首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metacommunity theory allows predictions about the dynamics of potentially interacting species' assemblages that are linked by dispersal, but strong empirical tests of the theory are rare. We analyzed the metacommunity dynamics of Florida rosemary scrub, a patchily distributed pyrogenic community, to test predictions about turnover rates, community nestedness, and responses to patch size, arrangement, and quality. We collected occurrence data for 45 plant species from 88 rosemary scrub patches in 1989 and 2005 and used growth form, mechanism of regeneration after fire, and degree of habitat specialization to categorize species by life history. We tested whether patch size, fire history, and structural connectivity (a measure of proximity and size of surrounding patches) could be used to predict apparent extinctions and colonizations. In addition, we tested the accuracy of incidence-function models built with the patch survey data from 1989. After fire local extinction rates were higher for herbs than woody plants, higher for species that regenerated only from seed than species able to resprout, and higher for generalist than specialist species. Fewer rosemary specialists and a higher proportion of habitat generalists were extirpated on recently burned patches than on patches not burned between 1989 and 2005. Nestedness was highest for specialists among all life-history groups. Estimated model parameters from 1989 predicted the observed (1989-2005) extinction rates and the number of patches with persistent populations of individual species. These results indicate that species with different life-history strategies within the same metacommunity can have substantially different responses to patch configuration and quality. Real metacommunities may not conform to certain assumptions of simple models, but incidence-function models that consider only patch size, configuration, and quality can have significant predictive accuracy.  相似文献   

2.
We tested regional-scale spatial patterns in soil microbial community composition for agreement with species sorting and dispersal limitation, two alternative mechanisms behind different models of metacommunity organization. Furthermore, we tested whether regional metacommunity organization depends on local habitat type. We sampled from sites across Ohio and West Virginia hosting populations of Lobelia siphilitica, and compared the metacommunity organization of soil microbial communities under L. siphilitica to those in adjacent areas at each site. In the absence of L. siphilitica, bacterial community composition across the region was consistent with species sorting. However, under L. siphilitica, bacterial community composition was consistent with dispersal limitation. Fungal community composition remained largely unexplained, although fungal communities under L. siphilitica were both significantly different in composition and less variable in composition than in adjacent areas. Our results show that communities in different local habitat types (e.g., in the presence or absence of a particular plant) may be structured on a regional scale by different processes, despite being separated by only centimeters at the local scale.  相似文献   

3.
Cadotte MW 《Ecology》2006,87(4):1008-1016
Large-scale processes are known to be important for patterns of species richness, yet the ways in which local and larger scale processes interact is not clear. I used metacommunities consisting of five interconnected microbial aquatic communities to examine the manner in which processes at different scales affect local and metacommunity richness. Specifically, I manipulated the potential dispersal rate, whether dispersal was localized or global, and variation in initial community composition. A repeated-measures ANOVA showed that a low dispersal rate and intermediate distance dispersal enhanced local richness. Initial assembly variation had no effect on local richness, while a lack of dispersal or global dispersal reduced local richness. At the metacommunity scale, richness was enhanced throughout the time course of the experiment by initial compositional variation and was reduced by high or global dispersal. The effects of dispersal were contingent on the presence of initial compositional variation. The treatments also affected individual species occupancy patterns, with some benefiting from large-scale processes and others being adversely impacted. These results indicate that the effects of dispersal on species richness have a complex relationship with scale and are not solely divisible into "regional" vs. "local" scales. Finally, predictions of the manner in which dispersal rate structures communities appear dependent upon species compositional variation among communities.  相似文献   

