首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Passive diffusion tubes are recognised as a cost-effective sampling method for characterising the spatial variability, as well as the seasonal and annual trends, of NO2 concentrations in urban areas. In addition, NOX and O3 passive diffusion tubes have been developed and deployed in urban and rural areas. Despite their many advantages (e.g. low operational and analysis cost, small size and no need for power supply), they have certain limitations mainly related to their accuracy and precision. In particular, the absorbent solution used, the length of the exposure period, the exact location and use of protective devices, and other environmental conditions (e.g. wind, ambient temperature and relative humidity) may have a significant impact on the performance of passive diffusion tubes. The aim of this study is to evaluate the performance of co-located NO2, NOX and O3 diffusion tubes in an urban environment.A one-year passive sampling campaign was carried out in Birmingham (UK) for this purpose. NO2, NOX and O3 diffusion tubes (including triplicate sets of each) were co-located at one urban background and two roadside permanent air quality monitoring stations equipped with standard gas analysers. In addition, meteorological data, such as wind speed and direction, ambient temperature and relative humidity, were obtained during the same period of time. A thorough QA/QC procedure, including storage and laboratory blanks was followed throughout the campaign. The analysis of results showed a very good agreement of NO2 passive samplers with co-located chemiluminescence analysers, but substantial underestimations of total NOX levels by the diffusion tubes. The O3 diffusion sampler appeared to marginally overestimate the automatic UV analyser results, especially during warm weather periods.  相似文献   

2.
Gas exchange and pigmentation responses of mature ponderosa pine (Pinus ponderosa Laws.) branches to ozone and acid rain exposure were investigated using three grafted clones growing in a managed seed orchard. Exposure of one-year-old foliage to twice ambient ozone (2 x AMB) resulted in significant decreases in net photosynthesis (Pn), stomatal conductance (gsw) and pigmentation relative to charcoal-filtered (CF) and ambient (AMB) ozone treatments. Ozone effects on gas exchange and pigmentation were most pronounced during late-season and differed significantly among clones. Environmental parameters (e.g. light, vapor pressure deficit, and temperature) accounted for more variation in Pn than did cumulative ozone exposure. Minimal differences in gsw and Pn among ozone treatments occurred during seasonal periods of high temperature and evaporative demand. Negative effects of 2 x AMB ozone on gsw and pigmentation were greatest for the clones having highest and lowest phenotypic vigor under ambient conditions; the clone of moderate phenotypic vigor under ambient conditions was least sensitive to ozone. Application of simulated acid rain of pH 3.0, pH 5.1 or no rain (NR) had little impact on gas exchange or pigmentation.  相似文献   

3.
Two-year-old seedlings of ponderosa pine (Pinus ponderosa Dougl. ex Laws) were exposed to ambient concentrations of photochemical smog (AA) and clean air (CA) during a single field season at Tanbark Flat of the San Gabriel Mountains in the Los Angeles Basin. The seedlings were grown in a perlite-vermiculite medium with full supply of nutrients (based on modified Hoagland solution); reduced to 50% supply of N; reduced to 50% supply of Mg; and reduced to 50% supply of N+Mg. No significant effects of air pollution exposures on injury development, stem growth and concentrations of plant pigments were determined. The seedlings in the AA treatment had decreased N concentration in current year needles compared with CA seedlings; however, the needle concentrations of other elements did not change. Reduction of N supply in the growing medium caused decreased N, P, Ca, K and chlorophyll a concentrations in needles. Stem growth of the seedlings with reduced N supply was significantly decreased as well. No changes in stem growth or chemical composition of plants with reduced Mg supply were noted. Reduction of supply of nutrients did not change responses of trees to the air pollution exposures.  相似文献   

4.
A long-term experiment was performed to study the effects of O3 and drought-stress (DS) on Aleppo pine seedlings (Pinus halepensis Mill.) exposed in open-top chambers. Ozone reduced gas exchange rates, ribulose-1,5-biphosphate carboxylase/oxygenase activity (Rubisco), aboveground C and needle N concentrations and C/N ratio and Ca concentrations of the twigs under 3 mm (twigs<3) and the aerial biomass. Also it increased phosphoenolpyruvate carboxylase (PEPc) and N and K concentrations of the twigs<3. Water stress decreased gas exchange rates, predawn needle water potential (PsiPd), C/N ratio, twigs<3 Ca, plant growth, aerial biomass and increased N, twigs with a diameter above 3 mm P and Mg concentrations. The combined exposure to both stresses increased N concentrations of twigs<3 and roots and aboveground biomass K content and decreased root C, maximum daily assimilation rate and instantaneous water use efficiency. The sensitivity of Aleppo pine to both stresses is determined by plant internal resource allocation and compensation mechanisms to cope with stress.  相似文献   

