首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
以自制Ti基Ru O2-Ir O2镀层形稳电极为阳极,采用电催化氧化处理偶氮染料甲基橙模拟废水。以硫酸钠为支持电解质,在自然p H条件下分别考察了电解时间、电极间距、电流密度和电解质浓度等因素对甲基橙去除率的影响,并分析其原因。实验结果表明,在自然p H、电极间距为1.0 cm、电流密度为30.0 m A/cm2、电解质硫酸钠浓度为20.0 g/L、电解1.0h,甲基橙去除率高达90.0%以上。因此,电催化氧化法作为一种高效、简便的染料废水处理技术,具有一定的应用潜力。  相似文献   

2.
实验采用共沉淀法,以无机盐SnC14·5H2O、Sb2O3、Gd(NO3)3为前驱体,制备稀土Gd掺杂SnO2/Ti多组分涂层阳极.研究了用不同沉淀剂制备的电极以苯酚为目标有机物的电化学降解特性,以考察沉淀剂对稀土Gd掺杂SnO2/Ti阳极性能的影响;并对所制备的涂层阳极进行了SEM、XRD、XPS等表征及阳极极化曲线、循环伏安曲线测试,分析并讨论了沉淀剂对稀土Gd掺杂SnO2/Ti阳极性能的影响机理.结果表明,沉淀剂对稀土Gd掺杂SnO2/Ti电极性能有较大的影响,在本实验条件,以氨水为沉淀剂所制备的电极电催化性能较好,稳定性能较高.  相似文献   

3.
采用溶胶-凝胶法合成Sb、Ce共掺杂SnO2/C/Ti电极,经XC-72R炭黑吸附后得到钛基炭载金属氧化物SnO2-Sb(2.5%(质量分数,下同))-Ce(2.5%)/C/Ti电极,利用电化学交流阻抗法(EIS)测试电极的交流阻抗值随电位和不同浓度苯酚的变化情况。结果表明,在不同电位(0.10、0.95、1.01V)时,SnO2-Sb(2.5%)-Ce(2.5%)/C/Ti电极的膜电阻、电化学电阻、总电阻和苯酚氧化阻力随着电位的增加而减小;此外,在恒电位(0.95V)、不同质量浓度(100、200、300mg/L)苯酚溶液的条件下,电极的膜电阻、电化学电阻、总电阻和苯酚氧化阻力随着苯酚浓度的增加而增大。电极在反应过程中表现良好的活性,对苯酚的催化氧化较彻底。  相似文献   

4.
采用PbO2/Ti和IrO2-Ta2O5/Ti电极对酸性橙7(AO7)模拟废水进行了电解处理实验研究。考察了2种电极上不同电流密度条件下AO7的去除率、反应动力学、COD去除效果及瞬时电流效率,结果表明,在相同条件下,PbO2/Ti电极表现出更好的处理效率、更适合用于AO7的矿化。循环伏安(CV)曲线表明,PbO2/Ti电极具有更高的析氧电位且在AO7电解液中出现了氧化峰,说明PbO2/Ti电极对AO7具有更好的催化活性和直接氧化能力。紫外可见光谱对比分析表明,IrO2-Ta2O5/Ti电极对AO7的结构破坏速度缓慢且伴随苯胺等中间产物产生,对AO7的矿化程度弱。对比结果说明PbO2/Ti电极更适合于偶氮类染料废水的电催化氧化处理。  相似文献   

5.
实验采用共沉淀法,以无机盐SnCl4·5H2O、Sb2O3、Gd(NO3)3为前驱体,制备稀土Gd掺杂SnO2/Ti多组分涂层阳极。研究了用不同沉淀剂制备的电极以苯酚为目标有机物的电化学降解特性,以考察沉淀剂对稀土Gd掺杂SnO2/Ti阳极性能的影响;并对所制备的涂层阳极进行了SEM、XRD、XPS等表征及阳极极化曲线、循环伏安曲线测试,分析并讨论了沉淀剂对稀土Gd掺杂SnO2/Ti阳极性能的影响机理。结果表明,沉淀剂对稀土Gd掺杂SnO2/Ti电极性能有较大的影响,在本实验条件,以氨水为沉淀剂所制备的电极电催化性能较好,稳定性能较高。  相似文献   

