首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: In a simulation experiment, stormwater flows are partially diverted, at various levels, to a detention basin in order to compare the recombined (i.e., undiverted flows and basin discharges) hydrograph to the response of the traditional, in-line design. The use of off-line detention basins is shown to be an effective technique for reducing peak flows from developed watersheds to pre-development levels with lower storage requirements. In addition, the discharge hydrographs produced by off-line detention are significantly different from those produced by the traditional design and may be more suited to certain stormwater management situations.  相似文献   

2.
While storm water detention basins are widely used for controlling increases in peak discharges that result from urbanization, recent research has indicated that under certain circumstances detention storage can actually cause increases in peak discharge rates. Because of the potential for detrimental downstream effects, storm water management policies often require downstream effects to be evaluated. Such evaluation requires the design engineer to collect additional topographic and land use data and make costly hydrologic analyses. Thus, a method, which is easy to apply and which would indicate whether or not a detailed hydrologic analysis of downstream impacts is necessary, should decrease the average cost of storm water management designs. A planning method that does not require either a large data base or a computer is presented. The time co-ordinates of runoff hydrographs are estimated using the time-of-concentration and the SCS runoff curve number; the discharge coordinates are estimated using a simple peak discharge equation. While the planning method does not require a detailed design of the detention basin, it does provide a reasonably accurate procedure for evaluating whether or not the installation of a detention basin will cause adverse downstream flooding.  相似文献   

3.
ABSTRACT: Storm water detention basins have historically been employed for quantity (i.e., flooding) control only. However, recently it has been suggested that these basins may also provide a practical means of storm water quality control. This paper presents the formulation of a mathematical modeling approach which may be used by professionals to simultaneously design detention basins for the dual purpose of storm water quantity and quality control. Model simulations demonstrate that for a given basin, pollutant removal increases as storm frequency increases. The importance of particle size distribution and settling velocity for net pollutant removal is illustrated, The design procedure is demonstrated, and pollutant loading diagrams for estimating pollutant removal as a function of storm size are developed.  相似文献   

4.
ABSTRACT: The Modified Rational formula hydrograph and the Yarnell generalized rainfall chart are generally accepted procedures for sizing storm water detention ponds for small drainage areas. A procedure has been developed to choose the rainfall duration which, for a chosen return period, will result in the largest required storage volume of a detention pond. A graphical solution has been provided and its use has been described by application to an example.  相似文献   

5.
ABSTRACT: Storm water detention is an effective and popular method for controlling the effects of increased urbanization and development. Detention basins are used to control both increases in flow rates and sedimentation. While numerous storm water management policies have been proposed, they most often fail to give adequate consideration to maintenance of the basin. Sediment accumulation with time and the growth of grass and weeds in the emergency spillway are two maintenance problems. A model that was calibrated with data from a storm water detention basin in Montgomery County, Maryland, is used to evaluate the effect of maintenance on the efficiency of the detention basin. Sediment accumulation in the basin caused the peak reduction factor to decrease while it increased as vegetation growth in the emergency spillway increased. Thus, the detention basin will not function as intended in the design when the basin is not properly maintained. Thus, maintenance of detention basins should be one component of a comprehensive storm water management policy.  相似文献   

6.
ABSTRACT: A comprehensive study was conducted to implement the Storm Water Management Model (SWMM) for urban areas in Kuwait. The updated version of the model designed to run on an IBM Personal Computer and compatibles (PCSWMM3.2C) was utilized. The study revealed that urban runoff simulation in arid areas by the SWMM model is a powerful and efficient tool in designing drainage systems and as such, a viable replacement of the commonly used rational method. It was found that only the streets and paved areas that are hydraulically connected to the drainage system contribute to runoff. Fine and coarse discretization approaches were used in the study. The difference between the hydrographs simulated by the two approaches were relatively small. The performance of the existing drainage system and the accuracy of the design method used were tested using a 25-year storm. The result of the simulation revealed that the storm sewers were oversized by factors ranging from 1.2 to 3.6. The SWMM model was used to estimate the storm water runoff volume collected from all urbanized areas in Kuwait City. The annual expected harvested runoff water was found to be significant; however, the quality of runoff water needs to be assessed before a decision is made on its reuse.  相似文献   

