首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is little information on the indoor environment in hotels. Analysis of fungal DNA by quantitative PCR (qPCR) is a new method which can detect general and specific sequences. Dust was collected through swab sampling of door frames in 69 hotel rooms in 20 countries in Europe and Asia (2007-2009). Five sequences were detected by qPCR: total fungal DNA, Aspergillus and Penicillium DNA (Asp/Pen DNA), Aspergillus versicolor (A. versicolor DNA), Stachybotrys chartarum (S. chartarum DNA) and Streptomyces spp. (Streptomyces DNA). Associations were analysed by multiple linear regression. Total fungal DNA (GM = 1.08 × 10(8) cell equivalents m(-2); GSD = 6.36) and Asp/Pen DNA (GM = 1.79 × 10(7) cell equivalents m(-2); GSD = 10.12) were detected in all rooms. A. versicolor DNA, S. chartarum DNA and Streptomyces DNA were detected in 84%, 28% and 47% of the samples. In total, 20% of the rooms had observed dampness/mould, and 30% had odour. Low latitude (range 1.5-64.2 degrees) was a predictor of Asp/Pen DNA. Seaside location, lack of mechanical ventilation, and dampness or mould were other predictors of total fungal DNA and Asp/Pen DNA. Hotel ranking (Trip Advisor) or self-rated quality of the interior of the hotel room was a predictor of total fungal DNA, A. versicolor DNA and Streptomyces DNA. Odour was a predictor of S. chartarum DNA. In conclusion, fungal DNA in swab samples from hotel rooms was related to latitude, seaside location, ventilation, visible dampness and indoor mould growth. Hotels in tropical areas may have 10-100 times higher levels of common moulds such as Aspergillus and Penicillium species, as compared to a temperate climate zone.  相似文献   

2.
Secondary metabolites produced by fungi and bacteria are among the potential agents that contribute to adverse health effects observed in occupants of buildings affected by moisture damage, dampness and associated microbial growth. However, few attempts have been made to assess the occurrence of these compounds in relation to moisture damage and dampness in buildings. This study conducted in the context of the HITEA project (Health Effects of Indoor Pollutants: Integrating microbial, toxicological and epidemiological approaches) aimed at providing systematic information on the prevalence of microbial secondary metabolites in a large number of school buildings in three European countries, considering both buildings with and without moisture damage and/or dampness observations. In order to address the multitude and diversity of secondary metabolites a large number of more than 180 analytes was targeted in settled dust and surface swab samples using liquid chromatography/mass spectrometry (LC/MS) based methodology. While 42%, 58% and 44% of all samples collected in Spanish, Dutch and Finnish schools, respectively, were positive for at least one of the metabolites analyzed, frequency of detection for the individual microbial secondary metabolites - with the exceptions of emodin, certain enniatins and physcion - was low, typically in the range of and below 10% of positive samples. In total, 30 different fungal and bacterial secondary metabolites were found in the samples. Some differences in the metabolite profiles were observed between countries and between index and reference school buildings. A major finding in this study was that settled dust derived from moisture damaged, damp schools contained larger numbers of microbial secondary metabolites at higher levels compared to respective dust samples from schools not affected by moisture damage and dampness. This observation was true for schools in each of the three countries, but became statistically significant only when combining schools from all countries and thus increasing the sample number in the statistical analyses.  相似文献   

3.
Mould in buildings constitutes a threat to health. Present methods to determine the moulds comprise counting of spores or determination of viable moulds which give imprecise measures of total mould cell biomass. Analysis of ergosterol and β-glucan as markers of mould cell biomass is expensive and cumbersome. To evaluate if airborne enzyme activity was related to mould in buildings air samples were taken using an impinger technique or cellulose filters in 386 rooms in 141 buildings. The samples were analysed for the activity of N-acetylhexosaminidase (NAHA) and expressed as enzyme units per m(3) (EU per m(3)). The highest value found in a building was used for the classification of the building and was related to the results from the subsequent technical inspection. In buildings without mould damage, the NAHA activity was generally below 20 EU per m(3). In buildings with mould damage, almost all the buildings had activities above 20 EU per m(3) (specificity 85%). At 30 EU per m(3) the specificity was 100%. Measurements of airborne enzyme activity have a high sensitivity and specificity to identify buildings with mould problems. The method can be used in the investigations of building related symptoms or for home exposure characteristics when investigating diseases such as asthma that can be related to mould exposure.  相似文献   