6.
采用热刷涂层法制备了钛载SnO_2-Sb中间层,通过电沉积法得到Nd-碳纳米管(CNTs)-PbO_2/SnO_2-Sb/Ti电极。利用扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)对电极的组成、形貌进行了表征,采用接触角分析和电化学方法考察了电极的电化学性能。结果表明,稀土金属掺杂于SnO_2-Sb/Ti中间层可阻隔氧和基体的接触而有效保护钛基,提高电极材料的稳定性、析氧电位和电化学降解苯酚的能力。另外,Nd-CNTs-PbO_2/SnO_2-Sb/Ti可增加阳极材料的憎水性,有利于提高电极的电化学降解效率。  相似文献   

7.
TiO2/Ti转盘液膜反应器光电催化处理罗丹明B   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法制备了TiO2/Ti电极,X射线衍射(XRD)分析表明,TiO2主要为锐钛矿,晶粒尺寸约为46 nm.以TiO2/Ti电极作阳极,Cu电极作阴极,组装成转盘液膜反应器,考察了其光电催化处理染料罗丹明B(RhB)的影响因素(转盘转速、偏压、溶液初始pH、RhB初始浓度和电解质浓度).得到最佳处理条件为:转盘转速90 r/min,偏压0.4V,溶液初始pH2.5,电解质(硫酸钠)质量浓度0.5 g/L.在最佳处理条件下,处理20 mg/L RhB染料废水90 min的脱色率和总有机碳(TOC)去除率分别达到97.2%和72.7%.结果表明,由于同时强化了激发光源的利用率和溶液的传质效率,TiO2/Ti转盘液膜反应器可高效光电催化处理染料废水.  相似文献   

8.
以RuO2-IrO2-SnO2/Ti钛网电极为阳极,RuO2-IrO2/Ti钛网电极为阴极,构建了电催化氧化体系,同时以苯酚为底物、硫酸钠为电解质,考察了不同pH、极板间距、电流密度和苯酚初始浓度对苯酚去除率的影响。结果表明,在pH为6.5、极板间距为1.0cm、电流密度为50mA/cm2、苯酚初始质量浓度为1 000mg/L的最佳实验条件下,取硫酸钠质量浓度为20g/L的苯酚模拟废水250mL,120min时苯酚去除率可以达到98.4%。  相似文献   

9.
不同电极降解2-氯苯酚   总被引:1,自引:0,他引:1  
采用电沉积法制备了4种钛基二氧化铅电极,并与商业化的钛基RuO2电极进行了对比。分别用XRD和阳极极化曲线对电极性能进行了表征,并以2-氯苯酚为目标污染物,考察了6种电极的电催化氧化性能。研究结果表明,以钛板为基体的系列电极的综合性能优于以钛网为基体的相应电极。以β-PbO2为活性外层的二氧化铅电极的综合性能优于以RuO2为活性外层的电极。6种电极对2-氯苯酚降解反应均遵循一级反应动力学规律。其中Ti/α-PbO2/β-PbO2电极析氧电位最高,电催化性能最好,对2-氯苯酚的去除率可达99.3%。  相似文献   

10.
La掺杂SnO2/Ti电极电催化降解邻硝基苯酚   总被引:3,自引:1,他引:2  
采用凝胶一溶胶法制备了La掺杂SnO2/Ti电极并用于邻硝基苯酚废水的电解研究.分析了电流密度、电极距离、溶液初始pH对邻硝基苯酚电解效果的影响,确定了最佳电解条件.结果表明,La/Sn(摩尔比)为0.03,热处理温度为450℃下制备的La掺杂SnO2/Ti电极对邻硝基苯酚的降解效果最好.当电流密度为20 mA/cm2,电极距离为2 cm,溶液初始pH为6~7时,电解180 min后的邻硝基苯酚的降解率可达95.1%.利用液相色谱和离子色谱检测了邻硝基苯酚电解产物,并初步分析了邻硝基苯酚的降解途径.  相似文献   

