首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
2.
Current knowledge on the abundance and distribution patterns of different soft coral species is relatively limited when compared to other benthic suspension feeders such as gorgonians and hard coral species. To overcome this scarcity of information, the distribution patterns of the soft corals Alcyonium acaule and Alcyonium palmatum were investigated in northwestern Mediterranean benthic communities over a wide geographical (60 km of coastline) and bathymetrical (0–70 m depth) extent using a remotely operated vehicle. A. acaule was the most abundant species in the study area with highest recorded density of 18 col m?2 found at depths of 35–45 m in areas that are directly exposed to strong near-bottom currents. Conversely, A. palmatum was only found as scattered solitary colonies at greater depths in soft bottoms, with maximum density of 2.4 col m?2. Medium and large colonies of A. acaule were preferentially found on sloping and vertical rocky bottoms where they form dense patches. High-density patches of A. acaule were preferentially found on vertical rocky bottom, while isolated colonies were preferentially observed on coralligenous substrata as well as on flat soft and maërl substrates. A. acaule biomass distribution showed highest values between 40 and 45 m depth, and between 60 and 65 m depth. This suggests that deeper populations are formed by colonies that are bigger than the equivalent shallower ones. Although both species are almost genetically identical, ecologically they are very different. For this reason, conservation plans should consider the differential ecological traits shown by these two soft coral species.  相似文献   

3.
4.
Sending color signals to conspecifics may attract predators, leading to opposing selection pressures on the evolution of signal expression and display behavior in animals. The costs of signaling can be reduced, however, because conspicuousness is the combined result of the reflectance spectra of the displayer's color pattern and the spectra of ambient light illuminating the animal. Changes in ambient light can alter conspicuousness, even when chemical and structural color-generating mechanisms remain constant, potentially allowing animals to display their colors most fully in light environments where the benefits are greatest relative to the costs. Using spectroradiometric methods, we determined how light habitat use affects conspicuousness in adult males of the Wire-tailed Manakin Pipra filicauda, a lekking bird species with vivid plumage colors. We studied three aspects of visibility, including properties of the entire color pattern, visual contrast within an individual's plumage and a bird's contrast relative to its visual background. Wire-tailed Manakins usually displayed in forest shade environments, which reduced their conspicuousness at larger viewing distances, while maximizing visual contrast within the plumage color pattern at close viewing distances. Compared to sunspots, ambient light in forest shade reduces the contrast of individual bird colors with the background at close viewing distance. However, background contrast of individual bird colors in the shade was still relatively higher during sunny than during cloudy weather which may explain why males were more active when the sun was not blocked by clouds. Assuming that the visual perceptions of predators and other manakins do not differ from the reflectance patterns we measured, Wire-tailed manakins tend to display in light environments that reduce the conflicts between avoiding long distance detection by predators and displaying conspicuous color signals to visiting females.  相似文献   

5.
6.
《Ecological modelling》2003,166(3):239-255
Tree-ring chronologies provide long-term records of growth in natural environmental conditions and may be used to evaluate the impacts of climatic change and [CO2] increase on forest productivity. This study focuses on 21 Pinus halepensis forest stands in calcareous Provence (in the south-east France). Changes in productivity are simulated using the global biogeochemistry model BIOME3, that we have adapted to run with chronological data. Tree-ring data (width and density) were used to estimate, for each stand, an observed series of changes in productivity. Simulated and observed productivity changes are then compared to validate the chronological biogeochemistry model BIOME3C. Variations in productivity were well reconstructed at 15 sites. After this validation, BIOME3C was used to simulate forest productivity changes for a 2×CO2 scenario. The 2×CO2 climate used as input was obtained using results from Météo-France’s ARPEGE atmospheric general circulation model (AGCM), downscaled to local meteorological stations. Productivity increases moderately for all stands (from 17 to 24%) when climatic changes alone were taken into account. The main factor responsible for this increase is a reduction in summer drought severity. Productivity increases highly for all stands (from 72 to 86%) when the physiological fertilising effect of the [CO2] increase is considered separately. When both climatic changes and the [CO2] increase were taken into account, productivity increases highly, from 107% (for Moustier) to 141% (for La Ciotat). The direct fertilising effect of [CO2] increase has a greater influence on the forest stands productivity than the indirect climatic changes effect. These results also exhibit the importance of the synergy between the effects of climate change and [CO2] increase, as the increase in productivity resulting from the combined effects are more than the sum of the individual CO2 and climate effects. Although the detected effects of global change during the 20th century were slight, acceleration of these changes is likely to lead to great changes in the future productivity of P. halepensis forests.  相似文献   