4.
2-Ethyl-1-hexanol is a possibly causative chemical in sick building symptoms, although 2-ethyl-1-hexanol has received little attention as a hazardous substance in studies on indoor air pollution. Airborne 2-ethyl-1-hexanol concentrations were measured from 2002 to 2004 in 99 rooms of 42 non-domestic buildings in Nagoya, Japan. The diffusive sampling method is effective for the measurement of a low level of 2-ethyl-1-hexanol in indoor air. The geometric mean (geometric standard deviation) of 2-ethyl-1-hexanol concentrations was 16.5 (5.4) microg m(-3) in indoor air and 1.9 (2.2) microg m(-3) in outdoor air. The maximum concentration of 2-ethyl-1-hexanol in indoor air and outdoor air was 2709 microg m(-3) and 12.4 microg m(-3), respectively. Fewer rooms in a small number of new buildings showed high concentrations of 2-ethyl-1-hexanol, while low concentrations were observed in many rooms of these buildings as well as the other new buildings. The room-to-room concentrations of 2-ethyl-1-hexanol in each building exhibited a wide variation. The geometric mean of the 2-ethyl-1-hexanol concentrations was significantly higher for indoor air than for outdoor air (p < 0.01). The correlation of the 2-ethyl-1-hexanol concentrations between indoor and outdoor air was not significant. Mechanical ventilation was effective in the temporary reduction of indoor 2-ethyl-1-hexanol level. These results suggest that the predominant source of 2-ethyl-1-hexanol was indoor areas.  相似文献   

5.
Inhalation of immunomodulating mycotoxins produced by Fusarium spp. that are commonly found in grain dust may imply health risks for grain farmers. Airborne Fusarium and mycotoxin exposure levels are mainly unknown due to difficulties in identifying Fusarium and mycotoxins in personal aerosol samples. We used a novel real-time PCR method to quantify the fungal trichodiene synthase gene (tri5) and DNA specific to F. langsethiae and F. avenaceum in airborne and settled grain dust, determined the personal inhalant exposure level to toxigenic Fusarium during various activities, and evaluated whether quantitative measurements of Fusarium-DNA could predict trichothecene levels in grain dust. Airborne Fusarium-DNA was detected in personal samples even from short tasks (10-60 min). The median Fusarium-DNA level was significantly higher in settled than in airborne grain dust (p < 0.001), and only the F. langsethiae-DNA levels correlated significantly in settled and airborne dust (r(s) = 0.20, p = 0.003). Both F. langsethiae-DNA and tri5-DNA were associated with HT-2 and T-2 toxins (r(s) = 0.24-0.71, p < 0.05 to p < 00.01) in settled dust, and could thus be suitable as indicators for HT-2 and T-2. The median personal inhalant exposure to specific toxigenic Fusarium spp. was less than 1 genome m(-3), but the exposure ranged from 0-10(5) genomes m(-3). This study is the first to apply real-time PCR on personal samples of inhalable grain dust for the quantification of tri5 and species-specific Fusarium-DNA, which may have potential for risk assessments of inhaled trichothecenes.  相似文献   