4.
The incidence function model is derived from a linear first-order Markov chain of the presence or absence of a species in a habitat patch. The model can be parameterized with "snapshot" presence/absence data from a patch network. Using the estimated parameter values the Markov chain can be iterated in the same or in some other patch network to generate quantitative predictions about transient metapopulation dynamics and the stochastic steady state. We tested the ability of the incidence function model to predict patch occupancy using extensive data on an endangered butterfly, the Glanville fritillary ( Melitaea cinxia ) Parameter values were estimated with data collected from a 50-patch network in 1991. In 1993 we surveyed the entire geographic range of the species in Finland, within an area of 50 × 70 km2, with 1502 habitat patches (dry meadows) of which 536 were occupied. Model predictions were generated for the 1502 patches and were compared with the observed pattern of occupancy in 1993. The model predicted patch occupancy well in more than half of the study area, but prediction was poor for one quarter of the area, probably because of regional variation in habitat quality and because metapopulations may have been perturbed away from the steady state. The incidence function model provides a practical tool for making quantitative predictions about metapopulation dynamics of species living in fragmented landscapes.  相似文献   

5.
Despite extensive research on the effects of habitat fragmentation, the ecological mechanisms underlying colonization and extinction processes are poorly known, but knowledge of these mechanisms is essential to understanding the distribution and persistence of populations in fragmented habitats. We examined these mechanisms through multiseason occupancy models that elucidated patch-occupancy dynamics of Middle Spotted Woodpeckers (Dendrocopos medius) in northwestern Spain. The number of occupied patches was relatively stable from 2000 to 2010 (15-24% of 101 patches occupied every year) because extinction was balanced by recolonization. Larger and higher quality patches (i.e., higher density of oaks >37 cm dbh [diameter at breast height]) were more likely to be occupied. Habitat quality (i.e., density of large oaks) explained more variation in patch colonization and extinction than did patch size and connectivity, which were both weakly associated with probabilities of turnover. Patches of higher quality were more likely to be colonized than patches of lower quality. Populations in high-quality patches were less likely to become extinct. In addition, extinction in a patch was strongly associated with local population size but not with patch size, which means the latter may not be a good surrogate of population size in assessments of extinction probability. Our results suggest that habitat quality may be a primary driver of patch-occupancy dynamics and may increase the accuracy of models of population survival. We encourage comparisons of competing models that assess occupancy, colonization, and extinction probabilities in a single analytical framework (e.g., dynamic occupancy models) so as to shed light on the association of habitat quality and patch geometry with colonization and extinction processes in different settings and species.  相似文献   

6.
Abstract: Habitat fragmentation and the division of populations into spatially separated units have led to the increasing use of metapopulation models to characterize these populations. One prominent model that has served as a heuristic tool was introduced by Levins and is based on a collection of simplifying assumptions that exclude information on the dynamics and spatial distribution of local populations. Levins's and similar models predict the proportion of occupied habitat patches at equilibrium and the conditions needed to avoid total extinction. There are many obvious concerns about using such models, including how realistic alterations might change the predictions and whether occupancy has any relationship to population-level processes. Although many of the assumptions of these simple models are known to be unrealistic, we do not know how the assumptions affect model predictions. We simulated a metapopulation, and our results show that assumptions such as homogeneity of habitat patches, random migration among patches, equivalent extinction probabilities in all patches, and a large number of patches can lead to large overestimations of habitat occupancy. But when we explicitly modeled the underlying population dynamics within each patch, we found (1) that there was a strong correlation between proportion of occupied patches and total metapopulation size and (2) that the distribution of individuals among patches was relatively insensitive to model assumptions. Thus, our results show that although realistic modifications will change model predictions for occupancy, occupancy and population trends will be correlated. These correlations between occupancy and population size suggest that occupancy models may have some utility in conservation applications.  相似文献   

