benthic algae. We also found that Actinonaias influenced the condition of other mussel species, likely through higher consumption, interference, or both. This study demonstrates that species within trait-based functional groups do not necessarily have the same effects on ecosystem properties, particularly under different environmental conditions.  相似文献   

4.
Shipley B  Paine CE  Baraloto C 《Ecology》2012,93(4):760-769
Although niche-based and stochastic processes, including dispersal limitation and demographic stochasticity, can each contribute to community assembly, it is difficult to quantify the relative importance of each process in natural vegetation. Here, we extend Shipley's maxent model (Community Assembly by Trait Selection, CATS) for the prediction of relative abundances to incorporate both trait-based filtering and dispersal limitation from the larger landscape and develop a statistical decomposition of the proportions of the total information content of relative abundances in local communities that are attributable to trait-based filtering, dispersal limitation, and demographic stochasticity. We apply the method to tree communities in a mature, species-rich, tropical forest in French Guiana at 1-, 0.25- and 0.04-ha scales. Trait data consisted of species' means of 17 functional traits measured over both the entire meta-community and separately in each of nine 1-ha plots. Trait means calculated separately for each site always gave better predictions. There was clear evidence of trait-based filtering at all spatial scales. Trait-based filtering was the most important process at the 1-ha scale (34%), whereas demographic stochasticity was the most important at smaller scales (37-53%). Dispersal limitation from the meta-community was less important and approximately constant across scales (-9%), and there was also an unresolved association between site-specific traits and meta-community relative abundances. Our method allows one to quantify the relative importance of local niche-based and meta-community processes and demographic stochasticity during community assembly across spatial and temporal scales.  相似文献   

5.
Evidence is accumulating that the continued provision of essential ecosystem services is vulnerable to land-use change. Yet, we lack a strong scientific basis for this vulnerability as the processes that drive ecosystem-service delivery often remain unclear. In this paper, we use plant traits to assess ecosystem-service sensitivity to land-use change in subalpine grasslands. We use a trait-based plant classification (plant functional types, PFTs) in a landscape modeling platform to model community dynamics under contrasting but internally consistent land-use change scenarios. We then use predictive models of relevant ecosystem attributes, based on quantitative plant traits, to make projections of ecosystem-service delivery. We show that plant traits and PFTs are effective predictors of relevant ecosystem attributes for a range of ecosystem services including provisioning (fodder), cultural (land stewardship), regulating (landslide and avalanche risk), and supporting services (plant diversity). By analyzing the relative effects of the physical environment and land use on relevant ecosystem attributes, we also show that these ecosystem services are most sensitive to changes in grassland management, supporting current agri-environmental policies aimed at maintaining mowing of subalpine grasslands in Europe.  相似文献   

6.
Ecologically relevant traits of organisms in an assemblage determine an ecosystem's functional fingerprint (i.e., the shape, size, and position of multidimensional trait space). Quantifying changes in functional fingerprints can therefore provide information about the effects of diversity loss or gain through time on ecosystem condition and is a promising approach to monitoring ecological integrity. This, however, is seldom possible owing to limitations in historical surveys and a lack of data on organismal traits, particularly in diverse tropical regions. Using data from detailed bird surveys from 4 periods across more than a century, and morphological and ecological traits of 233 species, we quantified changes in the avian functional fingerprint of a tropical montane forest in the Andes of Colombia. We found that 78% of the variation in functional space, regardless of period, was described by 3 major axes summarizing body size, dispersal ability (indexed by wing shape), and habitat breadth. Changes in species composition significantly altered the functional fingerprint of the assemblage and functional richness and dispersion decreased 35–60%. Owing to species extirpations and to novel additions to the assemblage, functional space decreased over time, but at least 11% of its volume in the 2010s extended to areas of functional space that were unoccupied in the 1910s. The assemblage now includes fewer large-sized species, more species with greater dispersal ability, and fewer habitat specialists. Extirpated species had high functional uniqueness and distinctiveness, resulting in large reductions in functional richness and dispersion after their loss, which implies important consequences for ecosystem integrity. Conservation efforts aimed at maintaining ecosystem function must move beyond seeking to sustain species numbers to designing complementary strategies for the maintenance of ecological function by identifying and conserving species with traits conferring high vulnerability such as large body size, poor dispersal ability, and greater habitat specialization. Article impact statement: Changes in functional fingerprints provide a means to quantify the integrity of ecological assemblages affected by diversity loss or gain.  相似文献   

