首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The concentration of heavy metals in the bottom sediment and interstitial water collected from two reservoirs in Singapore was found to be enriched. A distribution coefficient,K d , was used to assess the chemical stability of heavy metals in the sediments. Numerical models were used to assess (1) the redistribution of heavy metals in a changing environment, and (2) long-term self clean-up capabilities of a reservoir.  相似文献   

2.
Heavy metal mobility was studied in overbank sediments of the Grote Beek river in Central Belgium. The geochemical signature of heavy metals in fine-scale sampled overbank sediments was compared with data on heavy metal emission into the river. The influence of acidification, organic and inorganic complexation on heavy metal mobility in overbank sediments was studied by single and sequential extractions and leaching tests. As confirmed by these tests, the elevated CaCl(2) content of the river water significantly enhanced the mobilisation of especially Cd, while Zn was mobilised to a lesser extent. The mobilisation of As on the other hand decreased in the presence of elevated CaCl(2) concentrations. Based on the results of single extractions, two highly contaminated zones with a different Cd mobility were observed in one of the overbank profiles. A detailed investigation of Cd leaching behaviour in the zone of Fe-accumulation during pH(stat) leaching tests, suggested that it was related to the association of Cd with Fe-oxides, while adsorption was the dominant binding form of Cd in the clay-rich part of the overbank sediment profile.  相似文献   

3.
The concentrations of arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc in surface sediments collected from the east coast of peninsular Malaysia, along the South China Sea, were measured by two methods instrumental neutron activation analysis and inductively coupled plasma mass spectroscopy. The obtained results were use to determine the areal distribution of the metals of in the east coast of peninsular Malaysia and potential sources of these metals to this environment. The geochemical data propose that most of the metals found in the east coast of peninsular Malaysia constitute a redistribution of territorial materials within the ecosystem. Then, the metal concentrations can be considered to be present at natural background levels in surface sediments.  相似文献   

4.
An intensive investigation was conducted to study the accumulation, speciation, and distribution of various heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in sediments from the Yangtze River catchment of Wuhan, China. The potential ecological risks posed by these heavy metals also were estimated. The median concentrations of most heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) were higher than the background values of soils in Wuhan and were beyond the threshold effect level (TEL), implying heavy metal contamination of the sediments. Carbonate-bound Cd and exchangeable Cd, both of which had high bioavailability, were 40.2% and 30.5% of the total for Cd, respectively, demonstrating that Cd poses a high ecological risk in the sediments. The coefficients of the relationship among Pb, Hg, and Cu were greater than 0.797 using correlation analysis, indicating the highly positive correlation among these three elements. Besides, total organic carbon content played an important role in determining the behaviors of heavy metals in sediments. Principal component analysis was used to study the distribution and potential origin of heavy metals. The result suggested three principal components controlling their variability in sediments, which accounted for 36.72% (factor 1: Hg, Cu, and Pb), 28.69% (factor 2: Cr, Zn, and Ni), and 19.45% (factor 3: As and Cd) of the total variance. Overall, 75% of the studied sediment samples afforded relatively low potential ecological risk despite the fact that generally higher concentrations of heavy metals relative to TEL were detected in the sediments.  相似文献   

5.
Manila clams (Ruditapes philippinarum) and sediments were collected bimonthly during 2007 at five locations in Jiaozhou Bay near Qingdao, China, to determine heavy metal concentrations and to assess the validation of R. philippinarum as a metal biomonitor. Concentrations of heavy metals in clam soft tissues ranged between 0.75 and 3.31, 0.89 and 15.20, 5.70 and 26.03, 52.12 and 110.33, 10.30 and 72.34, 9.64 and 28.60, and 3.15 and 52.75 μg g???1 dry weight for Cd, Pb, Cu, Zn, Mn, Cr, and Ni, respectively. Most of the highest values occurred at the northeast bay and the lowest values occurred at the western part. Regarding seasonal variation, relatively high tissue metal concentrations were observed during October or December. A similar pattern was also found in habitat sediments. There was a strong correlation between the concentrations of Cd, Pb, Zn, Mn, Cr, and Ni in soft tissues and surrounding sediments. It is indicated that R. philippinarum could be used as a biomonitor for heavy metal contamination in Jiaozhou Bay.  相似文献   