6.
A temporary renovation activity releases considerably high concentrations of particulate matter, viable and non-viable, into air. These pollutants are a potential contributor to unacceptable indoor air quality (IAQ). Particulate matter and its constituents lead, sulfate, nitrate, chloride, ammonium and fungi as well as fungal spores in air were evaluated in a building during renovation action. Suspended dust was recorded at a mean value of 6.1 mg m(-3) which exceeded the Egyptian limit values for indoor air (0.15 mg m(-3)) and occupational environments (5 mg m(-3)). The highest particle frequency (23%) of aerodynamic diameter (dae) was 1.7 microm. Particulate sulfate (SO(4)(2-)), nitrate (NO(3)(-)), chloride (Cl(-)), ammonium (NH(4)(+)) and lead components of suspended dust averaged 2960, 28, 1350, 100 and 13.3 microg m(-3), respectively. Viable fungi associated with suspended dust and that in air averaged 1.11 x 10(6) colony forming unit per gram (cfu g(-1)) and 92 colony forming unit per plate per hour (cfu p(-1) h(-1)), respectively. Cladosporium(33%), Aspergillus(25.6%), Alternaria(11.2%) and Penicillium(6.6%) were the most frequent fungal genera in air, whereas Aspergillus(56.8%), Penicillium(10.3%) and Eurotium(10.3%) were the most common fungal genera associated with suspended dust. The detection of Aureobasidium, Epicoccum, Exophiala, Paecilomyces, Scopulariopsis, Ulocladium and Trichoderma is an indication of moisture-damaged building materials. Alternaria, Aureobasidium, Cladosporium, Scopulariopsis and Nigrospora have dae > 5 microm whereas Aspergillus, Penicillium and Verticillium have dae < 5 microm which are suited to penetrate deeply into lungs. Particulate matter from the working area infiltrates the occupied zones if precautionary measures are inadequate. This may cause deterioration of IAQ, discomfort and acute health problems. Renovation should be carefully designed and managed, in order to minimize degradation of the indoor and outdoor air quality.  相似文献   

7.
This study was investigated the density and monthly distribution of indoor and outdoor microfungi in six different residential houses in Tekirdag City through the exposure of Petri dishes containing Rose-Bengal Streptomycin Agar media. Samples were collected in 1-month intervals over a period of 12 months between March, 2001, and February, 2002. We used 432 Petri dishes and counted a total of 4,205 microfungi colonies, 1,790 from indoor air and 2,415 from outdoor air. As a result, 42 species belonging to 12 genera were identified. The most frequent fungal genera were Penicillium (28.61%), Cladosporium (16.08%) and Alternaria (15.98%). While Penicillium (40.61%) and Cladosporium (15.92%) were the dominant genera of indoor air, Alternaria (20.62%) and Penicillium (19.71%) were isolated most frequently from outdoor air (Table 3). Alternaria citri (10.15%) and Penicillium brevicompactum (10.15%) were found to be the most frequent among the 42 identified species. While P. brevicompactum (19.55%) and Aspergillus niger (6.37%) were the most frequent indoor species, A. citri (13.37%) and Cladosporium cladosporioides (8.20%) were the most frequent outdoor species. Linear Regression Analysis was applied to determine whether or not there was a relationship between the number of colonies of isolated fungal genera and meteorological factors during the research period. Correlations between the presence of Aspergillus and temperature, relative humidity, duration of sunny periods and agents of air pollution such as SO(2) and PM were statistically significant. No significant correlations, however, were found between other fungal genera and environmental variables.  相似文献   

8.
An extensive study has been conducted on the prevalence of organophosphorous flame retardants/plasticizers and phthalate ester plasticizers in indoor air. The targeted substances were measured in 45 multi-storey apartment buildings in Stockholm, Sweden. The apartment buildings were classified as high or low risk with regard to the reporting of sick building symptoms (SBS) within the project Healthy Sustainable Houses in Stockholm (3H). Air samples were taken from two to four apartments per building (in total 169 apartments) to facilitate comparison within and between buildings. Association with building characteristics has been examined as well as association with specific sources by combining chemical analysis and exploratory uni- and multivariate data analysis. The study contributes to the overall perspective of levels of organophosphate and phthalate ester in indoor air enabling comparison with other studies. The results indicated little or no difference in the concentrations of the target substances between the two risk classifications of the buildings. The differences between the apartments sampled within (intra) buildings were greater than the differences between (inter) buildings. The concentrations measured in air ranged up to 1200 ng m(-3) for organophosphate esters and up to 11?000 ng m(-3) for phthalate esters. Results in terms of sources were discerned e.g. PVC flooring is a major source of benzylbutyl phthalate in indoor air.  相似文献   

