首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: Many approaches are available for operation of a multipurpose reservoir during flood season; one of them is allocation of storage space for flood control. A methodology to determine a reservoir operation policy based on explicit risk consideration is presented. The objective of the formulation is to maximize the reservoir storage at the end of a flood season while ensuring that the risk of an overflow is within acceptable limits. The Dynamic Programming technique has been used to solve the problem. This approach has been applied to develop operation policies for an existing reservoir. The performance of the policy was evaluated through simulation and was found to be satisfactory.  相似文献   

2.
ABSTRACT: Development of optimal operational policies for large-scale reservoir systems is often complicated by a multiplicity of conflicting project uses and purposes. A wide range of multiobjective optimization methods are available for appraising tradeoffs between conificting objectives. The purpose of this study is to provide guidance as to those methods which are best suited to dealing with the challenging large-scale, nonlinear, dynamic, and stochastic characteristics of multireservoir system operations. As a case study, the selected methodologies are applied to the Han River Reservoir System in Korea for four principal project objectives: water supply and low flow augmentation; annual hydropower production, reliable energy generation, and minimization of risk of violating firm water supply requirements. Additional objectives such as flood control are also considered, but are imposed as fixed constraints.  相似文献   

3.
ABSTRACT: The value of streamflow forecasts in reservoir operation depends on a number of factors and may vary considerably. Assessment of forecast benefits is presented here for three specific systems. Statistical streamflow models of increasing forecasting ability are coupled with a recently developed stochastic control method in extensive simulation experiments. The performance of the system is statisticafly evaluated with regard to energy generation and flood and drought prevention. The results indicate that forecast benefits are system specific and may range from quite substantial to fairly minimal.  相似文献   

4.
ABSTRACT: Mathematical optimization techniques are used to study the operation and design of a single, multi-purpose reservoir system. Optimal monthly release policies are derived for Hoover Reservoir, located in Central Ohio, using chance-constrained linear programming and dynamic programming-regression methodologies. Important characteristics of the former approach are derived, discussed, and graphically illustrated using Hoover Reservoir as a case example. Simulation procedures are used to examine and compare the overall performance of the optimal monthly reservoir release policies derived under the two approaches. Results indicate that, for the mean detention time and the corresponding safe yield target water supply release under existing design of Hoover Reservoir, the dynamic programming policies produce lower average annual losses (as defined by a two-sided quadratic loss function) while achieving at least as high reliability levels when compared to policies derived under the chance-constrained linear programming method. In making this comparison, the reservoir release policies, although not identical, are assumed to be linear. This restricted form of the release policy is necessary to make the chance-constrained programming method mathematically tractable.  相似文献   

5.
ABSTRACT: A deterministic dynamic programming optimization model with a refining sectioning search procedure is developed and implemented to find least cost withdrawal and release patterns for water supple from a multiple reservoir system serving a metropolitan area. Applications are made to teh four reservoir system operated by the city of Dallas, Texas. A realistic cost structure, including nonlinear power consumption, block rate unit power costs, and flow dependent power consumption for intracity water distribution, is utilized. Applications are made to find least cost operating patterns and, as well, by inclusion of a water loss penalty function, supply patterns which will reduce evaporation water losses for the Dallas system.  相似文献   

6.
ABSTRACT: A network flow algorithm has been developed for the optimization of real‐time operation of a multiple reservoir system. Two purposes have been considered in the operation: flood control and hydropower generation. A special network structure was developed which allows the consideration of river routing. A multiobjective formulation is utilized thus allowing generation of a non‐dominated curve. The effect of imperfect forecast on the performance of the real‐time operation model is also evaluated. An application is made to a subsystem of the Brazilian hydroelectric system, located in the Paranapanema river basin. In this case study, the model showed good performance under the largest flood of the historical records.  相似文献   

7.
ABSTRACT: An optimal control methodology and computational model are developed to evaluate multi‐reservoir release schedules that minimize sediment scour and deposition in rivers and reservoirs. The sedimentation problem is formulated within a discrete‐time optimal control framework in which reservoir releases represent control variables and reservoir bed elevations, storage levels, and river bed elevations represent state variables. Constraints imposed on reservoir storage levels and releases are accommodated using a penalty function method. The optimal control model consists of two interfaced components: a one‐dimensional finite‐difference simulation module used to evaluate flow hydraulics and sediment transport dynamics, and a successive approximation linear quadratic regulator (SALQR) optimization algorithm used to update reservoir release policies and solve the augmented control problem. Hypothetical two‐reservoir and five‐reservoir networks are used to demonstrate the methodology and its capabilities, which is a vital phase towards the development of a more robust optimal control model and application to an existing multiple‐reservoir river network.  相似文献   

8.
ABSTRACT: The goal programming approach for multipurpose reservoir operation has been proposed and applied to the Bhadra reservoir system, having irrigation and hydropower production as dual purposes, in India. The objective of the model is to satisfy sequentially a series of operating criteria. Two goal programming models, one with the objective function as minimizing the deviations from storage targets and the other with the objective function as minimizing the deviations from release targets, have been formulated and applied to the reservoir system under study. The results proved that the model with release targets is preferred over the model with storage targets for determining operational policies for multipurpose reservoir system.  相似文献   