7.
Understanding the demography and function of biotope-forming seaweed species is of great importance for the conservation of the target species itself, as well as its associated organisms. The brown seaweed Ascophyllum nodosum is fundamental for the functioning of coastal marine ecosystems in the North Atlantic. In this study, we use a data-based size-classified matrix model to investigate the temporal and spatial variability in demography, and the environment-specific stochastic sensitivity and elasticity, of two A. nodosum populations, one in western Sweden and one on the Isle of Man in the Irish Sea. A significant difference between the two populations was that the Swedish population had comparably low and more variable stochastic population growth rate (λ s). This pattern was partly explained by the relatively high and varying mortality rates during extreme ice-years in Sweden, and by the lower survival of small individuals during all years. There were also fewer large individuals in Sweden due to lower transitions to the larger size-classes and higher probability of shrinkage. Sensitivities were analogous in the two populations, and showed a high selection pressure for increased individual growth. Elasticities were also similar, with the exception that survival of the smallest individuals (i.e., transition a 1,1), had a higher elasticity on the Isle of Man. Overall, the stochastic growth rate (λ s) was most sensitive to proportional changes in loop- (i.e., survival within size-class) and, to some extent, growth-transitions in both study areas. These results show that structurally and demographically diverging A. nodosum populations may be similarly sensitive to changes in vital rates. This, in turn, indicates a plastic life history of A. nodosum that may cope with large environmental variability. The results further suggest that environmental change affecting the survival or growth of the larger, reproductive A. nodosum individuals could have severe and regional effects on the abundance and biomass of this species, with potential negative effects on the biodiversity of the associated communities.  相似文献   

8.
Pholoe minuta is a numerically dominant member of the Amphiura filiformis subcommunity in Galway Bay. A longterm (5 yr) assessment of its population structure highlighted the shortfall in information regarding juvenile stages in the post-spawning months. Additional remote and in situ sampling programmes (including the use of a Muus sampling device), covering two successive postspawning periods, were undertaken to provide information on the juvenile recruits. Estimates of density levels (130 to 680 m-2), growth rates (doubling in size in 2 mo) and mortalities (80%) were calculated for the newly settled P. minuta. Mean monthly densities, seasonal population structure, recruitment levels (21.1%), growth (1 mm per annum) and survivorship patterns of the adult population were evaluated using the dorsal width of the fifth chaetiger, which is shown to be a suitable parameter of total body size. The success of grab sampling as a method for examining early settlement of P. minuta is critically reviewed, and a recommendation for future benthic population studies is proposed.  相似文献   

9.
We developed a dynamic model of the phosphorus cycle in Lake Chozas, a small shallow water body in León (NW Spain). The calibrated model simulated seasonal dynamics of phosphorus concentrations in major components of the lake's ecological network before and after 1997, the year when an invasive allochthonous crustacean, the Louisiana red swamp crayfish (Procambarus clarkii), was introduced into the lake. The shift from clean to turbid phase, due to grazing by crayfish on submerged vegetation, caused a gradual decrease in eco-exergy, reflecting an increase in entropy, related to breakdown of ecosystem internal equilibria. This case study verifies the hypothesis of Marchi et al. (2010) that, after an initial relatively stable state, the allochthonous species may cause an increase in entropy indicating perturbation of the ecosystem.  相似文献   

10.
Rates of routine respiration (R R, μl O2 fish−1 h−1) and total ammonia nitrogen excretion (E R, μg NH4–N + NH3–N fish−1 h−1) were measured on larval and juvenile haddock (Melanogrammus aeglefinus) to ascertain how energy losses due to metabolism were influenced by temperature (T), dry body mass (M D, mg) and specific growth rate (SGR, % per day). R R and E R increased with M D according to y =  · M D b with b-values of 0.96, 0.98, 1.14, and 0.89, 0.78, 0.74, respectively, at 10, 7, and 4°C, respectively. Multiple regressions explained 98% of the variability in the combined effects of M D and T on R R and E R in larval haddock: R R = 0.97 · M D 0.98  · e0.092 · T ; E R = 0.06 · M D 0.79  · e0.092 · T . In young juvenile (24–30 mm standard length) haddock, R R tended to decline (P = 0.06) and E R significantly declined (P = 0.02) with increasing SGR. O:N ratios significantly increased with increasing SGR suggesting that N was spared in relatively fast-growing individuals. Our results for young larval and juvenile haddock suggest: (1) nearly isometric scaling of R R with increasing body size, (2) allometric scaling of E R with increasing body size, (3) Q 10 values of 2.5 for both R R and E R, (4) metabolic differences in substrate utilization between relatively fast- and slow-growing individuals, and (5) that rates of routine energy loss and growth were not positively related. The measurements in this study will provide robust parameter estimates for individual-based models that are currently being utilized to investigate how variability in climatic forcing influences the vital rates of early life stages of haddock. Our results also stress that inter-individual differences in rates of energy loss should not be overlooked as a factor influencing growth variability among individuals.  相似文献   

