首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract:  Effective management of biodiversity in production landscapes requires a conservation approach that acknowledges the complexity of ecological and cultural systems in time and space. Fennoscandia has experienced major loss of forest biodiversity caused by intensive forestry. Therefore, the Countdown 2010 initiative to halt the loss of biodiversity in Europe is highly relevant to forest management in this part of the continent. As a contribution to meeting the challenge posed by Countdown 2010, we developed a spatially explicit conservation-planning exercise that used regional knowledge on forest biodiversity to provide support for managers attempting to halt further loss of biological diversity in the region. We used current data on the distribution of 169 species (including 68 red-listed species) representing different forest habitats and ecologies along with forest data within the frame of modern conservation software to devise a map of priority areas for conservation. The top 10% of priority areas contained over 75% of red-listed species locations and 41% of existing protected forest areas, but only 58% of these top priorities overlapped with core areas identified previously in a regional strategy that used more qualitative methods. We argue for aggregating present and future habitat value of single management units to landscape and regional scales to identify potential bottlenecks in habitat availability linked to landscape dynamics. To address the challenge of Countdown 2010, a general framework for forest conservation planning in Fennoscandia needs to cover different conservation issues, tools, and data needs.  相似文献   

2.
Designing agroecosystems that are compatible with the conservation of biodiversity is a top conservation priority. However, the social variables that drive native biodiversity conservation in these systems are poorly understood. We devised a new approach to identify social–ecological linkages that affect conservation outcomes in agroecosystems and in social‐ecological systems more broadly. We focused on coastal agroforests in Fiji, which, like agroforests across other small Pacific Islands, are critical to food security, contain much of the country's remaining lowland forests, and have rapidly declining levels of native biodiversity. We tested the relationships among social variables and native tree species richness in agroforests with structural equation models. The models were built with data from ecological and social surveys in 100 agroforests and associated households. The agroforests hosted 95 native tree species of which almost one‐third were endemic. Fifty‐eight percent of farms had at least one species considered threatened at the national or international level. The best‐fit structural equation model (R2 = 47.8%) showed that social variables important for community resilience—local ecological knowledge, social network connectivity, and livelihood diversity—had direct and indirect positive effects on native tree species richness. Cash‐crop intensification, a driver of biodiversity loss elsewhere, did not negatively affect native tree richness within parcels. Joining efforts to build community resilience, specifically by increasing livelihood diversity, local ecological knowledge, and social network connectivity, may help conservation agencies conserve the rapidly declining biodiversity in the region.  相似文献   

3.
A major goal of conservation biologists is to identify critical areas for the conservation of biological diversity and then strategically include them in an efficient system of reserves. In general, however, reserve networks have been selected for different objectives, and most countries lack an evaluation of their reserves' ability to represent a percentage of the national diversity. This paper evaluates the effectiveness of a network of reserves to represent the species of mammals in Mexico. The focus of the analyses is on species and site level, evaluating the representation of all terrestrial mammals in the 30 most important reserves. The representation of all species, endemic species, endangered species, and species with restricted distributions in the reserves was assessed and compared. Endemic or endangered species with restricted distributions were expected to be less represented in reserves than were widespread species. The most important reserves for the conservation of mammals were determined with the use of complementarity analyses. Priority sites for the representation of all the species currently absent from the reserve network were then selected. The results have broad applications for conservation. First, 82% of the mammal species from Mexico were represented in the reserve network, which covers a small portion (3.8%) of the country. Second, this percentage is certainly larger as several reserves were not evaluated due to a lack of data. A priority for a national conservation strategy could be to conduct biological surveys in those reserves lacking inventories to evaluate their contribution to conservation. Third, in spite of its demonstrated value, Mexico's reserve network can be improved by designating complementary areas. Additional priority sites, where reserves are required to represent most gap species in the network, were identified. Finally, it is clear that this reserve network has limitations for maintaining biodiversity and ecosystem services at regional scales. A comprehensive conservation strategy has, therefore, to incorporate mechanisms that enhance the value of human-dominated landscapes for the maintenance of biodiversity.  相似文献   