7.
Following habitat fragmentation individual habitat patches may lose species over time as they pay off their "extinction debt." Species with relatively low rates of population extinction and colonization ("slow" species) may maintain extinction debts for particularly prolonged periods, but few data are available to test this prediction. We analyzed two unusually detailed data sets on forest plant distributions and land-use history from Lincolnshire, United Kingdom, and Vlaams-Brabant, Belgium, to test for an extinction debt in relation to species-specific extinction and colonization rates. Logistic regression models predicting the presence-absence of 36 plant species were first parameterized using data from Lincolnshire, where forest cover has been relatively low (approximately 5-8%) for the past 1000 years. Consistent with extinction debt theory, for relatively slow species (but not fast species) these models systematically underpredicted levels of patch occupancy in Vlaams-Brabant, where forest cover was reduced from approximately 25% to <10% between 1775 and 1900 (it is presently 6.5%). As a consequence, the ability of the Lincolnshire models to predict patch occupancy in Vlaams-Brabant was worse for slow than for fast species. Thus, more than a century after forest fragmentation reached its current level an extinction debt persists for species with low rates of population turnover.  相似文献   

8.
《Ecological modelling》2005,183(4):411-423
Habitat fragmentation can decrease local population persistence by reducing connectivity, which is a function of dispersal of individuals among habitat fragments. Dispersal is often treated as diffusion in population models, even though for many species it is a result of a series of behavioral decisions. We developed a metapopulation model to explore the potential importance of dispersal behaviors in driving metapopulation dynamics. We incorporated types of behavior that affect dispersal—colonization inhibiting, colonization enhancing, extinction inhibiting, extinction enhancing, rescue enhancing, rescue inhibiting—into Levins’ (1969) metapopulation model and projected occupancy rates for a variety of parameter values. Examples from the literature of behaviors associated with each of these parameters are provided. Our model simplifies into previously published metapopulation models that incorporate only a single behavior, and we present a density-dependent rescue function that leads to multiple non-zero equilibria. We found a variety of behavioral effects on metapopulations. Rescue enhancement fills patches faster than does colonization enhancement or extinction inhibition, and declines in patch occupancy are moderate with extinction enhancement, but colonization inhibition causes metapopulation extinction. We also found that with colonization and extinction inhibitions, equilibrium patch occupancy is inversely related to patch turnover rate. With density-dependent rescue, persistence depends not only on the strength of the strong rescue effect, but also on having a sufficient initial fraction of patches occupied; the stronger the rescue effect, the lower this fraction can be. This study suggests that dispersal behavior can have strong influences on metapopulation dynamics. It confirms the importance of understanding the relationship between landscape structure and dispersal behavior in understanding population persistence.  相似文献   

9.
Miller DA 《Ecology》2012,93(5):1204-1213
Sensitivity analysis is a useful tool for the study of ecological models that has many potential applications for patch occupancy modeling. Drawing from the rich foundation of existing methods for Markov chain models, I demonstrate new methods for sensitivity analysis of the equilibrium state dynamics of occupancy models. Estimates from three previous studies are used to illustrate the utility of the sensitivity calculations: a joint occupancy model for a prey species, its predators, and habitat used by both; occurrence dynamics from a well-known metapopulation study of three butterfly species; and Golden Eagle occupancy and reproductive dynamics. I show how to deal efficiently with multistate models and how to calculate sensitivities involving derived state variables and lower-level parameters. In addition, I extend methods to incorporate environmental variation by allowing for spatial and temporal variability in transition probabilities. The approach used here is concise and general and can fully account for environmental variability in transition parameters. The methods can be used to improve inferences in occupancy studies by quantifying the effects of underlying parameters, aiding prediction of future system states, and identifying priorities for sampling effort.  相似文献   

10.
Spatial structure and dynamics of multiple populations may explain species distribution patterns in patchy communities with heterogeneous disturbance regimes, especially when species have poor dispersal. The endemic-rich Florida (U.S.A.) rosemary scrub occupies about 4% of the west portion of Archbold Biological Station and occurs scattered within a matrix of less xeric vegetation. Longer fire-return times and higher frequency of open patches in rosemary scrub provide favorable habitat for many plant species. Occupancy of 123 species of vascular plants and ground lichens in 89 patches was determined by repeated site surveys. About two-thirds of the species occurring at more than 14 patches had a significant logistic regression of presence on time-since-fire, patch size, patch isolation, or their interactions. Species with presence related to the interaction between patch isolation and patch size were primarily herbs and small shrubs specializing in rosemary scrub. These results suggest the importance of spatial characteristics of the landscape for population turnover of these species. An incidence-based metapopulation model was used to predict extinction and colonization probabilities of those species with presence in rosemary scrub patches related to the studied spatial variables. This is the first attempt to apply incidence-based metapopulation models to plants. The results showed stronger effects of patch size and patch isolation on extinction probabilities of herbs than on those of woody species. Because of their effect on spatial heterogeneity and habitat availability, fire suppression and habitat destruction may decrease persistence probabilities for these rosemary scrub specialists, many of which are endangered species.  相似文献   