7.
Wojdak JM  Mittelbach GG 《Ecology》2007,88(8):2072-2083
While the number of studies investigating the effects of species diversity on ecosystem properties continues to expand, few have explicitly examined how ecosystem functioning depends quantitatively on the degree of niche complementarity among species. We report the results of a microcosm experiment where similarity in habitat use among aquatic snail species was evaluated as a predictor of changes in community and ecosystem properties due to increasing species richness. Replicate microcosms with all possible one- and two-species combinations of a guild of six snail species were stocked with identical initial snail biomass. Microcosms with two species of snails had greater final snail biomass, lower attached algae biomass, and less total organic matter than monocultures. Snail species differed in their use of five distinct habitat types in the microcosms. Similarity in habitat use between a species pair was negatively related to the magnitude of change (e.g., deltaEF [change in ecosystem function]) in dissolved oxygen. periphyton biomass, and accrual of organic matter with a change in diversity. However, using the most stringent criterion for complementarity effects (e.g., Dmax [proportional deviation of the total polyculture yield from the highest yielding monoculture]), a relationship between species' niche similarity and changes in function with increasing species richness was only observed for dissolved oxygen. The identity of snail species present in the microcosms had strong effects on total organic matter, snail biomass, dissolved oxygen, periphyton biomass, and sedimentation rate. In this study, herbivore identity, sampling effects, and niche complementarity all appear to contribute to species richness effects on pond ecosystem properties and community structure. The analytical approach employed here may profitably be used in other systems to quantify the role of niche complementarity in species richness-ecosystem function relationships.  相似文献   

8.
Reliably predicting the consequences of short- or long-term changes in the environment is important as anthropogenic pressures are increasingly stressing the world's ecosystems. One approach is to examine the manner in which biota respond to changes in the environment ("response traits") and how biota, in turn, affect ecosystem processes ("effect traits"). I compared the response and effect traits of four submersed aquatic macrophytes to understand how water level management may affect wetland plant populations and ecosystem processes. I measured resource properties (nutrients in sediment and water), non-resource properties (pH, alkalinity, sediment temperature, oxygen production), and biotic properties (periphyton biomass) in replicated outdoor monocultures of Stuckenia pectinata, Potamogeton nodosus, P. crispus, and Zannichellia palustris. After seven weeks, three of eight replicates of each species treatment were subjected to a temporary water draw-down that desiccated aboveground plant parts. The four species differed in their effects on ecosystem properties associated with nutrient uptake and photosynthetic activity. Shoot growth rate was negatively correlated with light transmittance to the sediment surface whereas root growth rate and root:shoot ratio were correlated with a species' ability to deplete nutrients in sediment interstitial water. Occupation of space in the water column was correlated with water alkalinity and pH and with sediment temperature. Root growth rate was related simultaneously to species effects on sediment nutrient dynamics and recovery of ecosystem properties after water draw-down. This suggests that this morphological trait may be used to predict the effects of environmental change on ecosystem functioning within the context of water level management. Expanding these analyses to more species, different environmental stressors, and across aquatic and terrestrial ecosystems should enhance predictions of the complex effects of global environmental change on ecosystem functioning.  相似文献   