4.
Abstract: We used spatial and statistical analyses to identify and prioritize broad areas for conservation attention in the northern Zululand region of KwaZulu-Natal, South Africa. We attempted to identify conservation-worthy areas based on species, vegetation types, ecological processes, and threats to biodiversity. Information on species was limited and so could not form the basis of the analysis. Priority vegetation types were identified by degree of endemicity, extent of protection and transformation, and degree of fragmentation. These priority vegetation types and threats to biodiversity were used to define broad linkages between existing protected areas. We set a goal of 10% protection for each vegetation type and 25% for each species. We identified several important (endemic or threatened) animal species and predicted their ranges using a simple model. Species ranges and their hotspots were compared with the distribution of protected areas and the suggested linkages to evaluate increased species representation. Generally, the eastern part of the study area was well protected. Unprotected conservation-worthy areas under greatest threat lay in the west, and protecting these areas is a priority. Furthermore, several vegetation types were not protected by provincial authorities, a situation that also needs to be addressed. The findings of our study need to be reassessed at a finer land-parcel scale, and implementation of a range of land-use options considered.  相似文献   

5.
Abstract:   Museum records have great potential to provide valuable insights into the vulnerability, historic distribution, and conservation of species, especially when coupled with species-distribution models used to predict species' ranges. Yet, the increasing dependence on species-distribution models in identifying conservation priorities calls for a more critical evaluation of model robustness. We used 11 bird species of conservation concern in Brazil's highly fragmented Atlantic Forest and data on environmental conditions in the region to predict species distributions. These predictions were repeated for five different model types for each of the 11 bird species. We then combined these species distributions for each model separately and applied a reserve-selection algorithm to identify priority sites. We compared the potential outcomes from the reserve selection among the models. Although similarity in identification of conservation reserve networks occurred among models, models differed markedly in geographic scope and flexibility of reserve networks. It is essential for planners to evaluate the conservation implications of false-positive and false-negative errors for their specific management scenario before beginning the modeling process. Reserve networks selected by models that minimized false-positive errors provided a better match with priority areas identified by specialists. Thus, we urge caution in the use of models that overestimate species' occurrences because they may misdirect conservation action. Our approach further demonstrates the great potential value of museum records to biodiversity studies and the utility of species-distribution models to conservation decision-making. Our results also demonstrate, however, that these models must be applied critically and cautiously.  相似文献   

6.
Abstract:  Central America is exceptionally rich in biodiversity, but varies widely in the attention its countries devote to conservation. Protected areas, widely considered the cornerstone of conservation, were not always created with the intent of conserving that biodiversity. We assessed how well the protected-area system of Central America includes the region's mammal diversity. This first required a refinement of existing range maps to reduce their extensive errors of commission (i.e., predicted presences in places where species do not occur). For this refinement, we used the ecological limits of each species to identify and remove unsuitable areas from the range. We then compared these maps with the locations of protected areas to measure the habitat protected for each of the region's 250 endemic mammals. The species most vulnerable to extinction—those with small ranges—were largely outside protected areas. Nevertheless, the most strictly protected areas tended toward areas with many small-ranged species. To improve the protection coverage of mammal diversity in the region, we identified a set of priority sites that would best complement the existing protected areas. Protecting these new sites would require a relatively small increase in the total area protected, but could greatly enhance mammal conservation.  相似文献   

7.
Spatially explicit information on species distributions for conservation planning is invariably incomplete; therefore, the use of surrogates is required to represent broad‐scale patterns of biodiversity. Despite significant interest in the effectiveness of surrogates for predicting spatial distributions of biodiversity, few researchers have explored questions involving the ability of surrogates to incidentally represent unknown features of conservation interest. We used the Great Barrier Reef marine reserve network to examine factors affecting incidental representation of conservation features that were unknown at the time the reserve network was established. We used spatially explicit information on the distribution of 39 seabed habitats and biological assemblages and the conservation planning software Marxan to examine how incidental representation was affected by the spatial characteristics of the features; the conservation objectives (the minimum proportion of each feature included in no‐take areas); the spatial configuration of no‐take areas; and the opportunity cost of conservation. Cost was closely and inversely correlated to incidental representation. However, incidental representation was achieved, even in a region with only coarse‐scale environmental data, by adopting a precautionary approach that explicitly considered the potential for unknown features. Our results indicate that incidental representation is enhanced by partitioning selection units along biophysical gradients to account for unknown within‐feature variability and ensuring that no‐take areas are well distributed throughout the region; by setting high conservation objectives that (in this case >33%) maximize the chances of capturing unknown features incidentally; and by carefully considering the designation of cost to planning units when using decision‐support tools for reserve design. The lessons learned from incidental representation in the Great Barrier Reef have implications for conservation planning in other regions, particularly those that lack detailed environmental and ecological data.  相似文献   