11.
A recent challenge in community ecology is to understand under what conditions local and regional processes may be more important in shaping community structure. We investigated the role of dispersal mode and generation time for communities of macroinvertebrates in two sets of connected ponds during three consecutive years. We found no evidence that generation time affected metacommunity structure, possibly because statistical power was limited because the range of generation times present was small. In contrast, we found that the spatial structure of the macroinvertebrate metacommunities differed with dispersal mode in one of two sets of ponds. Passive dispersers showed positive distance-dissimilarity correlations, suggesting mass effects via the pond connections. These correlations did not stretch beyond the first pond downstream suggesting that, in this chain of connected ponds, intervening ponds effectively buffered dispersal. Active dispersers did not show any consistent spatial pattern, possibly because intensive over-land dispersal homogenized the metacommunity. Thus, although pond connections probably equally promoted dispersal of actively and passively dispersing macroinvertebrates, the implications for the structure of their metacommunities may depend on their dispersal mode. We conclude that dispersal mode has the potential to affect the mechanisms that are integral to metacommunity structure.  相似文献   

12.
Abstract: Application of metapopulation models is becoming increasingly widespread in the conservation of species in fragmented landscapes. We provide one of the first detailed comparisons of two of the most common modeling techniques, incidence function models and stage-based matrix models, and test their accuracy in predicting patch occupancy for a real metapopulation. We measured patch occupancies and demographic rates for regional populations of the Florida scrub lizard (   Sceloporus woodi ) and compared the observed occupancies with those predicted by each model. Both modeling strategies predicted patch occupancies with good accuracy ( 77–80%) and gave similar results when we compared hypothetical management scenarios involving removal of key habitat patches and degradation of habitat quality. To compare the two modeling approaches over a broader set of conditions, we simulated metapopulation dynamics for 150 artificial landscapes composed of equal-sized patches (2–1024 ha) spaced at equal distances (50–750 m). Differences in predicted patch occupancy were small to moderate (<20%) for about 74% of all simulations, but 22% of the landscapes had differences openface> 50%. Incidence function models and stage-based matrix models differ in their approaches, assumptions, and requirements for empirical data, and our findings provide evidence that the two models can produce different results. We encourage researchers to use both techniques and further examine potential differences in model output. The feasibility of obtaining data for population modeling varies widely among species and limits the modeling approaches appropriate for each species. Understanding different modeling approaches will become increasingly important as conservation programs undertake the challenge of managing for multiple species in a landscape context.  相似文献   

13.
Urban MC  Skelly DK 《Ecology》2006,87(7):1616-1626
The metacommunity framework predicts that local coexistence depends on the outcome of local species interactions and regional migration. In analogous fashion, spatial structure among populations can shape species interactions through evolutionary mechanisms. Yet, most metacommunity theories assume that populations do not evolve. Here, we evaluate how evolution shapes local species coexistence and exclusion within the multiscale and multispecies context embodied by the metacommunity framework. In general, coexistence in joint ecological-evolutionary models requires low to intermediate dispersal rates that can promote maintenance of both regional species and genetic diversity. These conditions support a set of key mechanisms that modify patterns of species coexistence including local adaptation, gene storage effects, genetic rescue effects, spatial genetic subsidies, and metacommunity evolution. Multispecies extensions indicate that correlated selection can further alter the outcome of interspecific interactions depending on the magnitude and direction of correlations and shape of fitness trade-offs. We suggest that an evolving metacommunity perspective has the potential to generate novel predictions about community structure and function by incorporating the genetic and species diversity that characterize natural communities. In adopting such a perspective, we seek to facilitate understanding about the interactions between evolutionary and metacommunity dynamics.  相似文献   

