首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aposematic species advertise their unpalatability to potential predators using conspicuous warning colouration. The initial evolution of aposematism is thought to occur by warningly coloured mutants emerging in an already unpalatable cryptic species. However, possessing defence chemicals is often costly, and it is difficult to understand what the selective benefits might be for a mutation causing its bearer to be defended in a population of otherwise palatable cryptic prey. One solution to this problem is that chemically defended individuals are tasted and rejected by predators, and are, therefore, more likely to survive predatory attacks than undefended individuals. Using naïve domestic chicks Gallus gallus domesticus as predators and cryptic green chick crumbs as prey, we asked whether the accuracy with which birds discriminated between palatable and unpalatable prey was affected by the palatability of the unpalatable prey (moderately or highly defended), or their frequency in the population (10 or 25%). Birds could discriminate between green prey on the basis of their defences, and showed better discrimination between palatable and unpalatable prey when defended crumbs were highly unpalatable, compared to when they were moderately unpalatable. Although there was no detectable effect of the frequency of unpalatable prey in the population on predator taste-rejection behaviour in our main analysis, frequency did appear to affect the strategies that birds used in their foraging decisions when prey were only moderately unpalatable. How birds used taste to reject prey also suggests that birds may be able to monitor and regulate their chemical intake according to the frequency and defence levels of the unpalatable prey. Taken together, these results show that avian predators can generate selection for unpalatability in cryptic prey by sampling and taste-rejecting prey, but that a relatively large chemical difference between palatable and unpalatable prey may be necessary before unpalatable prey can enjoy a selective advantage. The exact nature of this evolutionary dynamic will depend on other environmental factors, such as defence costs and prey availability, but it provides a mechanism by which defences can evolve in a cryptic population.  相似文献   

2.
Commonly, female birds use the brightly coloured patches on males to choose the best-quality mates. Coloured wing patches, however, have received little attention or have been previously related to social behaviour (as a signal to recruit conspecific individuals at feeding patches) or foraging (to flush prey) contexts, rather than to sexual selection. Here we provide evidence that in siskins (Carduelis spinus), wing patches function in mate choice. Mate-choice experiments showed that females were attracted by the size of the yellow wing stripe of the male, but not by the size of its black bib, body size, general plumage brightness or age. Experiments on birds with manipulated yellow wing stripes showed that females were sensitive to the size of this colour patch, irrespective of other male qualities. The preference of female siskins for males with larger wing patches when searching for a mate may be explained by the relationship of this trait to foraging ability, which would ensure females good parental investment from the chosen male.Communicated by W.A. Searcy  相似文献   

3.
Summary. Ecological and phylogenetic factors determine which sensory modalities organisms use in their day-to-day activities. Among lizards, empirical studies indicate a tight association between foraging strategies and the ability to detect chemical cues from prey. Consequently, ambush insectivores do not detect food chemicals and these differences have a phylogenetic basis, as ambush lizards mainly belong to the Iguania clade. These data contrast, however, with the widespread uses of chemoreception in the Iguania genus Liolaemus, which are mostly insectivorous ambush predators. Moreover, observations from different Liolaemus species suggest a capability to find prey through chemoreception. In order to clarify the abilities of Liolaemus to detect chemical cues from prey, the chemoreceptive behavior of the insectivorous ambush predator, L. lemniscatus, was studied. Lizards were given the choice between areas with and without chemical cues from a food item (mealworms). Results show that test animals stayed for longer, moved more, and did more chemical exploration (tongue flicks) in the area where chemical cues from mealworms were present. Furthermore, in this area, more individuals displayed behaviors that suggest maintenance and defense of the prey patch. Thus, L. lemniscatus is the first insectivorous Iguania reported to be able to detect chemical cues from prey. Although I propose a mechanism for acquiring chemical detection of prey cues in Liolaemus, I also remark that it is necessary to reanalyze both the abilities to detect and use chemical foraging cues in Iguania at large, and the methodologies traditionally used to study these issues.  相似文献   