9.
Tan J  Pu Z  Ryberg WA  Jiang L 《Ecology》2012,93(5):1164-1172
Species immigration history can structure ecological communities through priority effects, which are often mediated by competition. As competition tends to be stronger between species with more similar niches, we hypothesize that species phylogenetic relatedness, under niche conservatism, may be a reasonable surrogate of niche similarity between species, and thus influence the strength of priority effects. We tested this hypothesis using a laboratory microcosm experiment in which we established bacterial species pools with different levels of phylogenetic relatedness and manipulated the immigration history of species from each pool into microcosms. Our results showed that strong priority effects, and hence multiple community states, only emerged for the species pool with the greatest phylogenetic relatedness. Community assembly also resulted in a significant positive relationship between bacterial phylogenetic diversity and ecosystem functions. Interestingly, these results emerged despite a lack of phylogenetic conservatism for most of the bacterial functional traits considered. Our results highlight the utility of phylogenetic information for understanding the structure and functioning of ecological communities, even when phylogenetically conserved functional traits are not identified or measured.  相似文献   

10.
Diamond SE  Frame AM  Martin RA  Buckley LB 《Ecology》2011,92(5):1005-1012
How do species' traits help identify which species will respond most strongly to future climate change? We examine the relationship between species' traits and phenology in a well-established model system for climate change, the U.K. Butterfly Monitoring Scheme (UKBMS). Most resident U.K. butterfly species have significantly advanced their dates of first appearance during the past 30 years. We show that species with narrower larval diet breadth and more advanced overwintering stages have experienced relatively greater advances in their date of first appearance. In addition, species with smaller range sizes have experienced greater phenological advancement. Our results demonstrate that species' traits can be important predictors of responses to climate change, and they suggest that further investigation of the mechanisms by which these traits influence phenology may aid in understanding species' responses to current and future climate change.  相似文献   

11.
Merow C  Latimer AM  Silander JA 《Ecology》2011,92(7):1523-1537
Entropy maximization (EM) is a method that can link functional traits and community composition by predicting relative abundances of each species in a community using limited trait information. We developed a complementary suite of tests to examine the strengths and limitations of EM and the community-aggregated traits (CATs; i.e., weighted averages) on which it depends that can be applied to virtually any plant community data set. We show that suites of CATs can be used to differentiate communities and that EM can address the classic problem of characterizing ecological niches by quantifying constraints (CATs) on complex trait relationships in local communities. EM outperformed null models and comparable regression models in communities with different levels of dominance, diversity, and trait similarity. EM predicted well the abundance of the dominant species that drive community-level traits; it typically identified rarer species as such, although it struggled to predict the abundances of the rarest species in some cases. Predictions were sensitive to choice of traits, were substantially improved by using informative priors based on null models, and were robust to variation in trait measurement due to intraspecific variability or measurement error. We demonstrate how similarity in species' traits confounds predictions and provide guidelines for applying EM.  相似文献   

12.
Functional traits and the growth-mortality trade-off in tropical trees   总被引:4,自引:0,他引:4  
A trade-off between growth and mortality rates characterizes tree species in closed canopy forests. This trade-off is maintained by inherent differences among species and spatial variation in light availability caused by canopy-opening disturbances. We evaluated conditions under which the trade-off is expressed and relationships with four key functional traits for 103 tree species from Barro Colorado Island, Panama. The trade-off is strongest for saplings for growth rates of the fastest growing individuals and mortality rates of the slowest growing individuals (r2 = 0.69), intermediate for saplings for average growth rates and overall mortality rates (r2 = 0.46), and much weaker for large trees (r2 < or = 0.10). This parallels likely levels of spatial variation in light availability, which is greatest for fast- vs. slow-growing saplings and least for large trees with foliage in the forest canopy. Inherent attributes of species contributing to the trade-off include abilities to disperse, acquire resources, grow rapidly, and tolerate shade and other stresses. There is growing interest in the possibility that functional traits might provide insight into such ecological differences and a growing consensus that seed mass (SM), leaf mass per area (LMA), wood density (WD), and maximum height (H(max)) are key traits among forest trees. Seed mass, LMA, WD, and H(max) are predicted to be small for light-demanding species with rapid growth and mortality and large for shade-tolerant species with slow growth and mortality. Six of these trait-demographic rate predictions were realized for saplings; however, with the exception of WD, the relationships were weak (r2 < 0.1 for three and r2 < 0.2 for five of the six remaining relationships). The four traits together explained 43-44% of interspecific variation in species positions on the growth-mortality trade-off; however, WD alone accounted for > 80% of the explained variation and, after WD was included, LMA and H(max) made insignificant contributions. Virtually the full range of values of SM, LMA, and H(max) occurred at all positions on the growth-mortality trade-off. Although WD provides a promising start, a successful trait-based ecology of tropical forest trees will require consideration of additional traits.  相似文献   