6.
Several leaching tests were applied and compared to study metal remobilisation on various unpolluted and contaminated soils and on several contaminated sediments. The trace elements considered were Cd, Cr, Cu, Ni, Pb and Zn, and leaching tests consisted of the application of reagents with contrasting characteristics and strengths in order to assess the information provided. An extraction with aqua regia permitted the estimation of the pseudo-total metal content in the sample. Mild extractants such as H2O, CaCl2 and NaNO3 showed low and similar leaching capacities. Acid (CH3COOH) and complexing (EDTA) agents were more effective in remobilising trace metals from soils and sediments. Cd and Zn showed similar extraction characteristics under both extractant solutions, whereas Cu and Pb were more sensitive to complexation, and Ni and Cr to acidification processes. Sequential chemical extractions provided additional information on the association of the trace elements with the different soil and sediment phases. Cd and Zn showed the highest mobility, Pb was associated to reducible solid phases, Cu and Ni to oxidisable phases, and Cr remained mostly in the residual fraction. The results obtained in this paper provided valuable information for choosing a leaching test, which is an instrument of environmental analysis for the estimation of trace metal mobility.  相似文献   

7.
Characterization of heavy metals in water and sediments in Taihu Lake, China   总被引:11,自引:0,他引:11  
To explore a comprehensive status of heavy metals in the Taihu Lake, which is one of the most important waters in China, water and sediment samples were taken throughout the lake during April to May of 2010, and metal elements (Cu, Cd, Cr, Ni, Pb, Sn, Sb, Zn, Mn) were analyzed in the water column, interstitial water and sediment. Relevant standards were used to assess the sediment and water quality. Results show that, in the lake water column, the average concentration of all metals ranged from 0.047 μg/l (Cd) to 8.778 μg/l (Zn). The concentration in the river water was usually higher than in the lake water for many metals. In the interstitial water Mn was significantly higher than that in water column, and other metals had no significant difference between the two media. In the surface sediment, average metal content ranged from 1.325 mg/kg (Cd) to 798.2 mg/kg (Mn). Spatially, contents of many metals were higher in Zhushan Bay than in other lake areas, and there existed a clear content gradient from the river to the lake for both water and sediment. On the sediment profiles, many metals presented an increasing trend from the depth of 15-20 cm to the top, which is indicative of the impact of increasingly intensive human activities from that period. Quality assessment indicates that metals in water phase are generally safe compared with USEPA "National Recommended Water Quality Criteria," with the exception of Mn in the interstitial water and Sb in the river water. Whereas the sediment is widely contaminated with metals to some extent compared with the "Consensus-Based Sediment Quality Guidelines," and Cu, Cr, and Ni are more likely to raise ecological risks. This work could be a basis for the ongoing China's criteria strategy.  相似文献   

8.
Surface sediment samples from the Tirumalairajan river estuary were studied for grain size pattern, organic matter, and heavy metals (Fe, Mn, Zn, and Pb) using the sequential and bulk metal extraction methods to evaluate metal behavior. Ten surface sediment samples were collected during the monsoon and summer seasons of the year 2009. The observed orders of concentrations of heavy metals in the sediments were as follows: Fe?>?Mn?>?Zn?>?Pb. The results obtained from sequential extraction showed that, among the metals studied, a larger portion of the metals were associated with the residual phase, although they are available in other fractions. The low concentration of metals available in bioavailable phases indicated that the sediments of Tirumalairajan river estuary were relatively unpolluted. Correlation analysis was also carried out to understand the associations of metals in different phases with sand, silt, clay, and organic matter. To understand the risk of heavy metals to sediment-dwelling organisms, the data were compared with risk assessment code and sediment quality values using the screening quick reference table. The main source of metals to the estuary is from the irrigation field and its associated activities in the study area.  相似文献   

9.
湄洲湾海域底质重金属环境背景值研究   总被引:7,自引:0,他引:7  
根据湄洲湾区域自然环境特点 ,用背景区调查法 ,选择远离污染源的洁净海区进行表层底质重金属调查 ,并进行数据技术处理和影响因素分析。提出湄洲湾海域底质重金属环境背景值  相似文献   