14.
Meynard CN  Quinn JF 《Ecology》2008,89(4):981-990
Spatial structure in metacommunities and their relationships to environmental gradients have been linked to opposing theories of community assembly. In particular, while the species sorting hypothesis predicts strong environmental influences, the neutral theory, the mass effect, and the patch dynamics frameworks all predict differing degrees of spatial structure resulting from dispersal and competition limitations. Here we study the relative influence of environmental gradients and spatial structure in bird assemblages of the Chilean temperate forest. We carried out bird and vegetation surveys in South American temperate forests at 147 points located in nine different protected areas in central Chile, and collected meteorological and productivity data for these localities. Species composition dissimilarities between sites were calculated, as well as three indices of bird local diversity: observed species richness, Chao estimate of richness, and Shannon diversity. A stepwise multiple regression and partial regression analyses were used to select a small number of environmental factors that predicted bird species diversity. Although diversity indices were spatially autocorrelated, environmental factors were sufficient to account for this autocorrelation. Moreover, community dissimilarities were not significantly related to distance between sites. We then tested a multivariate hypothesis about climate, vegetation, and avian diversity interactions using a structural equation modeling (SEM) approach. The SEM showed that climate and area of fragments have important indirect effects on avian diversity, mediated through changes in vegetation structure. Given the scale of this study, the metacommunity framework provides useful insights into the mechanisms driving bird assemblages in this region. Taken together, the weak spatial structure of community composition and diversity, as well as the strong environmental effects on bird diversity, support the interpretation that species sorting has a predominant role in structuring avian assemblages in the region.  相似文献   

15.
Response to habitat fragmentation may not be generalized among species, in particular for plant communities with a variety of dispersal traits. Calcareous grasslands are one of the most species‐rich habitats in Central Europe, but abandonment of traditional management has caused a dramatic decline of calcareous grassland species. In the Southern Franconian Alb in Germany, reintroduction of rotational shepherding in previously abandoned grasslands has restored species diversity, and it has been suggested that sheep support seed dispersal among grasslands. We tested the effect of rotational shepherding on demographic and genetic connectivity of calcareous grassland specialist plants and whether the response of plant populations to shepherding was limited to species dispersed by animals (zoochory). Specifically, we tested competing dispersal models and source and focal patch properties to explain landscape connectivity with patch‐occupancy data of 31 species. We fitted the same connectivity models to patch occupancy and nuclear microsatellite data for the herb Dianthus carthusianorum (Carthusian pink). For 27 species, patch connectivity was explained by dispersal by rotational shepherding regardless of adaptations to zoochory, whereas population size (16% species) and patch area (0% species) of source patches were not important predictors of patch occupancy in most species. [Correction made after online publication, February 25, 2014: Population size and patch area percentages were mistakenly inverted, and have now been fixed.] Microsite diversity of focal patches significantly increased the model variance explained by patch occupancy in 90% of the species. For D. carthusianorum, patch connectivity through rotational shepherding explained both patch occupancy and population genetic diversity. Our results suggest shepherding provides dispersal for multiple plant species regardless of their dispersal adaptations and thus offers a useful approach to restore plant diversity in fragmented calcareous grasslands. Efectos del Pastoreo Rotacional sobre la Conectividad Genética y Demográfica de Plantas de Pastizales Calcáreos  相似文献   