4.
Functional responses: a question of alternative prey and predator density   总被引:2,自引:0,他引:2  
Tschanz B  Bersier LF  Bacher S 《Ecology》2007,88(5):1300-1308
Throughout the study of ecology, there has been a growing realization that indirect effects among species cause complexity in food webs. Understanding and predicting the behavior of ecosystems consequently depends on our ability to identify indirect effects and their mechanisms. The present study experimentally investigates indirect interactions arising between two prey species that share a common predator. In a natural field experiment, we introduced different densities of mealworms (Tenebrio molitor), an alternative prey, to a previously studied predator-prey system in which paper wasps (Polistes dominulus) preyed on shield beetle larvae (Cassida rubiginosa). We tested if alternative prey affects predation on the first prey (i.e., the predator-dependent functional response of paper wasps) by modifying either interference among predators or the effective number of predators foraging on shield beetles. Presence of mealworms significantly reduced the effective number of predators, whereas predator interference was not affected. In this way, the experimentally introduced alternative prey altered the wasps' functional response and thereby indirectly influenced C. rubiginosa density. In all prey-density combinations offered, paper wasps constantly preferred T. molitor. This led to an asymmetrical, indirect interaction between both prey species: an increase in mealworm density significantly relaxed predation on C. rubiginosa, whereas an increase in C. rubiginosa density intensified predation on mealworms. Such asymmetrical outcomes of a fixed food preference can significantly affect the population dynamics of the species involved. In spite of the repeated finding of a Type III functional response in this system, our experiment did not reveal switching behavior in paper wasps. The variety of mechanisms underlying direct and indirect interactions within our study system exemplifies the importance of incorporating alternative prey when investigating the impact of a generalist predator on a focal prey population under realistic field conditions.  相似文献   

5.
To detect threats and reduce predation risk prey animals need to be alert. Early predator detection and rapid anti-predatory action increase the likelihood of survival. We investigated how foraging affects predator detection and time to take-off in blue tits (Parus caeruleus) by subjecting them to a simulated raptor attack. To investigate the impact of body posture we compared birds feeding head-down with birds feeding head-up, but could not find any effect of posture on either time to detection or time to take-off. To investigate the impact of orientation we compared birds having their side towards the attacking predator with birds having their back towards it. Predator detection, but not time to take-off, was delayed when the back was oriented towards the predator. We also investigated the impact of foraging task by comparing birds that were either not foraging, foraging on chopped mealworms, or foraging on whole ones. Foraging on chopped mealworms did not delay detection compared to nonforaging showing that foraging does not always restrict vigilance. However, detection was delayed more than 150% when the birds were foraging on whole, live mealworms, which apparently demanded much attention and handling skill. Time to take-off was affected by foraging task in the same way as detection was. We show that when studying foraging and vigilance one must include the difficulty of the foraging task and prey orientation.Communicated by P.A. Bednekoff  相似文献   

6.
Adult magpies Pica pica provide parasitic great spotted cuckoo Clamator glandarius nestlings with a diet very similar to that fed to their own chicks. In both naturally and experimentally parasitized nests, great spotted cuckoo chicks were fed at a higher rate than magpie chicks in the same nest. This preferential allocation of food by magpie parents to great spotted cuckoo chicks is consistent with the supernormal stimulus hypothesis, because this result implies that cuckoo chicks provide stronger stimuli for parental care than host chicks. Great spotted cuckoo chicks receive most of the food brought to the nest by the foster parents, because they exploit a series of stimuli which jointly (or sometimes individually) operate as a supernormal stimulus. This hypothesis predicts that if any stimulus is masked, the efficiency of the cuckoo in eliciting parental care will decrease. Here, we analyze experimentally the effects of two of these stimuli, preferential feeding of large nestlings and of nestlings with conspicuous palatal papillae. Firstly, when we experimentally introduced one medium-sized (7–9 days) cuckoo chick into an unparasitized magpie nest where the largest magpie chick was 12–15 days old, the cuckoo did not receive significantly more food than the average or the largest magpie chick. Secondly, when unparasitized nests were experimentally parasitized with a cuckoo chick that had its gape painted to mimic that of magpie chicks, the parasitic cuckoo received less food than the average magpie chick.  相似文献   

7.
Aposematic species exploit the ability of predators to associate, for example, conspicuous colouration with the unprofitability of prey. We tested the importance of colour for avoidance learning, memory and generalisation in wild-caught great tits (Parus major). First, we determined the birds’ initial colour preferences for red, yellow, orange and grey artificial prey items. The birds showed some preferences, as they were more willing to eat grey prey as their first choice, but these were not strong preferences. We then trained birds to discriminate red, yellow or variable (red and yellow) signals from grey where colours signalled palatable and unpalatable food. In general, the birds learned the discrimination task equally well, irrespective of which colours signalled unpalatability, and subsequently remembered the distinction between previously palatable and previously unpalatable colours in the memorability test. We did not find strong evidence that variability in the signal affected learning or memory. Our results suggest that, in a task where birds must discriminate between palatable and unpalatable prey, it does not matter which specific colour signals unpalatability, although this might be context-dependent. To study whether training also affects responses to unconditioned stimuli, we included orange prey items in the memorability test. Although orange had been palatable in the initial preference test, the birds ate fewer orange prey items after they had been trained to avoid red, yellow or both colours (variable signal) as unpalatable prey, but did not change their preference when trained that these colourful signals were palatable. This indicates that generalisation occurred more readily after a negative experience than a positive experience, a situation that would potentially allow imperfect mimicry to occur.  相似文献   

