首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
ABSTRACT: The Modified Rational formula hydrograph and the Yarnell generalized rainfall chart are generally accepted procedures for sizing storm water detention ponds for small drainage areas. A procedure has been developed to choose the rainfall duration which, for a chosen return period, will result in the largest required storage volume of a detention pond. A graphical solution has been provided and its use has been described by application to an example.  相似文献   

2.
While storm water detention basins are widely used for controlling increases in peak discharges that result from urbanization, recent research has indicated that under certain circumstances detention storage can actually cause increases in peak discharge rates. Because of the potential for detrimental downstream effects, storm water management policies often require downstream effects to be evaluated. Such evaluation requires the design engineer to collect additional topographic and land use data and make costly hydrologic analyses. Thus, a method, which is easy to apply and which would indicate whether or not a detailed hydrologic analysis of downstream impacts is necessary, should decrease the average cost of storm water management designs. A planning method that does not require either a large data base or a computer is presented. The time co-ordinates of runoff hydrographs are estimated using the time-of-concentration and the SCS runoff curve number; the discharge coordinates are estimated using a simple peak discharge equation. While the planning method does not require a detailed design of the detention basin, it does provide a reasonably accurate procedure for evaluating whether or not the installation of a detention basin will cause adverse downstream flooding.  相似文献   

3.
ABSTRACT: Storm water detention is an effective and popular method for controlling the effects of increased urbanization and development. Detention basins are used to control both increases in flow rates and sedimentation. While numerous storm water management policies have been proposed, they most often fail to give adequate consideration to maintenance of the basin. Sediment accumulation with time and the growth of grass and weeds in the emergency spillway are two maintenance problems. A model that was calibrated with data from a storm water detention basin in Montgomery County, Maryland, is used to evaluate the effect of maintenance on the efficiency of the detention basin. Sediment accumulation in the basin caused the peak reduction factor to decrease while it increased as vegetation growth in the emergency spillway increased. Thus, the detention basin will not function as intended in the design when the basin is not properly maintained. Thus, maintenance of detention basins should be one component of a comprehensive storm water management policy.  相似文献   

4.
ABSTRACT: While the quality of rivers has received much attention, the degradation of small streams in upland areas of watersheds has only recently been recognized as a major problem. A major cause of the problem is increases in nonpoint source pollution that accompany urban expansion. A case study is used to examine the potential for storm water detention as a means of controlling water quality in streams of small watersheds. The storm water management basin, which is frequently used to control increases in discharge rates, can also be used to reduce the level of pollutants in inflow to receiving streams. Data collected on a 148-acre site in Maryland shows that a detention basin can trap as much as 98 percent of the pollutant in the inflow. For the 11 water quality parameters, most showed reductions of at least 60 percent, depending on storm characteristics.  相似文献   

5.
ABSTRACT: Storm water detention basins have historically been employed for quantity (i.e., flooding) control only. However, recently it has been suggested that these basins may also provide a practical means of storm water quality control. This paper presents the formulation of a mathematical modeling approach which may be used by professionals to simultaneously design detention basins for the dual purpose of storm water quantity and quality control. Model simulations demonstrate that for a given basin, pollutant removal increases as storm frequency increases. The importance of particle size distribution and settling velocity for net pollutant removal is illustrated, The design procedure is demonstrated, and pollutant loading diagrams for estimating pollutant removal as a function of storm size are developed.  相似文献   

6.
Storm water management contributes to flood hazard mitigation; but new approaches now being developed consider also the reduction in particulate pollution and stream erosion. Such approaches involve retardation of storm runoff, or detention programs of some kind, and detention basins are usually required if large storms are to be controlled. The usual concept is that future storms occurring after development should have no more adverse effect than similar storms would have had before development; but a number of different criteria are being used. If control of storms of different sizes is required, only a small amount of additional capacity is required to obtain retention of particulate pollution in the same basin. In at least three different parts of the country, such dual purpose detention basins are being required of developers. In such programs the developers bear the cost, the governmental contributions are not involved.  相似文献   