8.
Abstract:  Plant-diversity hotspots on a global scale are well established, but smaller local hotspots within these must be identified for effective conservation of plants at the global and local scales. We used the distributions of endemic and endemic-threatened species of Myrtaceae to indicate areas of plant diversity and conservation importance within the Atlantic coastal forests ( Mata Atlântica ) of Brazil. We applied 3 simple, inexpensive geographic information system (GIS) techniques to a herbarium specimen database: predictive species-distribution modeling (Maxent); complementarity analysis (DIVA-GIS); and mapping of herbarium specimen collection locations. We also considered collecting intensity, which is an inherent limitation of use of natural history records for biodiversity studies. Two separate areas of endemism were evident: the Serra do Mar mountain range from Paraná to Rio de Janeiro and the coastal forests of northern Espírito Santo and southern Bahia. We identified 12 areas of approximately 35 km2 each as priority areas for conservation. These areas had the highest species richness and were highly threatened by urban and agricultural expansion. Observed species occurrences, species occurrences predicted from the model, and results of our complementarity analysis were congruent in identifying those areas with the most endemic species. These areas were then prioritized for conservation importance by comparing ecological data for each.  相似文献   

9.
The lack of high-resolution distribution maps for freshwater species across large extents fundamentally challenges biodiversity conservation worldwide. We devised a simple framework to delineate the distributions of freshwater fishes in a high-resolution drainage map based on stacked species distribution models and expert information. We applied this framework to the entire Chinese freshwater fish fauna (>1600 species) to examine high-resolution biodiversity patterns and reveal potential conflicts between freshwater biodiversity and anthropogenic disturbances. The correlations between spatial patterns of biodiversity facets (species richness, endemicity, and phylogenetic diversity) were all significant (r = 0.43–0.98, p < 0.001). Areas with high values of different biodiversity facets overlapped with anthropogenic disturbances. Existing protected areas (PAs), covering 22% of China's territory, protected 25–29% of fish habitats, 16–23% of species, and 30–31% of priority conservation areas. Moreover, 6–21% of the species were completely unprotected. These results suggest the need for extending the network of PAs to ensure the conservation of China's freshwater fishes and the goods and services they provide. Specifically, middle to low reaches of large rivers and their associated lakes from northeast to southwest China hosted the most diverse species assemblages and thus should be the target of future expansions of the network of PAs. More generally, our framework, which can be used to draw high-resolution freshwater biodiversity maps combining species occurrence data and expert knowledge on species distribution, provides an efficient way to design PAs regardless of the ecosystem, taxonomic group, or region considered.  相似文献   

10.
Abstract:  The Natura 2000 network is the most important conservation effort being implemented in Europe. Nevertheless, no comprehensive and systematic region—or nationwide evaluation of the effectiveness of the network has been conducted. We used habitat suitability models and extent of occurrence of 468 species of vertebrates to evaluate the contribution of the Natura 2000 network to biodiversity conservation in Italy. We also estimated the population size of 101 species inside the Natura 2000 network to assess its capacity to maintain or improve the population status of listed species. In general the Italian Natura 2000 did not seem to integrate existing protected areas well. The Natura 2000 network increased from 11% to 20% the area devoted to conservation in Italy and the coverage provided to areas with high biodiversity. Nevertheless, some areas with high numbers of species were devoid of conservation areas, and more than 50% of the highly irreplaceable areas were not considered in the system. Moreover, the Natura 2000 network cannot maintain 44–80% (depending on the taxa considered) of the species in a "favorable conservation status" under World Conservation Union Red List criteria. The Natura 2000 network is probably stronger than the results of our analyses suggest. The system is based on a site-specific expert-based strategy and is driven by direct and detailed knowledge of local diversity. Nevertheless, if Natura 2000 is taken to represent the final point of all the EU conservation policies, it will inevitably fail. Its role in conservation could be enhanced by integrating the Natura 2000 system into a more general strategy that considers natural processes and the ecological and evolutionary mechanisms underlying these processes.  相似文献   