11.
电解质种类对电催化氧化降解苯酚的影响   总被引:1,自引:1,他引:0  
研究了不同电解质对有机物电催化氧化性能的影响。以高温热解法制备了Ti/SnO2+Sb2O3阳极,用SEM和XRD对电极结构进行了表征。以苯酚为目标有机物,考察了Na2SO4、NaCl和NaNO33种不同电解质对苯酚降解效果的影响。用循环伏安法研究了苯酚在不同支持电解质条件下的电化学行为。采用碘量法测定了在不同电解质溶液中氧化性物质的生成量。研究结果表明,电极的活性涂层主要由SnO2和微量的Sb2O3组成,均匀完整地覆盖住了Ti基体表面。以NaCl为支持电解质时苯酚降解效果明显优于用Na2SO4、NaNO3为支持电解质,并且苯酚的降解主要以电极表面电化学生成的HClO和ClO-的间接化学氧化为主。以Na2SO4为支持电解质时有利于降低和稳定槽电压。在3种电解质条件下,苯酚的降解均遵循一级反应动力学规律。在降解过程中NaCl溶液中生成的氧化性物质浓度最大,且随降解时间延长逐渐增大。  相似文献   

12.
为了解决传统锡锑电极电催化氧化效果偏低、涂层易脱落的问题,使用阳极氧化法,在钛基底表面制备垂直生长的二氧化钛纳米管(TiO_2-NTs),然后在此基底上采用电沉积法制备出锡锑电极(TiO2-NTs/SnO_2-Sb)。结果表明,相比没有二氧化钛纳米管的锡锑电极(Ti/SnO_2-Sb),TiO_2-NTs/SnO_2-Sb电极的析氧电位从1.9 V增加到2.03 V,电极具有较高的羟基自由基生成能力和更高的电流效率,促进了苯酚的矿化。TiO_2-NTs/SnO_2-Sb电极对实际钻井废水具有较好的脱色效果,COD去除率高达81.4%,且能够有效地改善阳极的"中毒效应"。  相似文献   

13.
电化学氧化法处理模拟黄连素制药废水的研究   总被引:4,自引:1,他引:3  
以RuO2/Ti为阳极,研究了电化学氧化法对黄连素制药废水的处理效果.通过比较在KCI与K2SO42种支持电解质体系中的处理效果,同时考察了电流强度、初始pH、电解质浓度和电极间距等因素对废水中黄连素及COD去除率的影响,明确了电化学原位生成活性氯是黄连素降解的主要原因;确定了电流强度、pH、电解质浓度和电极间距等最优...  相似文献   

14.
在超重力场中,研究了硝基苯模拟废水的臭氧/双氧水(O3/H2O2)法处理效果,考察了超重力因子β、H2O2浓度、初始p H、液体流量及处理时间等因素对硝基苯去除率的影响。结果表明,硝基苯去除率随超重力因子β和处理时间的增加而增大,而随H2O2浓度、初始p H和液体流量的增加呈先增大后降低的趋势。当硝基苯初始浓度300 mg/L,工艺条件β=80、p H=10.0、臭氧质量浓度约为40 mg/L、H2O2浓度为4.9 mmol/L、液体流量为120 L/h时,循环处理35 min硝基苯去除率可达96.7%。处理时间60 min后,废水中硝基苯含量1.4 mg/L,COD为39 mg/L,达国家一级排放标准(GB 8978-1996)。在此条件下,硝基苯的降解过程符合准一级反应动力学。  相似文献   

15.
采用高压塑片工艺制备新型β-PbO2电极,该工艺简单易行,且所得β-PbO2电极具有很好的抗腐蚀性能.为研究该电极的电催化性能,探讨了电极间距、电解时间、茜素红初始浓度、外加电压、初始pH等条件对该电极降解茜素红染料效果的影响,并与石墨电极进行对比.结果表明,β-PbO2电极在脱色和COD去除方面都有明显的优越性.根据茜素红的分子结构和电解产物气相色谱—质谱联用(GC/MS)仪分析结果,初步探讨了茜素红降解的反应机制.  相似文献   