7.
ABSTRACT: To manage the first flush of storm runoff in urbanized areas, a diversion box and detention basin system has been proposed for a new storm sewer system or for retrofitting an existing system. A software package for a personal computer has been developed to facilitate the analysis and design of the system. Hydrographs and pollutographs are generated at the inlet and outlet of the diversion box and the detention basin. The peak outflow and peak pollutant concentrations are compared with the allowable outflow and pollutant concentration for urban stormwater quantity and quality management. The model is developed for both analysis and design purposes.  相似文献   

8.
This study presents an innovative approach for the integration of flood hazard into the site selection of detention basins. The site selection process is conducted by taking into account multiple criteria and disciplines. Hydraulic modeling results derived from stormwater management model are employed by Technique for the Order of Prioritization by Similarity to Ideal Solution (TOPSIS) to determine flood hazard score. The score generated by TOPSIS is used in a spatial multi-criteria decision-making site selection framework. Applying the framework, a suitability map is generated in which primary locations for detention basin placement are determined. The method is demonstrated through the case study of Darakeh River Catchment, which is located in northern Tehran, Iran. The presented framework can be easily utilized for site selection of other stormwater management techniques, such as low impact development and best management practices, due to its versatility.  相似文献   

9.
ABSTRACT: This paper looks at the use of off-line detention systems as a means of stormwater management. Conventional detention basins are typically designed and built as in-line systems in which all runoff is directed to the basin. Off-line systems are designed so that only a portion of the runoff is directed to the basin. Several simulation experiments were run to examine the behavior of in-line and off-line systems designed to reduce the peak flow from a developed area to the pre-development level. The results demonstrate that off-line systems require considerably less storage than in-line systems to achieve the same management goal. The results also show that off-line and in-line systems have significantly different flow-duration characteristics with the off-line system generally producing lower flows over longer periods. Unfortunately, off-line systems may exacerbate downstream flooding problems, especially when used in the upper portions of a watershed. Nevertheless, an off-line system can be an alternative to in-line detention in many cases.  相似文献   

10.
ABSTRACT. Flood detention reservoir design is a common problem encountered by engineers and others involved with water resources problems. This paper presents a method by which the volume of flood storage required for a single reservoir or a series of reservoirs may be estimated without using numeric flood-routing techniques. The proposed procedure requires a minimum of computations and is most applicable to preliminary design situations where a high degree of accuracy is not required.  相似文献   

11.
ABSTRACT: This paper describes a concerted effort by the Taiwan Water Resources Bureau, the City of Taipei, and the Bureau of Fei‐tsui Reservoir Management to protect the water quality in the Fei‐tsui Reservoir.The reservoir is the major source of water supply for over two million people in the metropolitan area of Taipei. Over the years the reservoir has suffered from siltation and more recently eutrophication. The sources of the pollution are traced to the hundreds of tea gardens, rice fields and other agricultural areas in the watershed and to urban sources such as construction sites. Large amounts of nutrients enter the reservoir by way of storm water runoff during storm or typhoon events. Since 1999, various agencies have worked to initiate an effort to reduce nonpoint pollution in the Fei‐Tsui Reservoir watershed. Practices being considered include nonstructural measures such as nutrient management, and structural measures such as swales, detention basins, and wetlands, in addition to erosion and sediment control methods. A number of field tests have been completed on the performance of selected best management practices (BMPs). A strategy for implementing the BMPs at the watershed scale has been developed based on a total maximum daily load (TMDL) analysis that is reported in this paper.  相似文献   

12.
ABSTRACT: In a simulation experiment, stormwater flows are partially diverted, at various levels, to a detention basin in order to compare the recombined (i.e., undiverted flows and basin discharges) hydrograph to the response of the traditional, in-line design. The use of off-line detention basins is shown to be an effective technique for reducing peak flows from developed watersheds to pre-development levels with lower storage requirements. In addition, the discharge hydrographs produced by off-line detention are significantly different from those produced by the traditional design and may be more suited to certain stormwater management situations.  相似文献   