16.
A Bayesian state-space formulation of dynamic occupancy models   总被引:1,自引:0,他引:1  
Royle JA  Kéry M 《Ecology》2007,88(7):1813-1823
Species occurrence and its dynamic components, extinction and colonization probabilities, are focal quantities in biogeography and metapopulation biology, and for species conservation assessments. It has been increasingly appreciated that these parameters must be estimated separately from detection probability to avoid the biases induced by non-detection error. Hence, there is now considerable theoretical and practical interest in dynamic occupancy models that contain explicit representations of metapopulation dynamics such as extinction, colonization, and turnover as well as growth rates. We describe a hierarchical parameterization of these models that is analogous to the state-space formulation of models in time series, where the model is represented by two components, one for the partially observable occupancy process and another for the observations conditional on that process. This parameterization naturally allows estimation of all parameters of the conventional approach to occupancy models, but in addition, yields great flexibility and extensibility, e.g., to modeling heterogeneity or latent structure in model parameters. We also highlight the important distinction between population and finite sample inference; the latter yields much more precise estimates for the particular sample at hand. Finite sample estimates can easily be obtained using the state-space representation of the model but are difficult to obtain under the conventional approach of likelihood-based estimation. We use R and WinBUGS to apply the model to two examples. In a standard analysis for the European Crossbill in a large Swiss monitoring program, we fit a model with year-specific parameters. Estimates of the dynamic parameters varied greatly among years, highlighting the irruptive population dynamics of that species. In the second example, we analyze route occupancy of Cerulean Warblers in the North American Breeding Bird Survey (BBS) using a model allowing for site-specific heterogeneity in model parameters. The results indicate relatively low turnover and a stable distribution of Cerulean Warblers which is in contrast to analyses of counts of individuals from the same survey that indicate important declines. This discrepancy illustrates the inertia in occupancy relative to actual abundance. Furthermore, the model reveals a declining patch survival probability, and increasing turnover, toward the edge of the range of the species, which is consistent with metapopulation perspectives on the genesis of range edges. Given detection/non-detection data, dynamic occupancy models as described here have considerable potential for the study of distributions and range dynamics.  相似文献   

17.
The incidence function model (IFM) uses area and connectivity to predict metapopulation dynamics. However, false absences and missing data can lead to underestimates of the number of sites contributing to connectivity, resulting in overestimates of dispersal ability and turnovers (extinctions plus colonizations). We extend estimation methods for the IFM by using a hierarchical Bayesian model to account both for false absences due to imperfect detection and for missing data due to sites not surveyed in some years. We compare parameter estimates, measures of metapopulation dynamics, and forecasts using stochastic patch occupancy models (SPOMs) among three IFM models: (1) a Bayesian formulation assuming no false absences and omitting site-year combinations with missing data; (2) a hierarchical Bayesian formulation assuming no false absences but incorporating missing data; and (3) a hierarchical Bayesian formulation allowing for imperfect detection and incorporating missing data. We fit the models to multiyear data sets of occupancy for two bird species that differ in body size and presumed dispersal ability but inhabit the same network of sites: the small Black Rail (Laterallus jamaicensis) and the medium-sized Virginia Rail (Rallus limicola). Incorporating missing data affected colonization parameters and led to lower estimates of dispersal ability for the Black Rail. Detection rates were high for the Black Rail in most years but moderate for the Virginia Rail. Incorporating imperfect detection resulted in higher occupancy and lower turnover rates for both species, with largest effects for the Virginia Rail. Forecasts using SPOMs were sensitive to both missing data and false absences; persistence in models assuming no false absences was more optimistic than from robust models. Our results suggest that incorporating false absences and missing data into the IFM can improve (1) estimates of dispersal ability and the effect of connectivity on colonization, (2) the scaling of extinction risk with patch area, and (3) forecasts of occupancy and turnover rates.  相似文献   