7.
ABSTRACT: Design of a stormwater pump station is a complicated procedure because of the large number of parameters that are involved. Even the most basic pump station serving a small catchment requires a computationally intensive iterative evaluation. However, the design problem consists primarily of finding the combination of temporary storage and pump capacity that accommodates runoff of the selected recurrence interval for the least cost. A procedure is developed for rapidly obtaining the needed relation between storage volume and discharge for small pump stations where a constant outflow can be assumed and the inflow hydro-graph can be represented using the modified rational method with rainfall given by a widely-used intensity-duration equation. Accepting the limitations of the modified rational method and the simplifications applied to pump station operation, the procedure provides an uncomplicated way of rapidly finding the stormwater runoff volume that needs to be temporarily stored for given values of pump discharge and activation water level (or, equivalently, activation storage volume). Ultimate determination of temporary runoff storage will depend on an economic analysis of the trade-off between storage volume and pump capacity.  相似文献   

8.
Storm water management contributes to flood hazard mitigation; but new approaches now being developed consider also the reduction in particulate pollution and stream erosion. Such approaches involve retardation of storm runoff, or detention programs of some kind, and detention basins are usually required if large storms are to be controlled. The usual concept is that future storms occurring after development should have no more adverse effect than similar storms would have had before development; but a number of different criteria are being used. If control of storms of different sizes is required, only a small amount of additional capacity is required to obtain retention of particulate pollution in the same basin. In at least three different parts of the country, such dual purpose detention basins are being required of developers. In such programs the developers bear the cost, the governmental contributions are not involved.  相似文献   

9.
ABSTRACT: This paper looks at the use of off-line detention systems as a means of stormwater management. Conventional detention basins are typically designed and built as in-line systems in which all runoff is directed to the basin. Off-line systems are designed so that only a portion of the runoff is directed to the basin. Several simulation experiments were run to examine the behavior of in-line and off-line systems designed to reduce the peak flow from a developed area to the pre-development level. The results demonstrate that off-line systems require considerably less storage than in-line systems to achieve the same management goal. The results also show that off-line and in-line systems have significantly different flow-duration characteristics with the off-line system generally producing lower flows over longer periods. Unfortunately, off-line systems may exacerbate downstream flooding problems, especially when used in the upper portions of a watershed. Nevertheless, an off-line system can be an alternative to in-line detention in many cases.  相似文献   

10.
ABSTRACT: A framework for combining economic factors and the hydrolo of detention basins is provided. The general development of economic production functions for water quality (sediment) and flood control is discussed. Example production functions are generated to compare water quality (sediment control only) and flood control. For the given example, the design of a detention basin for downstream sediment control is economically unwarranted. When compared to on-site detention facilities, regional detention structures appear to be more practical from an economic standpoint for water quality control. Since sediment was the only water quality parameter assessed, it is entirely possible that the design of a detention basin for water quality control would be justified if the effects of all pollutants of concern could be quantified. Policy aspects of detention facilities that relate to the economics of water quality control are also discussed.  相似文献   

11.
ABSTRACT: While the quality of rivers has received much attention, the degradation of small streams in upland areas of watersheds has only recently been recognized as a major problem. A major cause of the problem is increases in nonpoint source pollution that accompany urban expansion. A case study is used to examine the potential for storm water detention as a means of controlling water quality in streams of small watersheds. The storm water management basin, which is frequently used to control increases in discharge rates, can also be used to reduce the level of pollutants in inflow to receiving streams. Data collected on a 148-acre site in Maryland shows that a detention basin can trap as much as 98 percent of the pollutant in the inflow. For the 11 water quality parameters, most showed reductions of at least 60 percent, depending on storm characteristics.  相似文献   

12.
ABSTRACT: Parameter uncertainties exert a significant effect on nonpoint source pollution (NPS) modeling results. A decision made on the basis of such results may thereby be inappropriate. In this work, the parameter uncertainty is analyzed to explore an improved modeling procedure. Drainage patterns generated from digital elevation data and rainfall are the major parameters examined. A case study for the watershed of the Posan off-stream reservoir is implemented. A significant spatial variation of NPS distribution simulated with a drainage pattern generated from varied methods is observed. The effects of rainfall randomness on the spatial loading distribution are assessed and computed based on a Monte Carlo simulation. The proposed procedure is capable of improving the quality of modeling results and the decision for an appropriate control strategy.  相似文献   

13.
ABSTRACT: A runoff routing model, originally developed for rural, areas and later adapted for application in urban areas, is shown to be, very suitable for use in design detention basin systems. The model, computes design inflow hydrographs for basins and routes flow through, basins to the next downstream point of interest. Some general conclusions are drawn on the effects of different basin configurations.  相似文献   