11.
Effects of land-use change on the conservation of biodiversity have become a concern to conservation scientists and land managers, who have identified loss and fragmentation of natural areas as a high-priority issue. Despite urgent calls to inform national, regional, and state planning efforts, there remains a critical need to develop practical approaches to identify where important lands are for landscape connectivity (i.e., linkages), where land use constrains connectivity, and which linkages are most important to maintain network-wide connectivity extents. Our overall goal in this paper was to develop an approach that provides comprehensive, quantitative estimates of the effects of land-use change on landscape connectivity and illustrate its use on a broad, regional expanse of the western United States. We quantified loss of habitat and landscape connectivity for western forested systems due to land uses associated with residential development, roads, and highway traffic. We examined how these land-use changes likely increase the resistance to movement of forest species in non-forested land cover types and, therefore, reduce the connectivity among forested habitat patches. To do so, we applied a graph-theoretic approach that incorporates ecological aspects within a geographic representation of a network. We found that roughly one-quarter of the forested lands in the western United States were integral to a network of forested patches, though the lands outside of patches remain critical for habitat and overall connectivity. Using remotely sensed land cover data (ca. 2000), we found 1.7 million km2 of forested lands. We estimate that land uses associated with residential development, roads, and highway traffic have caused roughly a 4.5% loss in area (20 000 km2) of these forested patches, and continued expansion of residential land will likely reduce forested patches by another 1.2% by 2030. We also identify linkages among forest patches that are critical for landscape connectivity. Our approach can be readily modified to examine connectivity for other habitats/ecological systems and for other geographic areas, as well as to address more specific requirements for particular conservation planning applications.  相似文献   

12.
Abstract:  The establishment of ecological networks (ENs) has been proposed as an ideal way to counteract the increasing fragmentation of natural ecosystems and as a necessary complement to the establishment of protected areas for biodiversity conservation. This conservation tool, which comprises core areas, corridors, and buffer areas, has attracted the attention of several national and European institutions. It is thought that ENs can connect habitat patches and thus enable species to move across unsuitable areas. In Europe, however, ENs are proposed as an oversimplification of complex ecological concepts, and we maintain that they are of limited use for biodiversity conservation for several reasons. The ENs are species specific and operate on species-dependent scales. In addition, the information needed for their implementation is only available for a handful of species. To overcome these limitations, ENs have been proposed on a landscape scale (and for selected "focal" species), but there is no indication that the structural composition of core areas, corridors, and buffer areas could ensure the functional connectivity and improve the viability of more than a few species. The theory behind ENs fails to provide sufficient practical information on how to build them (e.g., width, shape, structure, content). In fact, no EN so far has been validated in practice (ensuring connectivity and increasing overall biodiversity conservation), and there are no signs that validation will be possible in the near future. In view of these limitations, it is difficult to justify spending economic and political resources on building systems that are at best working hypotheses that cannot be evaluated on a practical level.  相似文献   

13.
Abstract:  Priority setting is an essential component of biodiversity conservation. Existing methods to identify priority areas for conservation have focused almost entirely on biological factors. We suggest a new relative ranking method for identifying priority conservation areas that integrates both biological and social aspects. It is based on the following criteria: the habitat's status, human population pressure, human efforts to protect habitat, and number of endemic plant and vertebrate species. We used this method to rank 25 hotspots, 17 megadiverse countries, and the hotspots within each megadiverse country. We used consistent, comprehensive, georeferenced, and multiband data sets and analytical remote sensing and geographic information system tools to quantify habitat status, human population pressure, and protection status. The ranking suggests that the Philippines, Atlantic Forest, Mediterranean Basin, Caribbean Islands, Caucasus, and Indo-Burma are the hottest hotspots and that China, the Philippines, and India are the hottest megadiverse countries. The great variation in terms of habitat, protected areas, and population pressure among the hotspots, the megadiverse countries, and the hotspots within the same country suggests the need for hotspot- and country-specific conservation policies.  相似文献   

14.
Expansion of the global protected-area network has been proposed as a strategy to address threats from accelerating climate change and species extinction. A key step in increasing the effectiveness of such expansion is understanding how novel threats to biodiversity from climate change alter concepts such as rewilding, which have underpinned many proposals for large interconnected reserves. We reviewed potential challenges that climate change poses to rewilding and found that the conservation value of large protected areas persists under climate change. Nevertheless, more attention should be given to protection of microrefugia, macrorefugia, complete environmental gradients, and areas that connect current and future suitable climates and to maintaining ecosystem processes and stabilizing feedbacks via conservation strategies that are resilient to uncertainty regarding climate trends. Because a major element of the threat from climate change stems from its novel geographic patterns, we examined, as an example, the implications for climate-adaptation planning of latitudinal, longitudinal (continental to maritime), and elevational gradients in climate-change exposure across the Yellowstone-to-Yukon region, the locus of an iconic conservation proposal initially designed to conserve wide-ranging carnivore species. In addition to a continued emphasis on conserving intact landscapes, restoration of degraded low-elevation areas within the region is needed to capture sites important for landscape-level climate resilience. Extreme climate exposure projected for boreal North America suggests the need for ambitious goals for expansion of the protected-area network there to include refugia created by topography and ecological features, such as peatlands, whose conservation can also reduce emissions from carbon stored in soil. Qualitative understanding of underlying reserve design rules and the geography of climate-change exposure can strengthen the outcomes of inclusive regional planning processes that identify specific sites for protection.  相似文献   