5.
Seedlings from ten half-sib families of loblolly pine (Pinus taeda) were exposed in open-top chambers to carbon-filtered air (CF), non-filtered air (NF), or air amended with ozone to 1.7 or 2.5 times ambient. After 105 days of exposure, half the seedlings within each family were wounded but not inoculated and half were wounded and inoculated with the pitch canker fungus, Fusarium subglutinans, to which five families were relatively resistant. After an additional 50 days of ozone treatment, seedling growth and canker development were recorded. Cankers were significantly (sigma < or = 0.05) smaller among resistant compared to susceptible families, and were significantly larger among seedlings receiving the highest (2.5) compared to the ambient (NF) ozone treatment. The wound scars of non-inoculated seedlings were also significantly larger among seedlings receiving the 2.5 compared to the NF treatment, but these dimensions did not differ significantly with seedling family or resistance. The weights of needles and large roots were significantly smaller at the 2.5 compared to the 1.7 ozone treatment for inoculated but not for non-inoculated seedlings; this resulted in a significant interaction for ozone and inoculation effects. Among resistant families, root weights were significantly smaller for inoculated seedlings. Diameter growth and dry weights of needles were significantly smaller among inoculated compared to non-inoculated seedlings, but did not differ between NF and 2.5 ozone treatments.  相似文献   

6.
In highly polluted sites, stomatal behavior is sluggish with respect to light, vapor pressure deficit, and internal CO2 concentration (Ci) and poorly described by existing models. Statistical models were developed to estimate stomatal conductance (gs) of 40-year-old ponderosa pine at three sites differing in pollutant exposure for the purpose of calculating O3 uptake. Gs was estimated using julian day, hour of day, pre-dawn xylem potential and photosynthetic photon flux density (PPFD). The median difference between estimated and observed field gs did not exceed 10 mmol H2O m(-2) s(-1), and estimated gs within 95% confidence intervals. 03 uptake was calculated from hourly estimated gs, hourly O3 concentration, and a constant to correct for the difference in diffusivity between water vapor and 03. The simulation model TREGRO was also used to calculate the cumulative 03 uptake at all three sites. 03 uptake estimated by the statistical model was higher than that simulated by TREGRO because gas exchange rates were proportionally higher. O3 exposure and uptake were significantly correlated (r2>0.92), because O3 exposure and gs were highly correlated in both statistical and simulation models.  相似文献   

7.
The data from a previous experiment carried out in open-top chambers to assess the effects of ozone (O3) exposure on growth and physiology of Aleppo pine (Pinus halepensis Mill.) were re-assessed to test the performance of the EMEP O3 stomatal conductance model used to estimate tree O3 uptake at a European scale. Aleppo pine seedlings were exposed during three consecutive years to three different O3 treatments: charcoal filtered air, non-filtered air and non-filtered air supplemented with 40 nl l(-1). The results of the model using the default parameterisation already published for Mediterranean conifers showed a poor performance when compared to measured data. Therefore, modifications of g(max), f(min), and new f(VPD), f(temp) and f(phen) functions were developed according to the observed data. This re-parameterisation resulted in a significant improvement of the performance of the model when compared to its original version.  相似文献   

8.
Hourly ambient ozone exposure data and crown injury measurements were gathered in the Sierra Nevada and San Bernardino Mountains of California to develop relationships between the Ozone Injury Index (OII), the Forest Pest Management Index (FPM), chlorotic mottle, fascicle retention (OII index components) and cumulative ambient ozone indices for Pinus ponderosa Dougl. ex Laws and Pinus jeffreyi Grev. and Balf. Eleven sites located in the mixed conifer forest near ambient ozone monitoring sites were evaluated annually for 4 years. Four other sites in the San Bernardino Mountains were evaluated for 1 year. Analyses showed OII to be functionally equivalent (r2 = 0.96) to the FPM, and to depend only on fascicle retention and chlorotic mottle (R2 = 0.95) of the fourth whorl (or if four whorls are not present at the site, then the last whorl present for the majority of trees). Significant associations were found between OII and 4-year 24-h. summer SUM0, SUM06, W126 and HRS80 ozone indices. Three sites had higher levels of cumulative chlorotic mottle for individual whorls and larger numbers of trees with visible crown injury than other sites with similar cumulative ambient ozone levels. Including an indicator variable to discriminate between these two groups of sites increased R2 and decreased root mean square (RMSE) for all indices, especially SUM0 (R2 = 0.93, RMSE reduced by 46%).  相似文献   

9.