9.
This paper presents information about airborne mesophilic bacteria in the indoor and outdoor air of child day-care centers (CDCCs) in the city of Edirne, Turkey. Air samples were collected using the Petri plate gravitational settling method from the indoor and outdoor air of CDCCs. Counts of airborne bacteria were measured as colony forming units (CFU) collected by gravity onto Brain Heart Infusion Agar plates (with 5% sheep blood). Samples were taken monthly over a period of 12 months between January and December 2004. A total of 3,120 bacteria colonies were counted on 192 Petri plates. Four groups of culturable bacteria were identified: Gram-positive cocci, Gram-positive bacilli, endospore-forming Gram-positive bacilli, and Gram-negative bacteria. Airborne Gram-positive bacteria were the most abundant at more than 95% of the measured population. While Gram-positive cocci were more common in indoor environments, Gram-positive bacilli were more dominant in outdoor air. Bacteria commonly isolated from CDCCs were identified at a genus level. Staphylococcus (39.16%), Bacillus (18.46%), Corynebacterium (16.25%), and Micrococcus (7.21%) were dominant among the genera identified in the present study. The dominant genera identified in the day-care centers were Staphylococcus, Micrococcus, and Corynebacterium for indoor air and Bacillus, Corynebacterium, and Staphylococcus for outdoor air. Staphylococcus, Streptococcus, Bacillus, and Corynebacterium genera were found in samples from every month. Bacterial colony counts were compared by sampling location (indoors and outdoors), seasons, and meteorological factors. We found negative correlations between the monthly total outdoor bacterial counts and the sampling day’s average relative humidity and average rainfall, and the monthly average rainfall. Fluctuations in bacterial counts in different seasons were observed.  相似文献   

10.
In a cross-sectional study, 96 welders were compared with 96 control subjects. Also 27 former welders, all diagnosed as having manganism, were examined. Exposure to welding fumes was determined in the 96 welders, while the concentration of elements in whole blood and urine was determined in all subjects. The geometric mean (GM) concentrations of manganese (Mn) and iron in the workroom air were 97 microg m(-3) (range 3-4620 microg m(-3); n=188) and 894 microg m(-3) (range 106-20 300 microg m(-3); n=188), respectively. Thus the Mn concentration in the workroom air was on average 10.6% (GM) of that of the Fe concentration. No substantial difference was observed in the air Mn concentrations when welding mild steel as compared to welding stainless steel. The arithmetic mean (AM) concentration of Mn in whole blood (B-Mn) was about 25% higher in the welders compared to the controls (8.6 vs. 6.9 microg l(-1); p < 0.001), while the difference in the urinary Mn concentrations did not attain statistical significance. A Pearson's correlation coefficient of 0.31 (p < 0.01) was calculated between B-Mn and Mn in the workroom air that was collected the day before blood sampling. Although the exposure to welding fumes in the patients had ceased on average 5.8 years prior to the study (range 4 years-7 years), their AM B-Mn concentration was still higher than in referents of similar age (8.7 microg l(-1) vs. 7.0 microg l(-1)). However, their urinary concentrations of cobolt, iron and Mn were all statistically significantly lower.  相似文献   

11.
Louis Pasteur described the first measurements of airborne microorganisms in 1861. A century later, the inhalation of spores from thermophilic microorganisms was shown to induce attacks of farmers' lung in patients with this disease, while endotoxins originating from Gram-negative bacteria were identified as causal agents for byssinosis in cotton workers. Further epidemiological and toxicological studies have demonstrated inflammatory, respiratory, and pathogenic effects following exposure to bioaerosols. Exposure assessment is often confounded by the diversity of bioaerosol agents in the environment. Microorganisms represent a highly diverse group that may vary in toxicity. Fungi and bacteria are mainly quantified as broad groups using a variety of viable and nonviable assessment methods. Endotoxins and β(1 → 3)-glucans are mainly measured by their activity in the Limulus amebocyte lysate assay, enzymes by immuno-chemical methods and mycotoxins by liquid chromatography-mass spectrometry. Few health-based occupational exposure limits (OELs) are available for risk assessment. For endotoxins, a health-based OEL of 90 endotoxin units m(-3) has been proposed in the Netherlands. A criteria document for fungal spores recently proposed a lowest observed effect level of 100,000 spores m(-3) for non-pathogenic and non-mycotoxin producing species based on inflammatory respiratory effects. Recent developments in bioaerosol assessment were presented at the Organic Dust Troms? Symposium including molecular biological methods for infectious agents and organisms that are difficult to cultivate; studies of submicronic and hyphal fragments from fungi; the effect of biodiversity of microorganisms in asthma studies; and new/improved measurement methods for fungal antigens, enzymes and allergens. Although exposure assessment of bioaerosol agents is complex and limited by the availability of methods and criteria, the field is rapidly evolving.  相似文献   