9.
ABSTRACT: A procedure to apply genetic algorithm to optimize operation rules is proposed and applied to the LiYuTan Reservoir in Taiwan. The designed operation rules are operation zones with discount rates of water supply. The first step of the procedure is to predefine the shape of boundary curves of operation zones according to reservoir storage routing. Then, relatively fewer variables are used to describe the curves, and a last genetic algorithm (GA) is applied to optimize the curves. The procedure is applied to the newly built LiYuTan Reservoir for increasing domestic water demands. Shortage index is used to evaluate the performance of operation zones. A year is divided into 36 operational periods, with each month containing three operational periods. The shortage indexes calculated in operational periods are 9.81, 8.27, and 7.13, respectively, for the reservoir without operation rules, applying operation zones optimized by GA with encoding 36 storage levels for each curve, and adopting operation zones optimized by GA with encoding the curves with predefined shape. The average deficits for the three cases are 77.2, 43.6, and 33.3 (104 m3/day), respectively. The results indicate that operation zones optimized by the proposed procedure have smaller shortage indexes and lower average deficits. In addition, the optimized operation zones have less variation and thus are more practical for operation. Conclusively, the proposed procedure utilizing GA to optimize operation zones with predefined shape can provide better and realistic outcomes through limited iterations.  相似文献   

10.
ABSTRACT: The operational problems of a reservoir are expressed by three coordinates: space, time stage, and objective. The operational procedure is formulated using dynamic programming as a multi-objective problem. After comparing the scalar and the vector optimization, the scalar optimization technique is applied to turbidity analysis in a reservoir.  相似文献   

11.
A chance-constrained linear programming model, which utilizes multiple linear decision rules and is useful for river basin planning, is used to evaluate the effects of risk and reliability on optimal reservoir design. Streamflow forecasts or predictions can be explicitly included in the linear program. The risk associated with the predictions is included in the model through the use of cumulative distribution functions (CDF) of streamflows which are conditioned on the predictions. A multiple-purpose reservoir on the Gunpowder River in Maryland is used to illustrate the effectiveness of the model. In order to provide the decision makers with complete and useful information, trade-off curves relating minimum reservoir capacity (a surrogate for dam costs), water supply and flood control targets, and the reliability of achieving the targets are developed. The trade-off curves may enhance the decision maker's ability to select the best dam capacity, considering technological and financial constraints as well as the trade-offs between targets, risks, and costs.  相似文献   

12.
ABSTRACT: Optimization formulations for hydraulic control that take the form of linear programs possess a corresponding dual linear program. The economic and physical interpretations of the dual linear program are examined for formulations in which hydraulic head in groundwater systems is constiained. In each case it is shown that the dual linear program has a physically meaningful interpretation. For a hydraulic gradient control formulation used for remedial analysis it is shown that the dual variable can be interpreted as the remedial benefit due to each gradient control constraint. The dual linear program maximizes the remedial benefit. The value of the dual variable can be used to compute such useful properties as the total remedial benefit of pumping at a specific location. For a formulation that optimizes aquifer yield while constraining drawdown the dual variable can be used to measure the total cost of drawdown capacity consumption per unit of pumping at a specific location. The dual program minimizes the cost of drawdown capacity consumption. By examining the meaning of the dual linear program an alternate statement of the problem under study is revealed. Quantities arising from the dual program add to the value of the optimization approach. Significant new information can be derived from existing linear optimization formulations with minimal additional computational effort.  相似文献   

13.
ABSTRACT: Reservoir operation involves a complex set of human decisions depending upon hydrologic conditions in the supply network including watersheds, lakes, transfer tunnels, and rivers. Water releases from reservoirs are adjusted in an attempt to provide a balanced response to different demands. When a system involves more than one reservoir, computational burdens have been a major obstacle in incorporating uncertainties and variations in supply and demand. A new generation of stochastic dynamic programming was developed in the 1980s and 1990s to incorporate the forecast and demand uncertainties. The Bayesian Stochastic Dynamic Programming (BSDP) model and its extension, Demand Driven Stochastic Dynamic Programming (DDSP) model, are among those models. Recently, a Fuzzy Stochastic Dynamic Programming model (FSDP) also was developed for a single reservoir to model the errors associated with discretizing the variables using fuzzy set theory. In this study the DDSP and the FSDP models were extended and simplified for a complex system of Dez and Karoon reservoirs in the southwestern part of Iran. The simplified models are called Condensed Demand Driven Stochastic Programming (CDDSP) and Condensed Fuzzy Stochastic Dynamic Programming (CFSDP). The optimal operating policies developed by the CDDSP and the CFSDP models were simulated in a classical model and a fuzzy simulation model, respectively. The case study was used to demonstrate the advantages of implementing the proposed algorithm, and the results show the significant value of the proposed fuzzy based algorithm.  相似文献   