13.
Fréville H  McConway K  Dodd M  Silvertown J 《Ecology》2007,88(10):2662-2672
The global extinction of species proceeds through the erosion of local populations. Using a 60-year time series of annual sighting records of plant species, we studied the correlates of local extinction risk associated with a risk of species extinction in the Park Grass Experiment where plants received long-term exposure to nutrient enrichment, soil acidification, and reductions in habitat size. We used multivariate linear models to assess how extrinsic threats and life history traits influence extinction risk. We investigated effects of four extrinsic threats (nitrogen enrichment, productivity, acidification, and plot size) as well as 11 life history traits (month of earliest flowering, flowering duration, stress tolerance, ruderalness [plant species' ability to cope with habitat disturbance], plant height, diaspore mass, seed bank, life form, dispersal mode, apomixis [the ability for a species to reproduce asexuall through seeds], and mating system). Extinction risk was not influenced by plant family. All of the 11 life history traits except life form and all threat variables influenced extinction risk but always via interactions which typically involved one threat variable and one life history trait. We detected comparatively few significant interactions between life history traits, and the interacting traits compensated for each other. These results suggest that simple predictions about extinction risk based on species' traits alone will often fail. In contrast, understanding the interactions between extrinsic threats and life history traits will allow us to make more accurate predictions of extinctions.  相似文献   

14.
Abstract: Non‐native species can cause the loss of biological diversity (i.e., genetic, species, and ecosystem diversity) and threaten the well‐being of humans when they become invasive. In some cases, however, they can also provide conservation benefits. We examined the ways in which non‐native species currently contribute to conservation objectives. These include, for example, providing habitat or food resources to rare species, serving as functional substitutes for extinct taxa, and providing desirable ecosystem functions. We speculate that non‐native species might contribute to achieving conservation goals in the future because they may be more likely than native species to persist and provide ecosystem services in areas where climate and land use are changing rapidly and because they may evolve into new and endemic taxa. The management of non‐native species and their potential integration into conservation plans depends on how conservation goals are set in the future. A fraction of non‐native species will continue to cause biological and economic damage, and substantial uncertainty surrounds the potential future effects of all non‐native species. Nevertheless, we predict the proportion of non‐native species that are viewed as benign or even desirable will slowly increase over time as their potential contributions to society and to achieving conservation objectives become well recognized and realized.  相似文献   

15.
Flynn DF  Mirotchnick N  Jain M  Palmer MI  Naeem S 《Ecology》2011,92(8):1573-1581
How closely does variability in ecologically important traits reflect evolutionary divergence? The use of phylogenetic diversity (PD) to predict biodiversity effects on ecosystem functioning, and more generally the use of phylogenetic information in community ecology, depends in part on the answer to this question. However, comparisons of the predictive power of phylogenetic diversity and functional diversity (FD) have not been conducted across a range of experiments. To address how phylogenetic diversity and functional trait variation control biodiversity effects on biomass production, we summarized the results of 29 grassland plant experiments where both the phylogeny of plant species used in the experiments is well described and where extensive trait data are available. Functional trait variation was only partially related to phylogenetic distances between species, and the resulting FD values therefore correlate only partially with PD. Despite these differences, FD and PD predicted biodiversity effects across all experiments with similar strength, including in subsets that excluded plots with legumes and that focused on fertilization experiments. Two- and three-trait combinations of the five traits used here (leaf nitrogen percentage, height, specific root length, leaf mass per unit area, and nitrogen fixation) resulted in the FD values with the greatest predictive power. Both PD and FD can be valuable predictors of the effect of biodiversity on ecosystem functioning, which suggests that a focus on both community trait diversity and evolutionary history can improve understanding of the consequences of biodiversity loss.  相似文献   