8.
Summary The behaviour of five adult wheatears (Oe. oenanthe) delivering prey (maggots and mealworms) from artificial patches to the nestlings was studied. The existence of a so-called loading effect was confirmed. Handling times for subsequent prey items increased with the number held in the beak, which led to a decrease in collecting rates with patch time and, in most cases, to positively accelerating loading functions when collecting times for prey items are plotted as a function of load size. All birds seemed to become more efficient at loading prey in the experimental patches during the course of the nestling period. Loading functions for maggots and mealworms were slightly different. When forcing the birds to visit several cups (only one item in each cup) and remove a layer of moss before reaching the prey (low-density patches), all birds took fewer prey and two of them stayed longer in them than in highdensity patches (one cup filled with prey items). This was due to an increase in search times with the number of prey held in the beak.From knowledge of the loading functions and travel times to the nest, it is possible to predict the optimal load sizes according to a mathematical solution of the delivery rate model of Orians and Pearson (1979). By transforming collecting and travel times to energy expenditures, it is also possible to derive predictions from an energy efficiency model (maximizing energy delivery per unit energy expended in a round-trip). The observed average load sizes did not differ significantly from those predicted by the delivery rate model, but they were significantly smaller in all cases than those predicted by the energy efficiency model. For birds feeding nestlings, it may be more important to sacrifice efficiency in energy expenditure in favour of greater delivery rates, thereby maximizing the growth rate of the young.  相似文献   

9.
Summary. While many marine molluscs have been suggested to use aposematic coloration to avoid predation, few studies have tested the ability of marine predators to learn to associate colors with distasteful prey. In field experiments, we tested the ability of two populations of reef fishes to discriminate among red, yellow, and black artificial nudibranch models when one color was paired with a feeding deterrent. We offered fishes (1) the models without any feeding deterrents, (2) the models with a feeding deterrent coated onto one color, and (3) the models without deterrents again. If reef fishes learn to associate colors with noxious prey, we expected the color paired with the feeding deterrent to be eaten less frequently in the final assay than the initial assay. In both populations, fishes formed clear associations between color and feeding deterrence. However, when the experiment was repeated in one population, changing the color paired with the feeding deterrent, fishes did not form an association between color and feeding deterrence. In this case, prior learning may have affected subsequent trials. Our study indicates that common colors of nudibranchs are recognizable by fishes and can be associated with noxious prey. Received 24 September 1998; accepted 18 December 1998.  相似文献   

10.
Daubenton's bat, a trawling vespertilionid bat species, hunts for insects that fly close to, or rest on, the water surface. During summer, many ponds at which Daubenton's bats hunt become gradually covered with duckweed. The purpose of this study was to investigate the effects of duckweed cover on the hunting behaviour of Daubenton's bats and on the ultrasound-reflecting properties of the water surface. Our study revealed the following. (1) Daubenton's bat avoids water surfaces covered with duckweed. (2) Prey abundance was related to the number of foraging Daubenton's bats but was independent of duckweed cover. (3) When mealworms were presented among standardized amounts of duckweed to naturally foraging Daubenton's bats, they caught significantly less mealworms when the duckweed cover was increased. (4) Measurements with ultrasonic signals show that a water surface covered with duckweed returns a much stronger background echo at small angles (i.e. parallel to the water surface) compared to an uncovered water surface. It seems likely that a cover of duckweed on the water surface interferes with prey detection by masking the echoes returning from prey. (5) It was relatively difficult for the bats to discriminate small patches of duckweed from mealworms. The proposed discrimination mechanism for this trawling bat species suggests that single duckweed patches can also be mistaken for natural prey by Daubenton's bats. Received: 4 January 1998 / Accepted after revision: 19 July 1998  相似文献   