10.
The sediment in Dianchi Lake, a hypereutrophic plateau lake in southwest China, was investigated and the concentration of heavy metals (Cu, Cr, Ni, Zn, Pb, Fe, Mn, and Cd) in the sediment and sediment properties were determined. Their spatial distribution and sources were analyzed using multivariate statistics. The result indicated that the studied metals exhibited three distinct spatial patterns; that is, Cu, Pb, Zn, and Ni had a similar distribution, with a concentration gradient from the north to the south part of the lake; Cd and Cr presented a similar distribution; Fe and Mn presented a quite different distribution than other metals, which indicated their different sources and geochemistry processes. Correlation and cluster analysis (CA) provided origin information on these metals and the CA result was observed corresponding to those three spatial patterns. Principal component analysis further displayed metal source and driving factors; that is, Cu, Pb, Zn, Ni, Cd, and Cr were mainly derived from anthropogenic sources, and Fe and Mn were mainly the result of natural processes. Sediment assessment was conducted using geoaccumulation index (Igeo), potential ecological risk indices, and USEPA guidelines. The result indicated that, generally, Cd was the most serious risk metal; Pb and Cu posed moderate potential ecological risk; Cr, Zn, and Ni had slight ecological risk; Fe and Mn had little risk. Comparison of the assessment tools showed that each of the methods had its limitation and could bias the result, and the combined use of the methodologies and local knowledge on lithology or metal background value of soil in the practice would give a more comprehensive understanding of the metal risk or pollution. Statistical analysis also indicated that nutrients had different impacts on Fe, Mn, and trace elements, which implied that in the assessment of metal risk, nutrients impact should be taken into consideration especially for eutrophic waters.  相似文献   

11.
The river Ganges has been one of the major recipients of industrial effluents in India. The present paper deals with the study related to occurrence and bioaccumulation of heavy metals (Cu, Cr, Cd, Pb, Zn) in the riverine water, sediment, and the muscles of two cat fish species, Channa punctatus (C. punctatus) and Aorichthys aor (A. aor) procured from the river Ganges at Allahabad. The data obtained after water analysis reflected the order of occurrence of heavy metals to be Zn > Pb > Cu > Cr > Cd, respectively. The analysis of heavy metals in sediment indicated that among the five heavy metals tested; Zn was maximally accumulated followed by Pb, Cr, Cu and Cd. The trend of heavy metals accumulation in fish muscles was found to be similar to that observed in sediment and water such as Zn > Pb > Cu > Cr > Cd. Data indicated that Zn accumulated maximally in the sediment as well as muscles of both of the fish species in comparison to other metals.  相似文献   

12.
Chemical weathering is one of the major geochemical processes that control the mobilization of heavy metals. The present study provides the first report on heavy metal fractionation in sediments (8–156 m) of Lake Titicaca (3,820 m a.s.l.), which is shared by the Republic of Peru and the Plurinational State of Bolivia. Both contents of total Cu, Fe, Ni, Co, Mn, Cd, Pb, and Zn and also the fractionation of these heavy metals associated with four different fractions have been determined following the BCR scheme. The principal component analysis suggests that Co, Ni, and Cd can be attributed to natural sources related to the mineralized geological formations. Moreover, the sources of Cu, Fe, and Mn are effluents and wastes generated from mining activities, while Pb and Zn also suggest that their common source is associated to mining activities. According to the Risk Assessment Code, there is a moderate to high risk related to Zn, Pb, Cd, Mn, Co, and Ni mobilization and/or remobilization from the bottom sediment to the water column. Furthermore, the Geoaccumulation Index and the Enrichment Factor reveal that Zn, Pb, and Cd are enriched in the sediments. The results suggest that the effluents from various traditional mining waste sites in both countries are the main source of heavy metal contamination in the sediments of Lake Titicaca.  相似文献   