16.
The Response of Avian Feeding Guilds to Tropical Forest Disturbance   总被引:1,自引:0,他引:1  
Abstract:  Anthropogenic habitat disturbance is a major threat to tropical forests and understanding the ecological consequences of this disturbance is crucial for the conservation of biodiversity. There have been many attempts to determine the ecological traits associated with bird species' vulnerability to disturbance, but no attempt has been made to synthesize these studies to show consensus. We analyzed data from 57 published studies (covering 1214 bird species) that investigated the response of tropical bird assemblages to moderate forest disturbance (e.g., selective logging). Our results show that the mean abundance of species from six commonly reported feeding guilds responded differently to disturbance and that species' ecological traits (body size, local population size, and geographic range size) and evolutionary relationships may influence responses in some guilds. Granivore abundance increased significantly and insectivore and frugivore abundance decreased significantly following disturbance. These general conclusions were robust to the effects of ecological traits and phylogeny. Responses of carnivores, nectarivores, and omnivores were less clear, but analyses that accounted for phylogeny indicated that these guilds declined following disturbance. In contrast to the other guilds, the reported responses of carnivores and nectarivores differed among regions (Asia vs. Neotropics) and were influenced by the sampling protocols used in different studies (e.g., time since disturbance), which may explain the difficulty in detecting general responses to disturbance in these guilds. Overall, general patterns governed the responses of species to habitat disturbance, and the differential responses of guilds suggested that disturbance affects trophic organization and thus ecosystem functioning.  相似文献   

17.
Localized stressors compound the ongoing climate-driven decline of coral reefs, requiring natural resource managers to work with rapidly shifting paradigms. Trait-based adaptive management (TBAM) is a new framework to help address changing conditions by choosing and implementing management actions specific to species groups that share key traits, vulnerabilities, and management responses. In TBAM maintenance of functioning ecosystems is balanced with provisioning for human subsistence and livelihoods. We first identified trait-based groups of food fish in a Pacific coral reef with hierarchical clustering. Positing that trait-based groups performing comparable functions respond similarly to both stressors and management actions, we ascertained biophysical and socioeconomic drivers of trait-group biomass and evaluated their vulnerabilities with generalized additive models. Clustering identified 7 trait groups from 131 species. Groups responded to different drivers and displayed divergent vulnerabilities; human activities emerged as important predictors of community structuring. Biomass of small, solitary reef-associated species increased with distance from key fishing ports, and large, solitary piscivores exhibited a decline in biomass with distance from a port. Group biomass also varied in response to different habitat types, the presence or absence of reported dynamite fishing activity, and exposure to wave energy. The differential vulnerabilities of trait groups revealed how the community structure of food fishes is driven by different aspects of resource use and habitat. This inherent variability in the responses of trait-based groups presents opportunities to apply selective TBAM strategies for complex, multispecies fisheries. This approach can be widely adjusted to suit local contexts and priorities.  相似文献   