13.
ABSTRACT: A design procedure to determine optimum size for a sediment detention pond is presented. The procedure is based on simulating the sediment removal efficiency of the pond in conjunction with temporal variations in rainfall and potential land use and/or management options. The simulation procedure is based on a combined probabilistic-deterministic modeling approach. The probabilistic model generates daily rainfall with hourly increments for a selected site. The deterministic model simulates sediment yield and concentration for drainage area (pond inflow) and sediment trapping efficiency of the pond. The sediment yield and concentration in pond effluent is estimated from the difference between sediment inflow to the pond and sediment trapped by the pond. As an example, the procedure is applied to determine optimum design for a sediment detention pond in a surface mined area using several pond design options and alternative mining operation/land reclamation strategies.  相似文献   

14.
The effects of increases in effective impervious area (EIA) and the implementation of water quality protection designed detention pond best management practices (BMPs) on storm runoff and stormwater quality were assessed in Gwinnett County, Georgia, for the period 2001‐2008. Trends among eight small watersheds were compared, using a time trend study design. Significant trends were detected in three storm hydrologic metrics and in five water quality constituents that were adjusted for variability in storm characteristics and climate. Trends in EIA ranged from 0.10 to 1.35, and changes in EIA treated by BMPs ranged from 0.19 to 1.32; both expressed in units of percentage of drainage area per year. Trend relations indicated that for every 1% increase in watershed EIA, about 2.6, 1.1, and 1.5% increases in EIA treated by BMPs would be required to counteract the effects of EIA added to the watersheds on peak streamflow, stormwater yield, and storm streamflow runoff, respectively. Relations between trends in EIA, BMP implementation, and water quality were counterintuitive. This may be the result of (1) changes in constituent inputs in the watersheds, especially downstream of areas treated by BMPs; (2) BMPs may have increased the duration of stormflow that results in downstream channel erosion; and/or (3) spurious relationships between increases in EIA, BMP implementation, and constituent inputs with development rates.  相似文献   

15.
ABSTRACT: A framework for combining economic factors and the hydrolo of detention basins is provided. The general development of economic production functions for water quality (sediment) and flood control is discussed. Example production functions are generated to compare water quality (sediment control only) and flood control. For the given example, the design of a detention basin for downstream sediment control is economically unwarranted. When compared to on-site detention facilities, regional detention structures appear to be more practical from an economic standpoint for water quality control. Since sediment was the only water quality parameter assessed, it is entirely possible that the design of a detention basin for water quality control would be justified if the effects of all pollutants of concern could be quantified. Policy aspects of detention facilities that relate to the economics of water quality control are also discussed.  相似文献   

16.
ABSTRACT: Historically, storm water management programs and criteria have focused on quantity issues related to flooding and drainage system design. Traditional designs were based on large rainfall‐runoff events such as those having two‐year to 100‐year return periods. While these are key criteria for management and control of peak flows, detention basin designs based on these criteria may not provide optimal quality treatment of storm runoff. As evidenced by studies performed by numerous public and private organizations, the water quality impacts of storm water runoff are primarily a function of more frequent rainfall‐runoff events rather than the less frequent events that cause peak flooding. Prior to this study there had been no detailed investigations to characterize the variability of the more frequent rainfall events on Guam. Also, there was a need to develop some criteria that could be applied by designers, developers, and agency officials in order to reduce the impact of storm water runoff on the receiving bodies. The objectives of this paper were three‐fold: (1) characterize the hourly rainfall events with respect to volume, frequency, duration, and the time between storm events; (2) evaluate the rainfall‐runoff characteristics with respect to capture volume for water quality treatment; and (3) prepare criteria for sizing and designing of storm water quality management facilities. The rainfall characterization studies have provided insight into the characteristics of rainstorms that are likely to produce non‐point source pollution in storm water runoff. By far the most significant fmdings are the development of a series of design curves that can be used in the actual sizing of storm water detention and treatment facilities. If applied correctly, these design curves could lead to a reduction of non‐point source pollution to Guam's streams, estuaries, and coastal environments.  相似文献   