11.
In the meerkat (Suricata suricatta), a cooperative mongoose, pups follow potential feeders while the group is foraging and emit incessant calls when soliciting food from them. In contrast to a ’stationary’ brood of chicks, in which nestlings are fed at a fixed location, meerkat pups are ’mobile’ and become spread out. The question arises whether meerkat pups that experience different constraints to those facing chicks have evolved similar begging strategies. This paper describes the vocalisations that meerkat pups emit in the context of begging and investigates the influence of these calls on food allocation by older group members and on the behaviour of littermates. Meerkat pups use two types of calls when soliciting food from a potential feeder. The most common is a ’repeat’ call, which pups emit continuously when following an older forager over several hours a day. In addition, when a potential feeder finds a prey item, the pups next to it emit a bout of calls with increased calling rate, amplitude and fundamental frequency, termed ’high-pitched’ calls. Observations, together with playback experiments, showed that more prey was allocated to pups that called longer and more intensely. The pup closest to a feeder was almost always fed. The probability of emitting high-pitched calls did not depend on the time since a pup had received food, and the change from repeat to high-pitched calls occurred suddenly. The main function of the high-pitched call, therefore, does not appear to be to signal a pup’s hunger state. More likely, the two calls, in the context of begging, may be an adaptation to energetic constraints in a mobile feeding system. Pups, which are dispersed during foraging, may emit repeat calls over long periods to prevent potential feeders from eating all the prey themselves. At the moment a potential feeder finds prey, pups may give the more intense high-pitched calls to direct feeders to bring the food item to them and not to a littermate. Therefore, unlike the stationary feeding system where chicks emit one type of begging call when the feeder approaches the nest, meerkats, with a mobile feeding system, have evolved two discrete types of vocalisations in the context of begging. Received: 22 November 1999 / Revised: 1 July 2000 / Accepted: 17 July 2000  相似文献   

12.
We investigated ontogenetic, temporal and spatial patterns in the composition and size of prey in the diet of crested terns, Sterna bergii. Diet analyses indicated that crested terns are a generalist predator on surface-schooling clupeids (Australian anchovy Engraulis australis, sardine Sardinops sagax and blue sprat Spratelloides robustus), Degens leatherjacket Thamnaconus degeni, southern sea garfish Hyporhamphus melanochir, Australian herring Arripis georgianus, slender bullseye Parapriacanthus elongatus and barracouta Thyrsites atun. Ontogenetic differences in prey size indicated that adults are constrained in their foraging behaviour during the early chick-provisioning period by the need to self feed and select smaller prey that can be ingested by their chicks. Chicks consumed significantly higher proportions of clupeids than adults, which consumed mainly Degens leatherjackets and barracouta, suggesting that adults may select higher quality prey for their chicks compared to what they consume themselves. Spatial differences in prey composition were driven by differing proportions of sardine, Australian anchovy and Degens leatherjacket and could reflect local differences in the abundances of these prey. The size of prey taxa consumed by adults also reflected a North–South gradient in prey size. The large component of juvenile sardine in the diet of crested terns suggests future dietary measures may inform fisheries managers about changes in local juvenile sardine abundance. These data could assist in highlighting any fishery-related decreases in sardine recruitment and help ensure commercial fishing practices address principals of Ecologically Sustainable Development developed for Australian fisheries.  相似文献   

13.
The marine bivalve Lucinoma aequizonata (Lucinidae) maintains a population of sulfide-oxidizing chemoautotrophic bacteria in its gill tissue. These are housed in large numbers intracellularly in specialized host cells, termed bacteriocytes. In a natural population of L. aequizonata, striking variations of the gill colors occur, ranging from yellow to grey, brown and black. The aim of the present study was to investigate how this phenomenon relates to the physiology and numbers of the symbiont population. Our results show that in aquarium-maintained animals, black gills contained fewer numbers of bacteria as well as lower concentrations of sulfur and total protein. Nitrate respiration was stimulated by sulfide (but not by thiosulfate) 33-fold in homogenates of black gills and threefold in yellow gill homogenates. The total rates of sulfide-stimulated nitrate respiration were the same. Oxygen respiration could be measured in animals with yellow gills but not in animals with black gills. The cumulative data suggest that black-gilled clams maintained in the aquarium represent a starvation state. When collected from their natural habitat black gills contain the same number of bacteria as yellow gills. Also, no significant difference in glycogen concentrations of the host tissues was observed. Therefore, starvation is unlikely the cause of black gill color in a natural population. Alternative sources of nutrition to sulfur-based metabolism are discussed. Denaturing gradient gel electrophoresis (DGGE) performed on the different gill tissues, as well as on isolated symbionts, resulted in a single gill symbiont amplification product, the sequence of which is identical to published data. These findings provide molecular evidence that one dominant phylotype is present in the morphologically different gill tissues. Nevertheless, the presence of other phylotypes cannot formally be excluded. The implications of this study are that the gill of L. aequizonata is a highly dynamic organ which lends itself to more detailed studies regarding the molecular and cellular processes underlying nutrient transfer, regulation of bacterial numbers and host–symbiont communication. Received: 1 September 1999 / Accepted: 1 February 2000  相似文献   