11.
Since the substantial loss of subtidal eelgrass (Zostera marina L.) in the 1930s, seagrass beds in the Wadden Sea are limited to the intertidal zone and dominated by Z. noltii Hornem. This study deals with the effect of vegetated tidal flats on quantities of mobile epifauna and proves empirically the function of seagrass canopies as a refuge for marine animals remaining in the intertidal zone at ebb tide. Drop-trap samples were taken in the Sylt-Rømø Bight, a shallow tidal basin in the northern Wadden Sea, on vegetated and unvegetated tidal flats during July and August 2002, and during the entire growth period of Z. noltii from May to September in 2003. The species composition in Z. noltii and bare sand flats showed minor differences since only two isopod species (Idotea baltica and I. chelipes) occurred on Z. noltii flats exclusively. Juvenile shore crabs (Carcinus maenas L.), brown shrimps (Crangon crangon L.) and common gobies (Pomatoschistus microps Krøyer) were also found abundantly on bare sand flats. However, the results showed significantly higher abundances and production of these dominant species on vegetated tidal flats. Additionally, the analyses of faunal size classes indicated higher percentages of small individuals in the seagrass bed during the entire sampling period. Despite drastic diurnal fluctuations of dissolved oxygen at low tide, faunal density in the residual water layer remaining in seagrass canopies at ebb tide was found to be consistently higher than that found in artificially created tide-pool units. Although species composition of mobile epifauna did not basically differ between vegetated and unvegetated tidal flats, Z. noltii beds are considered to contribute quantitatively to the function of tidal flats, as an extended juvenile habitat for some of the most important species of the Wadden Sea food web.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

12.
A primary goal in ecotoxicology is the prediction of population-level effects of contaminant exposure based on individual-level response. Assessment of toxicity at the population level has predominately focused on the population growth rate (PGR), but the PGR may not be a relevant toxicological endpoint for populations at equilibrium. Equilibrium population size may be a more meaningful endpoint than the PGR because a population with smaller equilibrium size is more susceptible to the negative effects of environmental variability. We address the individual-to-population extrapolation problem with modeling utilizing classical mathematical theory. We developed and analyzed a general model applicable to many freshwater fish species, that includes density-dependent juvenile survival and additional juvenile mortality due to toxicity exposure, and we quantified effect on equilibrium population size as a means of assessing toxicity. Individual-level effects are typically greater than population-level effects until the individual effect is large, due to compensatory density-dependent relationships. These effects are sensitive to the recruitment potential of a population, in particular the low-density first-year survival rate Sb. Assuming high Sb could result in underestimating effects of population-level toxicity. The equilibrium size depends directly on Sb, the reproductive potential, the toxin concentration at which mean mortality is 50% (LC50), and the rate at which individual mortality increases with increasing toxin concentration. More experimental data are needed to decrease the uncertainty in estimating these parameters. We then used existing data for selenium toxicity in bluegill sunfish to parameterize a simulation version of the model as an example to assess the effects of environmental stochasticity on toxicity response. Effects of environmental variability resulted in simulated extinctions at much lower toxin concentrations than predicted deterministically.  相似文献   

13.
This investigation was conducted in an area of oil spill along the east coast of Thailand to examine the relations among cytochrome P450 1A activity in liver and PAHs in the bile of the tonguefish and petroleum hydrocarbons in the sediments. PAH sediment concentrations in the reference and oil spill areas were 5.03 +/- 0.42 and 0.21 +/- 0.043 microg(-1) dry weight respectively Cytochrome activity in fish liver from oil spill area was 45.40 +/- 3.50 pmoles/ min/mg protein, almost threefold higher than that from the reference sites. Flourescense detection in bile metabolites at the oil spill area, 69.8 +/- 9.9 flourescense unit was significantly higher than that at the reference sites, 22.9 +/- 5.5 and 22.2 +/- 3.5 fluorescence unit. A strong correlation was found among cytochrome P450 1A activity in liver, PAH of bile metabolites and petroleum hydrocarbons. Both cytochrome and bile metabolites activity decreased seaward varying to the distance from the oil polluted area. We concluded that both detections in tonguefish can be regarded as a complementary biomarkers for the exposure of PAHs in tropical marine environments.  相似文献   