15.
Abstract:  The identification of conservation areas based on systematic reserve-selection algorithms requires decisions related to both spatial and ecological scale. These decisions may affect the distribution and number of sites considered priorities for conservation within a region. We explored the sensitivity of systematic reserve selection by altering values of three essential variables. We used a 1:20,000–scale terrestrial ecosystem map and habitat suitability data for 29 threatened vertebrate species in the Okanagan region of British Columbia, Canada. To these data we applied a reserve-selection algorithm to select conservation sites while altering selection unit size and shape, features of biodiversity (i.e., vertebrate species), and area conservation targets for each biodiversity feature. The spatial similarity, or percentage overlap, of selected sets of conservation sites identified (1) with different selection units was ≤40%, (2) with different biodiversity features was 59%, and (3) with different conservation targets was ≥94%. Because any selected set of sites is only one of many possible sets, we also compared the conservation value (irreplaceability) of all sites in the region for each variation of the data. The correlations of irreplaceability were weak for different selection units (0.23 ≤ r ≤ 0.67), strong for different biodiversity features ( r = 0.84), and mixed for different conservation targets ( r = 0.16; 0.16; 1.00). Because of the low congruence of selected sites and weak correlations of irreplaceability for different selection units, recommendations from studies that have been applied at only one spatial scale must be considered cautiously.  相似文献   

16.
Transboundary conservation is playing an increasingly important role in maintaining ecosystem integrity and halting biodiversity loss caused by anthropogenic activities. However, lack of information on species distributions in transboundary regions and understanding of the threats in these areas impairs conservation. We developed a spatial conservation plan for the transboundary areas between Yunnan province, southwestern China, and neighboring Myanmar, Laos, and Vietnam in the Indo-Burma biodiversity hotspot. To identify priority areas for conservation and restoration, we determined species distribution patterns and recent land-use changes and examined the spatiotemporal dynamics of the connected natural forest, which supports most species. We assessed connectivity with equivalent connected area (ECA), which is the amount of reachable habitat for a species. An ECA incorporates the presence of habitat in a patch and the amount of habitat in other patches within dispersal distance. We analyzed 197,845 locality records from specimen collections and monographs for 21,004 plant and vertebrate species. The region of Yunnan immediately adjacent to the international borders had the highest species richness, with 61% of recorded species and 56% of threatened vertebrates, which suggests high conservation value. Satellite imagery showed the area of natural forest in the border zone declined by 5.2% (13,255 km2) from 1995 to 2018 and monoculture plantations increased 92.4%, shrubland 10.1%, and other cropland 6.2%. The resulting decline in connected natural forest reduced the amount of habitat, especially for forest specialists with limited dispersal abilities. The most severe decline in connectivity was along the Sino-Vietnamese border. Many priority areas straddle international boundaries, indicating demand and potential for establishing transboundary protected areas. Our results illustrate the importance of bi- and multilateral cooperation to protect biodiversity in this region and provide guidance for future conservation planning and practice.  相似文献   

17.
Effective conservation policies require comprehensive knowledge of biodiversity. However, knowledge shortfalls still remain, hindering possibilities to improve decision making and built such policies. During the last 2 decades, conservationists have made great efforts to allocate resources as efficiently as possible but have rarely considered the idea that if research investments are also strategically allocated, it would likely fill knowledge gaps while simultaneously improving conservation actions. Therefore, prioritizing areas where both conservation and research actions could be conducted becomes a critical endeavor that can further maximize return on investment. We used Zonation, a conservation planning tool and geographical distributions of amphibians, birds, mammals, and reptiles to suggest and compare priority areas for conservation and research of terrestrial vertebrates worldwide. We also evaluated the degree of human disturbance in both types of priority areas by describing the value of the human footprint index within such areas. The spatial concordance between priority conservation and research areas was low: 0.36% of the world's land area. In these areas, we found it would be possible to protect almost half of the currently threatened species and to gather information on nearly 42% of data-deficient (DD) species. We also found that 6199 protected areas worldwide are located in such places, although only 35% of them have strict conservation purposes. Areas of consensus between conservation and research areas represent an opportunity for simultaneously conserving and acquiring knowledge of threatened and DD species of vertebrates. Although the picture is not the most encouraging, joint conservation and research efforts are possible and should be fostered to save vertebrate species from our own ignorance and extinction.  相似文献   