16.
采用热分解法制备了钛基SnO2(Ti/SnO2)电极和TiO2改性钛基SnO2(Ti/SnO2-TiO2)电极。利用扫描电子显微镜(SEM)和X射线衍射(XRD)仪,极化曲线和循环伏安测试等方法对改性前后的电极进行表征,并考察电极的电催化氧化能力。结果表明,Ti/SnO2-TiO2电极膜层中存在锐钛矿型TiO2粒子,引入的TiO2使Ti/SnO2-TiO2电极具有比Ti/SnO2电极更粗糙的表面和更大的比表面积,且使电极的析氧过电位由1.7V提高至2.0V。循环伏安测试结果和电催化氧化4-氯苯酚(4-CP)过程均表明,Ti/SnO2-TiO2电极具有比Ti/SnO2电极更高的电催化氧化能力。  相似文献   

17.
电化学氧化法去除超高盐榨菜废水中的氨氮   总被引:1,自引:0,他引:1  
采用电化学氧化法去除超高盐榨菜废水中的氨氮,阳极为Ti/RuO2-TiO2-IrO2-SnO2网状电极,阴极为网状钛电极,考察了电流密度、电解时间、极板间距、初始pH以及极水比对氨氮去除率的影响,并分析了电流密度对氨氮能耗和阳极效率的影响。结果表明,在初始氨氮浓度为472.73 mg/L,电流密度为156 mA/cm2,极板间距为1.5 cm,极水比为0.8dm2/L,原水pH为4.3~5.0时,电解30 min和60 min时氨氮的去除率分别为89.75%和99.94%,电解30 min时,氨氮能耗最低为96 kWh/kg,阳极效率最高为8.47 g/(h.m2.A)。  相似文献   

18.
以钛基掺硼金刚石为基体,采用电沉积的方法制备了Ti/BDD/PbO2复合电极,并将其用于化学需氧量(COD)的测定。采用扫描电子显微镜(SEM)和X射线衍射谱图(XRD)表征了电极的微观形貌及结构,采用电化学工作站考察了电极对有机物响应特性。实验结果表明,在1.45 V的低电位条件下,线性范围为0.5~175 mg/L,检测限为0.3 mg/L(S/N=3)。采用Ti/BDD/PbO2复合电极测定法和重铬酸钾标准方法对市政污水、食品废水及印染废水的对比结果表明,2种方法的相对误差小于10%,具有良好的一致性。  相似文献   

19.
BDD电极阳极氧化垃圾渗滤液纳滤浓缩液   总被引:2,自引:0,他引:2  
实验研究了电化学技术阳极氧化垃圾渗滤液纳滤浓缩液,比较了不同阳极种类、电流密度和极板间距对污染物降解的影响。结果表明,掺硼金刚石(boron-doped diamond,BDD)薄膜电极作为阳极,比钛基镀钌铱(Ti-RuO2-IrO2)和钛基镀铂(Ti-Pt)电极作为阳极时,有机物的矿化更为迅速。选用BDD电极作为阳极,不锈钢电极作为阴极,随着电流密度的增加(10~100 mA/cm2),TOC去除率随之提高,极板间距的改变(2~12 mm)对TOC的降解影响较小。BDD阳极氧化6 h后,浓缩液的TOC去除率达到94%。研究表明,BDD电极阳极氧化技术可有效地处理垃圾渗滤液纳滤浓缩液,可将其应用于高毒性难生物降解的有机废水的处理工艺中。  相似文献   

20.
电化学方法用于酸性红B模拟废水脱色试验研究   总被引:1,自引:0,他引:1  
本文研究了两种电极材料 (SnO2 Ti和RuO2 Ti)对酸性红B模拟废水的脱色效果 ,考察了不同 pH、电流密度(j)及外加电解质 (Na2 SO4/NaCl)对处理过程的影响。结果表明 ,两种电极材料都能对酸性红B染料废水进行有效脱色 ,主要是Cl-在电解过程中的间接氧化作用 ,同时也包括电极表面的直接氧化作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号