13.
Aqaba Gulf is an economically important marine environment in Egypt. Its coastal area was subjected to anthropogenic impact of urbanization and economic development during the last decades. The study was oriented to investigate the distribution as well as assess the heavy metal pollution status (Fe, Mn, Zn, Ni, Co, Cr, Cu, and Cd) in its surface sediment. Large heavy metals fluctuations were detected along the studied area. The results pointed out to the highly significant correlations among Fe, Cu, Ni, and Co heavy metals and their similar lithogenic origin beside their input sources. The sediment quality was performed by using the geo-accumulation index (I (geo)) and different sediment criteria guidelines; China State Bureau of Quality and Technical Supervision (CSBTS), and Canadian guidelines. Among the studied heavy metals, Cd was the only metal that showed moderate pollution for I (geo) as well as it exceeded the primary and the secondary criteria of CSBTS and the threshold effect level of the Canadian guidelines (TEL). On the other hand, the other heavy metals were within the natural background levels.  相似文献   

14.
Heavy metals concentrations in surface sediments from Miyun Reservoir were determined to evaluate the pollution and identify the sources. The average content of metals in sediments from Miyun Reservoir followed the order Al>Fe>Ti>Mn>V>Zn>Cr>Ni>Cu>Pb>As>Cd>Hg, and the most mean values were lower than the globe average shale. Heavy metals concentrations at the inflow area of Baihe were higher than those at the inflow area of Chaohe. Heavy metals pollution assessment was carried out by factor enrichment (EF), geoaccumulation index (I geo), and potential ecological risk (RI). The EF values for all heavy metals except Hg, Cd, and Cr at several sites were lower than 3, suggesting low anthropogenic impact on the metals level. The I geo values of Pb indicated that half of the sites were unpolluted to moderately polluted and mainly located in the Baihe area of the reservoir. The RI showed that heavy metals of Miyun Reservoir were low potential risk, however, Hg approached or belonged to moderate ecological risk at sites of M5, M7, and M13. Correlation analysis and principal component suggested that Ni, Cu, V, Zn, Mn, Cr, Ti, and Pb were derived from soil erosion in upper reaches of the reservoir, while Fe, Cd, Hg, As, and partial Pb originated from anthropogenic sources, particularly industrial mining and gold tailings.  相似文献   

15.
A metal fractionation study on bed sediments of River Narmada in Central India has been carried out to examine the enrichment and partitioning of different metal species between five geochemical phases (exchangeable fraction, carbonate fraction, Fe/Mn oxide fraction, organic fraction and residual fraction). The river receives toxic substances through a large number of tributaries and drains flowing in the catchment of the river. The toxic substances of particular interest are heavy metals derived from urban runoff as well as municipal sewage and industrial effluents. Heavy metals entering the river get adsorbed onto the suspended sediments, which in due course of time settle down in the bottom of the river. In this study fractionation of metal ions has been carried out with the objective to determine the eco-toxic potential of metal ions. Although, in most cases (except iron) the average trace/heavy metal concentrations in sediments were higher than the standard shale values, the risk assessment code as applied to the present study reveals that only about 1–3% of manganese, <1% of copper, 16–19% of nickel, 4–20% of chromium, 1–4% of lead, 8–13% of cadmium and 1–3% of zinc exist in exchangeable fraction and therefore falls under low to medium risk category. According to the Geo-accumulation Index (GAI), cadmium shows high accumulation in the river sediments, rest of other metals are under unpolluted to moderately polluted class.  相似文献   

16.
A BCR-sequential extraction procedure for the determination of extractable heavy metals was applied to sediments of various rivers and lakes. There are many rivers basins in Turkey. Sakarya River Basin is one of the most important basins, which consists of three parts: Upper, Middle and Lower Sakarya River Basins. In this study, the Lower Sakarya River was selected as the study area for sediments. The samples were collected monthly from 10 pre-determined stations through the river for 10 months time and analysed for the distribution of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn elements. The determination of extractable heavy metals in sediments was carried out by using Flame Atomic Absorption Spectrometer. The validation of the results was performed by the analysis of a BCR 701 standard reference material.  相似文献   