12.
The interrelationships between ventilation rate, indoor air quality, and energy consumption in operation rooms at rest are yet to be understood. We investigate the effect of ventilation rate on indoor air quality indices and energy consumption in ORs at rest. The study investigates the air temperature, relative humidity, concentrations of carbon dioxide, particulate matter (PM), and airborne bacteria at different ventilation rates in operation rooms at rest of a medical center. The energy consumption and cost analysis of the heating, ventilating, and air conditioning (HVAC) system in the operation rooms at rest were also evaluated for all ventilation rates. No air-conditioned operation rooms had very highest PM and airborne bacterial concentrations in the operation areas. The bacterial concentration in the operation areas with 6–30 air changes per hour (ACH) was below the suggested level set by the United Kingdom (UK) for an empty operation room. A 70% of reduction in annual energy cost by reducing the ventilation rate from 30 to 6 ACH was found in the operation rooms at rest. Maintenance of operation rooms at ventilation rate of 6 ACH could save considerable amounts of energy and achieve the goal of air cleanliness.  相似文献   

13.
Dwellings showing a presence of moulds are considered to be unhealthy both by the inhabitants and by sanitary authorities. Although the thresholds of pathogenicity have not yet been established, the toxic, allergic and infectious risk of indoor moulds is better understood today. A study on indoor fungi contamination for 128 dwellings was done between October and May in France. It concerned 69 dwellings, the occupants of which either complained to the sanitary authorities about problems of moulds and humidity or consulted a doctor who related their symptoms to housing conditions. Fifty-nine other dwellings, the occupants of which were healthy, constituted the control group. We present the statistical analysis of questionnaires, which aimed to clarify characteristics of dwellings associated with high concentrations of airborne moulds. Air samples were taken with an impactor in 500 rooms. On visiting dwellings, investigators obtained answers to 25 questions concerning characteristics of inhabitants and living space, as well as the presence of mould indicators. Indoor and outdoor temperature and indoor relative humidity of air measurements were taken. The total concentration of fungi in the air was significantly higher in ground floor apartments versus those on other floors (p = 0.047), in small and highly occupied dwellings (p = 0.03 and 0.003), in dwellings with electric heating (p = 0.04), without a ventilation system (p = 0.003), with water damage (p = 0.003), and finally, in those where the investigator noted an odour of moisture or visible moulds (p < 0.001). The efficacy of the latter criteria in the evaluation of insalubrity is discussed.  相似文献   

14.
Growth of different microorganisms is often related to dampness in buildings. Both fungi and bacteria produce complicated mixtures of volatile organic compounds that include hydrocarbons, alcohols, ketones, sulfur- and nitrogen-containing compounds etc. Microbially produced substances are one possible explanation of odour problems and negative health effects in buildings affected by microbial growth. A mixture of five fungi, Aspergillus versicolor, Fusarium culmorum, Penicillium chrysogenum, Ulocladium botrytis and Wallemia sebi were grown on three different humid building materials (pinewood, particle board and gypsum board) and on one synthetic medium. Six different sampling methods were used, to be able to collect both non-reactive volatile organic compounds and reactive compounds such as volatile amines, aldehydes and carboxylic acids. Analysis was performed using gas chromatography, high-performance liquid chromatography and ion chromatography, mass spectrometry was used for identification of compounds. The main microbially produced metabolites found on pinewood were ketones (e.g. 2-heptanone) and alcohols (e.g. 2-methyl-1-propanol). Some of these compounds were also found on particle board, gypsum board and the synthetic medium, but there were more differences than similarities between the materials. For example, dimethoxymethane and 1,3,5-trioxepane and some nitrogen containing compounds were found only on particle board. The metabolite production on gypsum board was very low, although some terpenes (e.g. 3-carene) could be identified as fungal metabolites. On all materials, except gypsum board, the emission of aldehydes decreased during microbial growth. No low molecular weight carboxylic acids were identified.  相似文献   