18.
A nearly neutral model of biodiversity   总被引:3,自引:0,他引:3  
Zhou SR  Zhang DY 《Ecology》2008,89(1):248-258
S. P. Hubbell's unified neutral theory of biodiversity has stimulated much new thinking about biodiversity. However, empirical support for the neutral theory is limited, and several observations are inconsistent with the predictions of the theory, including positive correlations between traits associated with competitive ability and species abundance and correlations between species diversity and ecosystem functioning. The neutral theory can be extended to explain these observations by allowing species to differ slightly in their competitive ability (fitness). Here, we show that even slight differences in fecundity can greatly reduce the time to extinction of competitors even when the community size is large and dispersal is spatially limited. In this case, species richness is dramatically reduced, and a markedly different species abundance distribution is predicted than under pure neutrality. In the nearly neutral model, species co-occur in the same community not because of, but in spite of, ecological differences. The more competitive species with higher fecundity tend to have higher abundance both in the metacommunity and in local communities. The nearly neutral perspective provides a theoretical framework that unites the sampling model of the neutral theory with theory of biodiversity affecting ecosystem function.  相似文献   

19.
Minimum patch size criteria for habitat protection reflect the conservation principle that a single large (SL) patch of habitat has higher biodiversity than several small (SS) patches of the same total area (SL > SS). Nonetheless, this principle is often incorrect, and biodiversity conservation requires placing more emphasis on protection of large numbers of small patches (SS > SL). We used a global database reporting the abundances of species across hundreds of patches to assess the SL > SS principle in systems where small patches are much smaller than the typical minimum patch size criteria applied for biodiversity conservation (i.e., ∼85% of patches <100 ha). The 76 metacommunities we examined included 4401 species in 1190 patches. From each metacommunity, we resampled species–area accumulation curves to evaluate how biodiversity responded to habitat existing as a few large patches or as many small patches. Counter to the SL > SS principle and consistent with previous syntheses, species richness accumulated more rapidly when adding several small patches (45.2% SS > SL vs. 19.9% SL > SS) to reach the same cumulative area, even for the very small patches in our data set. Responses of taxa to habitat fragmentation differed, which suggests that when a given total area of habitat is to be protected, overall biodiversity conservation will be most effective if that habitat is composed of as many small patches as possible, plus a few large ones. Because minimum patch size criteria often require larger patches than the small patches we examined, our results suggest that such criteria hinder efforts to protect biodiversity.  相似文献   

20.
Jenkins DG 《Ecology》2006,87(6):1523-1531
Alternative models of community assembly emphasize regional, stochastic, dispersal-based processes or local, deterministic, niche-based processes. Community ecology's historical focus on local processes implicitly assumes that local processes surpass regional processes over time or across space to derive nonrandom metacommunity structure (i.e., a quorum effect). Quorum effects are expected late in succession among nearby sites, whereas quorum effects are not expected early in succession among distant sites. I conducted a meta-analysis of zooplankton data sets encompassing time scales of one to thousands of years and spatial scales of <1 m to thousands of kilometers. Species co-occurrence analyses statistically evaluated presence/absence patterns relative to random patterns obtained with Monte Carlo null models. A series of weighted analyses was conducted and alternative randomization algorithms and null models were evaluated. Most zooplankton metacommunities were randomly structured in unweighted analyses, and the distribution of significant structure did not follow quorum effect predictions. Weighted analyses (e.g., by habitat area) revealed significant, nonrandom structure in most zooplankton metacommunities, but the distribution of significant structure still did not adhere well to quorum effect predictions. Finally, additional weighting for study scale (number of sites) nullified most significant area-weighted structure, and again, the distribution of significant structure did not follow quorum effect predictions. Overall, a quorum effect was not supported, perhaps related to zooplankton life histories and energetics and/or the quorum effect itself. Results at the presence/absence level of resolution indicated that local processes did not generally override regional processes over time or across space to drive community structure. A full integration of dispersal- and niche-based concepts in metacommunity dynamics will be most fruitful for unraveling community assembly. Species co-occurrence analyses were scale dependent (habitat area and study size). Future analyses should use weights for important factors (e.g., habitat area), and meta-analyses should include study scale as an additional factor contributing to apparent patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号