17.
A new approach to performing an accelerated sequential extraction of trace elements from solid samples has been proposed. It has been shown that rotating coiled columns (RCC) earlier used in counter-current chromatography can be successfully applied to the dynamic leaching of heavy metals from soils and sediments. A solid sample was retained in the rotating column as the stationary phase under the action of centrifugal forces while different eluents (aqueous solutions of complexing reagents, mineral salts and acids) were continuously pumped through. The procedure developed is time saving and requires only 4-5 h instead of the several days needed for traditional sequential extraction (TSE), complete automation being possible. Losses of solid sample are minimal. In most cases the recoveries of readily bioavailable and leachable forms of Pb, Zn, and Cd are higher, if a dynamic extraction in RCC is used. Since naturally occurring processes are always dynamic, continuous extraction in RCC may help to estimate the contents of leachable forms and their potential risk for the environment more correctly than batch TSE. The Kersten-Foerstner and McLaren-Crawford leaching schemes have been compared, the former has been found to be preferable.  相似文献   

18.
The article presents the distribution and enrichment of acid-leachable heavy metals (ALHMs) Cu, Zn, Pb, Cr, Mn, and Fe in the intertidal sediments collected from Quanzhou Bay, southeast coast of China. The contents of ALHMs along with sediment texture, total organic carbon, S2???, and CaCO3 in surface sediments were analyzed to identify the input of heavy metals from various sources. The enrichment of ALHMs in the sediments is mainly attributed to the intense industrial activities around Quanzhou Bay and to the serried activities of intertidal breed aquatics along the seacoast. The results also illustrate the association between the ALHMs with the finer fractions, organic matter, and Fe oxyhydroxides in the sediments. The above results were very supported by the multivariate statistical analyses, including correlation, principal component analysis, and hierarchical clustering analysis. Comparative results of ALHMs in the intertidal sediments from Quanzhou Bay with those in other domestic bays and estuaries indicate that the study area has been enriched with heavy metals, especially with Zn, Cu, and Pb, during the past few decades. The results of the present study suggest that the authorities should pay attention to the current status and take some measures to control the heavy metal pollution in the study area.  相似文献   

19.
Heavy metal pollution of sediments is a growing concern in most parts of the world, and numerous studies focussed on identifying contaminated sediments by using a range of digestion methods and pollution indices to estimate sediment contamination have been described in the literature. The current work provides a critical review of the more commonly used sediment digestion methods and identifies that weak acid digestion is more likely to provide guidance on elements that are likely to be bioavailable than other traditional methods of digestion. This work also reviews common pollution indices and identifies the Nemerow Pollution Index as the most appropriate method for establishing overall sediment quality. Consequently, a modified Pollution Index that can lead to a more reliable understanding of whole sediment quality is proposed. This modified pollution index is then tested against a number of existing studies and demonstrated to give a reliable and rapid estimate of sediment contamination and quality.  相似文献   

20.
The upper limit concentrations of metals established by international legislations for dredged sediment disposal and soil quality do not take into consideration the properties of tropical soils (generally submitted to more intense weathering processes) on metal availability and ecotoxicity. Aiming to perform an evaluation on the suitability of these threshold values in tropical regions, the ecotoxicity of metal-contaminated dredged sediment from the Guanabara Bay (Rio de Janeiro, Brazil) was investigated. Acute and avoidance tests with Eisenia andrei were performed with mixtures of dredged sediment with a ferralsol (0.00, 6.66, 13.12, 19.98, and 33.30 %) and a chernosol (0.00, 6.58, 13.16, 19.74, and 32.90 %). Mercury, lead, nickel, chromium, copper, and zinc concentrations were measured in test mixtures and in tissues of surviving earthworms from the acute tests. While ferralsol test mixtures provoked significant earthworm avoidance response at concentrations ≥13.31 %, the chernosol mixtures showed significant avoidance behavior only at the 19.74 % concentration. The acute tests showed higher toxicity in ferralsol mixtures (LC50?=?9.9 %) compared to chernosol mixtures (LC50?=?16.5 %), and biomass increased at the lowest sediment doses in treatments of both test soils. Most probably, the expansive clay minerals present in chernosol contributed to reduce metal availability in chernosol mixtures, and consequently, the ecotoxicity of these treatments. The bioconcentration factors (BCF) for zinc and copper were lower with increasing concentrations of the dredged sediment, indicating the existence of internal regulating processes. Although the BCF for mercury also decreased with the increasing test concentrations, the known no biological function of this metal in the earthworms metabolism lead to suppose that Hg measured was not present in bioaccumulable forms. BCFs estimated for the other metals were generally higher in the highest dredged sediment doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号