18.
An overarching challenge of natural resource management and biodiversity conservation is that relationships between people and nature are difficult to integrate into tools that can effectively guide decision making. Social–ecological vulnerability offers a valuable framework for identifying and understanding important social–ecological linkages, and the implications of dependencies and other feedback loops in the system. Unfortunately, its implementation at local scales has hitherto been limited due at least in part to the lack of operational tools for spatial representation of social–ecological vulnerability. We developed a method to map social–ecological vulnerability based on information on human–nature dependencies and ecosystem services at local scales. We applied our method to the small‐scale fishery of Moorea, French Polynesia, by combining spatially explicit indicators of exposure, sensitivity, and adaptive capacity of both the resource (i.e., vulnerability of reef fish assemblages to fishing) and resource users (i.e., vulnerability of fishing households to the loss of fishing opportunity). Our results revealed that both social and ecological vulnerabilities varied considerably through space and highlighted areas where sources of vulnerability were high for both social and ecological subsystems (i.e., social–ecological vulnerability hotspots) and thus of high priority for management intervention. Our approach can be used to inform decisions about where biodiversity conservation strategies are likely to be more effective and how social impacts from policy decisions can be minimized. It provides a new perspective on human–nature linkages that can help guide sustainability management at local scales; delivers insights distinct from those provided by emphasis on a single vulnerability component (e.g., exposure); and demonstrates the feasibility and value of operationalizing the social–ecological vulnerability framework for policy, planning, and participatory management decisions.  相似文献   

19.
Abstract: Protected areas must be close, or connected, enough to allow for the preservation of large‐scale ecological and evolutionary processes, such as gene flow, migration, and range shifts in response to climate change. Nevertheless, it is unknown whether the network of protected areas in the United States is connected in a way that will preserve biodiversity over large temporal and spatial scales. It is also unclear whether protected‐area networks that function for larger species will function for smaller species. We assessed the connectivity of protected areas in the three largest biomes in the United States. With methods from graph theory—a branch of mathematics that deals with connectivity and flow—we identified and measured networks of protected areas for three different groups of mammals. We also examined the value of using umbrella species (typically large‐bodied, far‐ranging mammals) in designing large‐scale networks of protected areas. Although the total amount of protected land varied greatly among biomes in the United States, overall connectivity did not. In general, protected‐area networks were well connected for large mammals but not for smaller mammals. Additionally, it was not possible to predict connectivity for small mammals on the basis of connectivity for large mammals, which suggests the umbrella species approach may not be an appropriate design strategy for conservation networks intended to protect many species. Our findings indicate different strategies should be used to increase the likelihood of persistence for different groups of species. Strategic linkages of existing lands should be a conservation priority for smaller mammals, whereas conservation of larger mammals would benefit most from the protection of more land.  相似文献   

20.
In pursuit of socioeconomic development, many countries are expanding oil and mineral extraction into tropical forests. These activities seed access to remote, biologically rich areas, thereby endangering global biodiversity. We examined how protection of biodiversity and economic revenues can be balanced in biologically valuable regions. Using spatial data on oil profits and predicted species and ecosystem extents, we optimized the protection of 741 terrestrial species and 20 ecosystems of the Ecuadorian Amazon across a range of opportunity costs (i.e., sacrifices of extractive profit). We also applied spatial statistics to remotely sensed, historic deforestation data to focus the optimization on areas most threatened by imminent forest loss. Giving up 5% of a year's oil profits (US$221 million) allowed for a protected area network that retained an average of 65% of the extent of each species and ecosystem. This performance far exceeded that of the network produced by simple optimization for land area (which required a sacrifice of approximately 40% of annual oil profits [US$1.7 billion]) and used only marginally less land to achieve equivalent levels of ecological protection. We identified what we call emergency conservation targets: regions that are essential components of a cost-effective conservation reserve network but at imminent risk of destruction, thus requiring urgent and effective protection. Governments can use our methods when evaluating extractive-led development options to responsibly manage the associated ecological and economic trade-offs and protect natural capital.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号