14.
A new concept based on analysis of dive depth data was developed to help estimate prey consumption in ten free-ranging Magellanic penguins (Spheniscus magellanicus) that were brooding chicks. By simultaneously analysing the undulations in the dive depth profile (measured by time-depth recorders, TDRs) and beak opening (obtained from the recently developed intra-mandibular angle sensors, IMASEN), it was possible to determine the proportions of the undulations in the dive profile that resulted (or not) in prey capture. This methodology allowed the number of prey consumed to be estimated with a mean error of 10±6% using TDR data alone. If the mean mass of prey is known, then the overall mass of prey consumed per unit time can be determined. Additionally, the method allows estimation of the depth at which prey is taken and thus indicates how penguins exploit the water column. Due to its simplicity, the proposed methodology has applications for other Spheniscus penguin species and should be considered for other marine endotherm divers that show undulations in the dive depth profile.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

15.
Summary. We tested responses to prey chemicals by lizard hatchlings of an oviparous species and neonates of a viviparous species, neither of which had never eaten. Both species responded more strongly to prey chemicals than to odorous and odorless control stimuli presented on cotton swabs. Although only a few species have been examined, all that have been tested have an innate capacity for prey chemical discrimination, suggesting that this innate response to prey chemicals is widespread among lizards that use the lingual-vomeronasal system to locate and identify prey. Innate prey chemical discrimination has the great advantage of permitting lizards lacking prior experience with food to respond appropriately to chemical cues associated with food. Both species discriminated prey chemicals from control substances at age three days, earlier than previously known. Our data hint that Mabuya macularia may be capable of discrimination on its day of birth, but further study is needed to determine the exact onset. A stronger tendency to attack swabs bearing prey chemicals by Scincella lateralis than by M. macularia may be explained by differences in defensiveness near an experimenter or by differences in the importance of visual prey cues for confirmation of chemical cues in the natural habitats of these species. In M. macularia responses to the control stimuli declined over days of testing, suggesting habituation, but responses to prey chemicals did not habituate by the third day of testing, which is interpreted as a possible adaptive response to permit location of food. In the standard method of stimulus presentation, a cotton swab bearing a chemical stimulus is placed anterior to a lizard's snout. We tested a new method in which the swab was placed in continuous contact with the lizard's anterior labial scales. The new method elicited significantly stronger responses from M. macularia. We discuss reasons for this finding and applications for the new method. Received 2 September 1999; accepted 15 December 1999  相似文献   

16.
In pelagic seabirds, who often explore distant food resources, information is usually scarce on the level of trophic segregation between parents and their offspring. To investigate this issue, we used GPS tracking, stable isotopes and dietary information of Cory’s shearwaters Calonectris diomedea breeding in contrasting environments. Foraging trips at Selvagem Grande (an oceanic island) mainly targeted the distant African coast, while at Berlenga island (located on the continental shelf), shearwaters foraged mainly over nearby shelf waters. The degree of isotopic segregation between adults and chicks, based on δ13C, differed markedly between the two sites, indicating that adult birds at Selvagem fed their chicks with a mixture of shelf and offshore pelagic prey but assimilated more prey captured on coastal shelf waters. Isotopic differences between age classes at Berlenga were much smaller and may have resulted from limited dietary segregation or from age-related metabolic differences. The diet of shearwaters was also very different between the two colonies, with offshore pelagic prey only being detected at Selvagem Grande. Our findings suggest that spatial foraging constraints influence resource partitioning between pelagic seabirds and their offspring and can lead to a parent–offspring dietary segregation.  相似文献   