15.
Legionella pneumophila (L. pneumophila) which is also known as etiologic agent Legionnaires Disease lives in natural water and man made water systems. These bacteria belonging to Legionellaceae family are divided 15 serogroups. Phenotypical methods used for the identification of Legionella isolates are not very discriminatory. In this study we investigated genotypic features of eight L. pneumophila serogroup 1 and 18 L. pneumophila serogroup 2-14 strains isolated from different buildings in Istanbul by randomly amplified polymorphic DNA (RAPD) method. Eight L. pneumophila serogroup 1 strains (37.5%) were similar RAPD profile and they were isolated from buildings located in a short distance (about 500 m). Four L. pneumophila serogroup 2-14 strains (22%) were identical genotypically. Three of these strains were isolated from buildings located in a short distance.  相似文献   

16.
Cladosporium is one of the most common airborne molds found in indoor and outdoor environments. Cladosporium spores are important aeroallergens, and prolonged exposure to elevated spore concentrations can provoke chronic allergy and asthma. To accurately quantify the levels of Cladosporium in indoor and outdoor environments, two real-time PCR systems were developed in this study. The two real-time PCR systems are highly specific and sensitive for Cladosporium detection even in a high background of other fungal DNAs. These methods were employed to quantify Cladosporium in aerosols of five different indoor environments. The investigation revealed a high spore concentration of Cladosporium (10(7) m(-3)) in a cow barn that accounted for 28-44% of the airborne fungal propagules. In a countryside house that uses firewood for heating and in a paper and pulp factory, Cladosporium was detected at 10(4) spores m(-3), which accounted for 2-6% of the fungal propagules in the aerosols. The concentrations of Cladosporium in these three indoor environments far exceeded the medical borderline level (3000 spores m(-3)). In a power station and a fruit and vegetable storage, Cladosporium was found to be a minor component in the aerosols, accounted for 0.01-0.1% of the total fungal propagules. These results showed that monitoring Cladosporium in indoor environments is more important than in outdoor environments from the public health point of view. Cladosporium may not be the dominant fungi in some indoor environments, but its concentration could still be exceeding the threshold value for clinical significance. The methods developed in this study could facilitate accurate detection and quantification of Cladosporium for public health related risk assessment.  相似文献   

17.
Our group previously demonstrated that carbon dioxide (CO2) levels in heavily occupied schools correlate with the levels of airborne bacterial markers. Since CO2 is derived from the room occupants, it was hypothesized that in schools, bacterial markers may be primarily increased in indoor air because of the presence of children; directly from skin microflora or indirectly, by stirring up dust from carpets and other sources. The purpose of this project was to test the hypothesis. Muramic acid (Mur) is found in almost all bacteria whereas 3-hydroxy fatty acids (3-OH FAs) are found only in Gram-negative bacteria. Thus Mur and 3-OH FA serve as markers to assess bacterial levels in indoor air (pmol m(-3)). In our previous school studies, airborne dust was collected only from occupied rooms. However, in the present study, additional dust samples were collected from the same rooms each weekend when unoccupied. Samples were also collected from outside air. The levels of dust, Mur and C10:0, C12:0, C14:0, and C16:0 3-OH FAs were each much higher (range 5-50 fold) in occupied rooms than in unoccupied school rooms. Levels in outdoor air were much lower than that of indoor air from occupied classrooms and higher than the levels in the same rooms when unoccupied. The mean CO2 concentrations were around 420 parts per million (ppm) in unoccupied rooms and outside air; and they ranged from 1017 to 1736 ppm in occupied rooms, regularly exceeding 800-1000 ppm, which are the maximum levels indicative of adequate indoor ventilation. This indicates that the children were responsible for the increased levels of bacterial markers. However, the concentration of Mur in dust was also 6 fold higher in occupied rooms (115.5 versus 18.2 pmole mg(-1)). This further suggests that airborne dust present in occupied and unoccupied rooms is quite distinct. In conclusion in unoccupied rooms, the dust was of environmental origin but the children were the primary source in occupied rooms.  相似文献   