14.
ABSTRACT: The approximate streamflow partitioning method which uses daily rainfall and streamfiow data was applied in Coastal Plain, Coastal Flatwoods, and Southern Piedmont physiographic regions for estimation of the surface and subsurface flow components of total streainflow. Sizes of the watersheds ranged from 9.6 km2 to 1,030 km. Although the streamflow partitioning method was developed and tested on the Coastal Plain physiographic region, results indicate that the procedure can be applied to other physiographic regions where available data are limited to daily values. The effect of channelization on the partitioned flow components in the Coastal Plain and Coastal Flatwoods physiographic areas was also examined. While channelization was found to decrease the storm-time base, it had no significant effect on the relative percentages of the partitioned flow components.  相似文献   

15.
ABSTRACT. Flood detention reservoir design is a common problem encountered by engineers and others involved with water resources problems. This paper presents a method by which the volume of flood storage required for a single reservoir or a series of reservoirs may be estimated without using numeric flood-routing techniques. The proposed procedure requires a minimum of computations and is most applicable to preliminary design situations where a high degree of accuracy is not required.  相似文献   

16.
ABSTRACT: Residents of seven subdivisions with wet and dry stormwater basins were questioned about the role the basin played in their decision to purchase their home. They were asked to estimate the impact of such basins on the image of residential developments and on lot values. Respondents believed that wet basins contributed positively to subdivision image and that lots in developments with wet basins were more valuable than comparable lots in dry basin subdivisions. Lots adjacent to wet basins were perceived as the most valuable, while those adjacent to dry basins were considered the least valuable.  相似文献   

17.
    
. Water Reservoir Systems were investigated for urban areas as an alternative or complement to storm water drainage systems for flood control which could provide benefits in water conservation and reduce drainage system costs. The study consisted of: (1) gathering of engineering data on the topographical, hydrological, and precipitation characteristics of the area and urban development and economic statistics  相似文献   

18.
ABSTRACT: The Nonlinear Risk-Benefit (NRB) Algorithm includes risk as one of the objectives in a multiple-objective optimization problem. The NRB Algorithm is derived by extending the Surrogate Worth Trade-Off method to quadratic programming. This category of problem is common in water resources planning and design, especially multipurpose reservoir systems. Consequently, an example is given using the algorithm for optimally operating a multipurpose reservoir.  相似文献   

19.
ABSTRACT: A small lake in the Chicago Metropolitan Area was from 91 to 95 percent efficient in removing suspended sediment and from 76 to 94 percent efficient in removing copper, iron, lead, and zinc from urban runoff. Sediments accumulated in the lake in the form of an organic-rich mud at an average rate of 20 millimeters per year; this reduced lake storage and covered potential habitat for aquatic organisms. Copper, lead, and zinc concentrations were closely associated with suspended-sediment concentrations and with silt- and clay-sized fractions of lake sediment. Although concentrations of mercury and cadmium were near detection limits in runoff, measurable concentrations of these metals accumulated in the lake sediments.  相似文献   

20.
ABSTRACT: Nonstorm water discharges to municipal separate storm sewer systems (MS4s) are notable for spatial and temporal variability in volume, pollutant type, pollutant concentration, and activity of origin. The objective of this paper was to determine whether current technical knowledge and existing U.S. policy support an improved regulatory approach. The proposed policy would use type of discharge as a regulatory basis, merging the concepts of allowability of de minimis discharges and type-based statewide consistent rules. Specific research objectives were to comprehensively identify discharge types, characterize their prevalence in California, analyze relevant local and regional regulatory guidelines, and systematically evaluate opinions of experts about potential water quality impacts. Results demonstrate nonstorm water discharges were widespread in at least one sector, industrial facilities subject to a state permit; one discharge for every four facilities was reported in 1995, even though the permit explicitly prohibits such discharges. Clear consensus exists for minimal water quality concern for some discharge types when considering both municipal guidelines and experts’ opinions. In particular, condensate from a wide range of equipment and discharges from fire fighting equipment testing were found to be of low concern. Discharge types with consensus high concern were largely limited to discharges prohibited under other regulations, such as wastewater and hazardous waste management controls. Some discharge types where no consensus was identified, such as landscape irrigation, nevertheless generated concern for water quality impacts and appear to be relatively widespread. Available information supports technical feasibility of the proposed policy because at least some discharge types show strong consensus for de minimis impacts among regulatory guidelines and opinions of technical experts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号