14.
ABSTRACT: A cross-sectional data set of 80 lakes and reservoirs in nine southeastern states was examined to specify and parameterize trophic state relationships. The relationships fitted are based on measurements of several limnological variables taken over the course of a growing season or year in each of the lakes. The trophic state models relate phosphorus and nitrogen loading to inlake phosphorus and nitrogen concentrations, which in turn are related to maximum chlorophyll level, Secchi disk depth, dominant algal species, and hypolimnetic dissolved oxygen status. Due to the empirical nature of the study, causal conclusions are limited; rather, the models are most useful for prediction of average growing season conditions related to trophic state.  相似文献   

15.
ABSTRACT. The setting of rule curves for reservoirs or lakes operation requires balancing the flood control storages reserved against the storage requirements for various conservation uses. In this study, a linear programming model is developed to perform single purpose analysis that minimizes flood damages of a multi-lake river system under various initial and input conditions. A flood control utility measure function is arrived from the resulting analysis, and the inclusion of the function in conservation analysis could provide the total functional analysis. The river-system transition function involving time-lags of short duration is described. The function constitutes the basis for the optimization model, and also provides the transformation to reduce significantly the size of the problem. The application to a critical subsystem in the Oswego River System is reported.  相似文献   

16.
ABSTRACT: Operation of a storage‐based reservoir modifies the downstream flow usually to a value higher than that of natural flow in dry season. This could be important for irrigation, water supply, or power production as it is like an additional downstream benefit without any additional investment. This study addresses the operation of two proposed reservoirs and the downstream flow augmentation at an irrigation project located at the outlet of the Gandaki River basin in Nepal. The optimal operating policies of the reservoirs were determined using a Stochastic Dynamic Programming (SDP) model considering the maximization of power production. The modified flows downstream of the reservoirs were simulated by a simulation model using the optimal operating policy (for power maximization) and a synthetic long‐term inflow series. Comparing the existing flow (flow in river without reservoir operation) and the modified flow (flow after reservoir operation) at the irrigation project, the additional amount of flow was calculated. The reliability analysis indicated that the supply of irrigation could be increased by 25 to 100 percent of the existing supply over the dry season (January to April) with a reliability of more than 80 percent.  相似文献   

17.
The operation policy for a single reservoir is applied to a rain water cistern system because the functions of a cistern are similar to a simple single reservoir. Since the cistern is a closed system, water loss is negligible. In this study, a dynamic programming analysis has been made to study the effects of the probable weekly rainfall and the water storage in the cistern towards the water consumption policy. The result of this study indicates that the water consumption rate should be adjusted into a lower rate when the water storage in the cistern is low and/or when the expected probable weekly rainfall is low if the owner of the cistern does not want to risk the chance of an empty cistern. The demand for a reliable method for forecasting weekly rainfall is evident in this study.  相似文献   

18.
ABSTRACT. In the last decade much research has been devoted to applying the systems analysis approach to water resources problems. A popular research goal has been determination of the “best” method of operating a multipurpose reservoir. The goal of this study was to derive the economically optimum flood control diagram for a multipurpose reservoir by systems analysis. The technique employed to optimize the flood control diagram was programmed so that the optimization process could be applied to other multipurpose reservoirs. Two computer programs developed at the U.S. Army Corps of Engineers' Hydrologic Engineering Center were utilized with modifications to simulate the operation of Folsom Reservoir in central California. Economic analyses were incorporated along with an optimization technique into the reservoir operations program; and the resultant program was capable of routing a sequence of monthly reservoir inflows, computing benefits for various flood control diagrams (as dictated by the optimization procedure), and selecting the economically optimum flood control diagram. The univariate gradient technique was the optimization procedure employed. The two computer programs are on file at the Hydrologic Engineering Center in Davis, California.  相似文献   

19.
ABSTRACT: There is considerable misconception about the dangers of opening to a recreating public in great need of additional open areas. A systematic procedure for identifying the factors essential to the selectio, planning, and management of reservoirs for recreation is described. A detailed case study conducted by an interdisciplinary project team is presented to demonstrate the feasibility fo maintaining storage levels in recreation-conductive high country reseroirs without unduly injuring downstram water users. The idea is to trade water with reservoirs having less recreation potential. The optimal means of doing this is found via a river basin simulation model with quasi-optimizing capability. Results of the case study show that this strategy is indeed feasible. Applicable to other areas may require analysis of tradeoffs if at least some damage to downstream users is unavoidable.  相似文献   

20.
ABSTRACT: The planning of water supply reservoirs has traditionally been based on the Rippl or sequent peak analysis which applies to the design of a single reservoir. This paper incorporates the sequent peak method as the central feature in establishing a procedure for determining the sizes of several potential reservoirs located in a system of one or more rivers. Separate algorithms are developed for sites on parallel streams and for sites on the same stream. In both cases the approach is to find the combination of reservoirs which can satisfy a given constant monthly demand at a minimum total construction cost. It is shown that both problems can be cast in the form of a dynamic programming problem. A more complex system is then a combination of reservoirs in parallel and in series. An extension is given if the monthly demand is not constant but each reservoir satisfies a constant fraction of the monthly demand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号