18.
Two and a half years of data of ambient concentrations of elemental mercury (Hg(0)), reactive gaseous mercury (RGM), and particle-bound mercury (Hg(p)) were collected at measurement sites at Elizabeth, New Jersey and New Brunswick, New Jersey with Tekran sampling units. The data were processed, summarized, and analyzed from a variety of perspectives. Data quality control and quality assurance procedures are described. Wind direction and wind speed data for each of the sites were also collected. Significant temporal variations in concentrations of all three species were observed. Some significant directional variations were also seen. The sporadic nature of many of the temporal variations is consistent with and could reflect highly variable emissions patterns from anthropogenic mercury sources. Overall mean concentrations of all species were determined. These were, for Hg(0), Hg(p), and RGM respectively; 2.25 +/- 0.04 nanograms per cubic meter (ng/m(3)), 8.21 +/- 0.39 picograms per cubic meter (pg/m(3)), and 8.93 +/- 0.31 pg/m(3) (arithmetic means and 95% confidence intervals) at Elizabeth, and 2.15 +/- 0.02 ng/m(3), 10.73 +/- 0.45 pg/m(3), and 6.04 +/- 0.30 pg/m(3) at New Brunswick. Mean concentrations were determined for 16 different sectors representing wind directions. The impact of one known large source is suggested by these data. Reasons for some directional variations are not apparent and suggest a need for further investigation.  相似文献   

19.
Quantitative methods to measure dermal and inhalation exposure to the fungicide propiconazole were developed in the laboratory and applied in the occupational exposure setting for monitoring five farm workers' exposure during pesticide preparation and application to peach crops. Dermal exposure was measured with tape-strips applied to the skin, and the amount of propiconazole was normalized to keratin content in the tape-strip. Inhalation exposure was measured with an OVS tube placed in the worker's breathing-zone during pesticide handling. Samples were analyzed by GC-MS in EI+ mode (limit of detection 6 pg microl(-1)). Dermal exposure ranged from non-detectable to 32.1 +/- 22.6 ng per microg keratin while breathing-zone concentrations varied from 0.2 to 2.2 microg m(-3). A positive correlation was observed between breathing-zone concentrations and ambient air temperature (r2 = 0.87, p < 0.01). Breathing-zone concentrations did not correlate with dermal exposure levels (r2 = 0.11, p = 0.52). Propiconazole levels were below limit of detection when rubber gloves, coveralls, and full-face mask were used. The total-body propiconazole dose, determined for each worker by summing the estimated dermal dose and inhalation dose, ranged from 0.01 to 12 microg per kg body weight per day. Our results show that tape-stripping of the skin and the OVS can be effectively utilized to measure dermal and inhalation exposure to propiconazole, respectively, and that the dermal route of exposure contributed substantially more to the total dose than the inhalation route.  相似文献   

20.
Allergy to rodent proteins is common among laboratory animal workers. Sensitive methods to measure exposure to these allergens have been developed. These assays are, however, expensive, time-consuming, and require a laboratory facility and methodological expertise. A simple method to screen for allergen spread, or to test whether hygiene standards are maintained, would be useful. Lateral flow immunoassays (LFIAs) are especially suited for field settings; the tests are simple and results are visible within minutes. LFIAs were developed for detection of the rodent urinary allergens Mus m 1 and Rat n 1. Pilot studies were performed in animal facilities in three countries using both extracts from airborne dust samples and samples collected by wiping surfaces. For comparison and determination of sensitivity, the concentrations of rodent urinary allergens in the samples were also measured using enzyme immunoassays (EIAs). The LFIAs for rat and mouse urinary allergens had a detection limit of 31 pg allergen per mL in a buffer system with purified allergen standards. Results of environmental dust extracts tested in LFIAs correlated well with levels obtained using EIAs. Spread of rodent allergens, or non-adherence to hygiene around laboratory animal facilities, may aggravate rodent allergy. Using a simple, sensitive one-step assay, allergens can be detected to prevent allergen exposure. The results reveal that the rapid assays are suited for on-site demonstration of exposure to rodent allergens, and thus, useful in occupational hygiene practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号