17.
ABSTRACT. High percentage of imperviousness in the city is the source of storm runoff. Roof area contributes significantly to the imperviousness. An attempt to make use of roofs as urban flood control device and water conservation measure is advocated. Two different schemes, one for built-up industrial-commercial area, the other for residential area, are suggested. The former utilizes the roof as detention reservoir for flood control, the latter employs recharge pit to convert runoff into ground water resource. The proposed schemes are not only hydrologically, hydraulically and structurally sound but also economically feasible. It is worth considering in the future planning of urban renewal and urban development.  相似文献   

18.
Low impact development (LID) and other land development methods have been presented as alternatives to conventional storm water management and site design. Low impact development encourages land preservation and use of distributed, infiltration‐based storm water management systems to minimize impacts on hydrology. Such systems can include shallow retention areas, akin to natural depression storage. Other approaches to land development may emphasize land preservation only. Herein, an analysis of four development alternatives is presented. The first was Traditional development with conventional pipe/pond storm water management and half‐acre lots. The second alternative was Cluster development, in which implementation of the local cluster development ordnance was assumed, resulting in quarter‐acre lots with a pipe/pond storm water management system and open space preservation. The “Partial” LID option used the same lot layout as the Traditional option, with a storm water management system emphasizing shallow depression storage. The “Full” LID used the Cluster site plan and the depression storage‐based storm water management system. The alternatives were compared to the hydrologic response of existing site conditions. The analysis used two design storms and a continuous rainfall record. The combination of land preservation and infiltration‐based storm water management yielded the hydrologic response closest to existing conditions, although ponds were required to control peak flows for the design storms.  相似文献   

19.
ABSTRACT: As watersheds are urbanized, their surfaces are made less pervious and more channelized, which reduces infiltration and speeds up the removal of excess runoff. Traditional storm water management seeks to remove runoff as quickly as possible, gathering excess runoff in detention basins for peak reduction where necessary. In contrast, more recently developed “low impact” alternatives manage rainfall where it falls, through a combination of enhancing infiltration properties of pervious areas and rerouting impervious runoff across pervious areas to allow an opportunity for infiltration. In this paper, we investigate the potential for reducing the hydrologic impacts of urbanization by using infiltration based, low impact storm water management. We describe a group of preliminary experiments using relatively simple engineering tools to compare three basic scenarios of development: an undeveloped landscape; a fully developed landscape using traditional, high impact storm water management; and a fully developed landscape using infiltration based, low impact design. Based on these experiments, it appears that by manipulating the layout of urbanized landscapes, it is possible to reduce impacts on hydrology relative to traditional, fully connected storm water systems. However, the amount of reduction in impact is sensitive to both rainfall event size and soil texture, with greatest reductions being possible for small, relatively frequent rainfall events and more pervious soil textures. Thus, low impact techniques appear to provide a valuable tool for reducing runoff for the events that see the greatest relative increases from urbanization: those generated by the small, relatively frequent rainfall events that are small enough to produce little or no runoff from pervious surfaces, but produce runoff from impervious areas. However, it is clear that there still needs to be measures in place for flood management for larger, more intense, and relatively rarer storm events, which are capable of producing significant runoff even for undeveloped basins.  相似文献   

20.
ABSTRACT: A methodology for assessing reservoir management was applied to the historical conflict between winter fish and wildilife flows below Island Park Reservoir on Henrys Fork of the Snake River and the fulfillment of storage water rights. The methodology consists of (1) identifying impacts of flow regulation, (2) quantifying relationships among variables affecting physical reservoir fill, and (3) assessing effects of these discharges on the fulfillment of water rights in the context of a larger system of interrelated reservoirs. Winter (storage season) flows are critical to management of fish and wildlife populations below Island Park Dam, but flow regulation has resulted in decreased winter discharge. Allowable winter flows are a function of inflow, length of storage season, reservoir content at the start of storage season, and potential for downstream capture of excess storage season water discharged at Island Park. Modeling results indicate that winter flows in the range of those recommended for fish and wildlife management are attainable during average years but not during years when initial reservoir content is low. The methodology was successful in quantifying information useful to decision makers in a variety of agencies and disciplines and could be applied to solve water management problems on other regulated river systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号