14.
Queen conch, Strombus gigas, is a commercially important gastropod that has been exploited throughout the Caribbean islands for thousands of years. Shell middens in the region are the physical record of a long-term fishery and their study can provide valuable information on selectivity patterns followed by fishermen and on resulting morphological shifts reflected by shells. In this study, we surveyed 27 middens located at Los Roques, Venezuela, to assess pre-Columbian and modern fisheries and measure their impact on local populations of queen conch. Pre-Columbian middens, covering a period of approximately 350 years of exploitation (1160–1540 A.D.), were mostly composed of adult shells (89%) and mean length of catch was estimated at 22.4 ± 0.2 cm (mean ± SE). A decrease in mean length of catch was observed throughout the modern fishery regime, estimated at 22.2 ± 0.3 cm in 1950–1971 and 20.0 ± 0.3 cm in 1990–1995. Higher proportions of immature individuals ranging from 48 to 67% were found in modern middens. Additionally, a decrease in mean length of mature individuals was detected throughout the modern fishery regime. The appearance of younger and smaller specimens is considered as a sign of heavy exploitation of local populations of queen conch during modern fisheries. Pre-Columbian middens in contrast, permitted to establish a relative baseline from which to compare values registered throughout modern times.  相似文献   

15.
Though studies have modeled the effects of fires on elk, no studies have related the effects of post-fire landscape succession on ungulate movements and distribution using dynamic modeling techniques. The purpose of this study was to develop and test a spatially-explicit, stochastic, individual-based model (IBM) to evaluate potential movement and distribution patterns of elk (Cervus elaphus nelsoni) in relation to spatial and temporal aspects of the Cerro Grande Fire that burned north central New Mexico in May of 2000. Following extensive literature review, the SAVANNA Ecosystem Model was selected to simulate the underlying post-fire successional processes driving elk movement and distribution. Standard logisitic regression was used to analyze habitat-use patterns of ten elk from data collected using global positioning system radio collars while an additional five animals were used as an independent test set during model validation. Static variables in the form of roads, buildings, fences, and habitual use/memory were used to modify a map of impedance values based on the logistic regression of slope, aspect, and elevation. Integration with SAVANNA came through the application of a habitat suitability index (HSI), which combined movement rules written for the IBM and variables modified and produced by the dynamic ecological processes run in SAVANNA. Overall pattern analysis indicated that realistic migrational processes and habitat-use patterns emerged from movement rules incorporated into the IBM in response to advancing and receding snow when compared to the independent test set. Primary and secondary movement pathways emerged from the collective responses of simulated individuals. Using regression analyses, no significant differences between simulated animals and animals used in either model development or an independent test set revealed any differences in response to snow patterns. These considerations suggest the model was adequately corroborated based on existing data and outlined objectives.  相似文献   

16.
These studies were conducted to assess the effects of lead toxicity on exploratory behavior and running speed in the short-tailed shrew, Blarina brevicauda. Shrews from the experimental group received 25 mg/kg/day of lead acetate in their drinking water for a period of 90 days. Control subjects received sodium acetate. Exploratory behavior was determined using a computerized activity chamber where movements of test subjects broke infrared beams projected onto the floor of the apparatus. Time spent (sec) in exploration was recorded over eight 6-min intervals. Running speed (km/hr) was measured in a microprocessor-controlled rectangular racetrack fitted with photocell timers. With respect to time spent in exploration, there were significant differences between lead-exposed (20.5-23.9 sec per 6-min testing session) and control subjects (6.8-8.1 sec) after the sixth testing interval in the activity chamber. With respect to maximal running speed, control subjects ran significantly faster (mean: 14.8 km/hr) than their lead-exposed counterparts (5.83 km/hr). Lead-exposed animals exhibited hyperactivity and increased random locomotor movements. They would frequently bump into the walls and their movements were more random. Controls typically ran along the racetrack in a straight line. These results represent the first data for the effects of lead exposure on exploratory behavior and running speed for shrews.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号