17.
During chick-rearing, albatrosses can alternate between long foraging trips that provide the main source of food for the adults and short foraging trips that they use to feed their young. This flexibility in foraging behaviour can lead to differences in diet composition between adults and chicks and implies that they may be vulnerable in different ways to food shortages. The trophic ecology of the Grey-headed albatross Thalassarche chrysostoma was investigated at the sub-Antarctic Prince Edward Islands during the chick-rearing period in April 2006 using a combination of approaches. Diets of adults and chicks were assessed using stable isotope ratios and fatty acid (FA) profiles of blood and/or stomach oils, in addition to stomach contents analysis. Fish from the family Macrouridae and cephalopods (particularly the onychoteuthid Kondakovia longimana) were the primary prey, whereas crustaceans (krill Euphausia superba) represented a smaller proportion of the stomach contents. Stomach oil FA profiles contained more monounsaturated FA than the profiles of plasma, which were richer in saturated FA and arachidonic acid (20:4n-6). There was also a distinct separation of adults from chicks, with higher levels of monounsaturates in chick plasma, and higher saturated FA levels (particularly 16:0) in the adult plasma. Stable carbon isotope ratios of whole blood were similar in adults and chicks, whereas stable nitrogen isotope ratios showed significant enrichment by >1‰ in chicks. The combined FA, stable isotopes and stomach contents analyses suggest clear differences in diet quality between adults and chicks, with chicks feeding at a higher trophic position through feeding more on highly nutritious fish and adults keeping much of the less nutritious zooplankton for themselves.  相似文献   

18.
Miniature depth gauges were attached in December 1987 and January 1988 to Adélie penguins,Pygoscelis adeliae, breeding at Esperanza on the Antarctic Peninsula. Results from 34 birds showed that foraging penguins with eggs and with brooded and crèching chicks spent mean periods away from the nest of 96, 36 and 21 h, respectively, during which time means of 29.0 h (30%), 11.2 h (31%) and 2.7 h (13%), respectively, were spent under water at depths > 5 m. Time under water was positively correlated with time absent from nest. Maximum depth reached was 170 m but overall birds spent most time at shallower depths. Birds foraging for brooded chicks dived deeper than birds foraging for crèching chicks. Stomach-pumping indicated that the principal prey caught at this time was krill,Euphausia superba. Mean mass changes of adults during single foraging trips indicated that krill were caught at a mean rate of 7.2 g min–1 spent under water.  相似文献   

19.
In siblicidal species, hatching asynchrony could act to reduce sibling rivalry or promote the death of last-hatched chicks. The pattern of hatching asynchrony was experimentally altered in the black kite Milvus migrans. Hatching asynchrony in control broods was intermediate between those of experimentally synchronised and asynchronised broods. Sibling aggression and wounds on the chicks were more commonly observed early in the nestling period and in synchronous nests. Serious injuries were observed on last-hatched chicks in asynchronous nests, as were observations of intimidated or crushed chicks. Sibling aggression was related to food abundance, but some chicks died at an early age in nests with abundant food (cainism). Cainism was more commonly found in asynchronous nests. For species with facultative siblicide, moderate hatching asynchrony could be a compromise between reducing sibling rivalry and avoiding large size differences between sibs that would result in cainism. Female black kites preferentially fed the smallest chicks and exhibited behaviours to reduce sibling aggression, contrary to observations in other siblicidal species. In a highly opportunistic forager such as the black kite, a strategy may exist to protract the life of all the chicks in the brood, waiting for unpredictable situations of food overabundance. This would induce the appearance of a parent-offspring conflict over brood reduction, reflected in the existence of a possible anticipated response by some of the chicks (cainism) and in the appearance of special behaviours by the parents to selectively feed smaller chicks or reduce sibling aggression. In this facultatively siblicidal species, cainism does not seem to be the final stage of an evolutionary trend favouring the raising of high-quality chicks, but a manifestation of a parent-offspring conflict over brood size. Received: 9 March 1998 / Accepted after revision: 8 August 1998  相似文献   

20.
Predatory feeding of two marine mysids   总被引:3,自引:0,他引:3  
Predatory feeding of the marine mysids Mysidopsis bigelowi and Neomysis americana on several species of co-occurring copepods was examined in laboratory experiments. M. bigelowi exhibited a curvilinear functional response; there was a negative logarithmic relationship between prey density and clearance rates. N. americana also exhibited higher clearance rates at lower prey densities. Increased clearance rates at lower prey densities were probably due to increased swimming speed or reaction distance as hunger increased. This response occurred only when mysids could visually locate prey; in complete darkness clearance rates were significantly lower and independent of prey density. Feeding rates on different prey species were only partially dependent on prey size; prey movement patterns and escape behavior also strongly affected feeding rates. M. bigelowi showed active prey selection when offered a choice of different prey species. Estimates of predation rates of estuarine mysid populations indicate that they could have a significant effect on co-occurring copepod populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号