18.
Trait-based community assembly theory suggests that trait variation among co-occurring species is shaped by two main processes: abiotic filtering, important in stressful environments and promoting similarity, and competition, more important in productive environments and promoting dissimilarity. Previous studies have indeed found trait similarity to decline along productivity gradients. However, these studies have always been done on single trophic levels. Here, we investigated how interactions between trophic levels affect trait similarity patterns along environmental gradients. We propose three hypotheses for the main drivers of trait similarity patterns of plants and herbivores along environmental gradients: (1) environmental control of both, (2) bottom-up control of herbivore trait variation, and (3) top-down control of grass trait variation. To test this, we collected data on the community composition and trait variation of grasses (41 species) and grasshoppers (53 species) in 50 plots in a South African savanna. Structural equation models were used to investigate how the range and spacing of within-community functional trait values of both grasses and their insect herbivores (grasshoppers; Acrididae) respond to (1) rainfall and fire frequency gradients and (2) the trait similarity patterns of the other trophic level. The analyses revealed that traits of co-occurring grasses became more similar toward lower rainfall and higher fire frequency (environmental control), while showing little evidence for top-down control. Grasshopper trait range patterns, on the other hand, were mostly directly driven by vegetation structure and grass trait range patterns (bottom-up control), while environmental factors had mostly indirect effects via plant traits. Our study shows the potential to expand trait-based community assembly theory to include trophic interactions.  相似文献   

19.
Genetic variation within and among key species can have significant ecological consequences at the population, community, and ecosystem levels. In order to understand ecological properties of systems based on habitat-forming clonal plants, it is crucial to clarify which traits vary among plant genotypes and how they influence ecological processes, and to assess their relative contribution to ecosystem functioning in comparison to other factors. Here we used a mesocosm experiment to examine the relative influence of genotypic identity and extreme levels of nitrogen loading on traits that affect ecological processes (at the population, community, and ecosystem levels) for Zostera marina, a widespread marine angiosperm that forms monospecific meadows throughout coastal areas in the Northern Hemisphere. We found effects of both genotype and nitrogen addition on many plant characteristics (e.g., aboveground and belowground biomass), and these were generally strong and similar in magnitude, whereas interactive effects were rare. Genotypes also strongly differed in susceptibility to herbivorous isopods, with isopod preference among genotypes generally matching their performance in terms of growth and survival. Chemical rather than structural differences among genotypes drove these differences in seagrass palatability. Nitrogen addition uniformly decreased plant palatability but did not greatly alter the relative preferences of herbivores among genotypes, indicating that genotype effects are strong. Our results highlight that differences in key traits among genotypes of habitat-forming species can have important consequences for the communities and ecosystems that depend on them and that such effects are not overwhelmed by known environmental stressors.  相似文献   

20.
Seasonal variations in plant species effects on soil N and P dynamics   总被引:6,自引:0,他引:6  
Eviner VT  Chapin FS  Vaughn CE 《Ecology》2006,87(4):974-986
It is well established that plant species influence ecosystem processes, but we have little ability to predict which vegetation changes will alter ecosystems, or how the effects of a given species might vary seasonally. We established monocultures of eight plant species in a California grassland in order to determine the plant traits that account for species impacts on nitrogen and phosphorus cycling. Plant species differed in their effects on net N mineralization and nitrification rates, and the patterns of species differences varied seasonally. Soil PO4- and microbial P were more strongly affected by slope position than by species. Although most studies focus on litter chemistry as the main determinant of plant species effects on nutrient cycling, this study showed that plant species affected biogeochemical cycling through many traits, including direct traits (litter chemistry and biomass, live-tissue chemistry and biomass) and indirect traits (plant modification of soil bioavailable C and soil microclimate). In fact, species significantly altered N and P cycling even without litter inputs. It became particularly critical to consider the effects of these multiple traits in order to account for seasonal changes in plant species effects on ecosystems. For example, species effects on potential rates of net N mineralization were most strongly influenced by soil bioavailable C in the fall and by litter chemistry in the winter and spring. Under field conditions, species effects on soil microclimate influenced rates of mineralization and nitrification, with species effects on soil temperature being critical in the fall and species effects on soil moisture being important in the dry spring. Overall, this study clearly demonstrated that in order to gain a mechanistic, predictive understanding of plant species effects on ecosystems, it is critical to look beyond plant litter chemistry and to incorporate the effects of multiple plant traits on ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号