Introduction

This study presents the performance evaluation of a tailor-made passive sampler developed for the monitoring of tropospheric ozone.

Methods

The performance of the passive sampler was tested in the field conditions in terms of accuracy, precision, blank values, detection limit, effects of some parameters such as sampling site characteristics and sampling period on the field blanks, self-consistency, experimental and theoretical uptake rates, shelf life and comparison with commercial passive samplers.

Results

There was an agreement (R 2?=?0.84) between the responses of passive sampler and the continuous automatic analyser. The accuracy of the sampler, expressed as percent relative error, was obtained lower than 15%. Method precision in terms of coefficient of variance for three simultaneously applied passive samplers was 12%. Sampler detection limit was 2.42???g?m?3 for an exposure period of 1?week, and the sampler can be stored safely for a period of up to 8?weeks before exposure. Satisfactory self-consistency results showed that extended periods gave the same integrated response as a series of short-term samplers run side by side. The uptake rate of ozone was found to be 10.21?mL?min?1 in a very good agreement with the theoretical uptake rate (10.32?mL?min?1). The results of the comparison study conducted against a commercially available diffusion tube (Gradko diffusion tube) showed a good linear relationship (R 2?=?0.93) between two passive samplers.

Conclusions

The sampler seems suitable to be used in large-scale measurements of ozone where no data are available or the number of existing automated monitors is not sufficient.  相似文献   

10.
An ozone flux-response relationship for wheat   总被引:2,自引:0,他引:2  
The concentrations of heavy metals in the fine fraction (<63 microm) of 19 surficial sediment samples from the border region of Baja California (Mexico) and California (USA) were determined. The concentration ranges (in microg g(-1)) of the metals were: Cu, 4.9-23; Zn, 39-188; Ni, 16-44; Cr, 56-802; Pb, 6-21; Cd, 0.08-0.64; Ag, 0.01-0.28; and Mn, 392-1506; the intervals (percentage) for Fe and Al were 1.36-4.6 and 3.61-8.55, respectively. The heavy metals in these sediments indicate a relative enrichment of Cr (>3000%), Zn (>350%), Ni (>300%) and Cu (>150%) off the wastewater outfall at Punta Bandera in Tijuana, Baja California, with respect to non-polluted sediments of the region. Pb, Cd and Ag have low concentrations off the same outfall and enrichment factors are generally lower than 300% (Pb) and lower than 150% (Cd and Ag). This suggests that these metals have a different origin, or that they are controlled by a different geochemical mechanism than the former. The concentrations of Mn, Fe and Al occurred within ranges typical for coastal areas and probably reflect the mineralogical composition of the sediments of the region.  相似文献   

11.
To study individual and combined impacts of two important atmospheric trace gases, CO2 and O3, on C and N cycling in forest ecosystems; a multi-year experiment using a small-scale ponderosa pine (Pinus ponderosa Laws.) seedling/soil/litter system was initiated in April 1998. The experiment was conducted in outdoor, sun-lit chambers where aboveground and belowground ecological processes could be studied in detail. This paper describes the approach and methodology used, and presents preliminary data for the first two growing seasons. CO2 treatments were ambient and elevated (ambient + 280 ppm). O3 treatments were elevated (hourly averages to 159 ppb, cumulative exposure > 60 ppb O3, SUM 06 approximately 10.37 ppm h), and a low control level (nearly all hourly averages <40 ppb. SUM 06 approximately 0.07 ppm h). Significant (P < 0.05) individual and interactive effects occurred with elevated CO2 and elevated O3. Elevated CO2 increased needle-level net photosynthetic rates over both seasons. Following the first season, the highest photosynthetic rates were for trees which had previously received elevated O3 in addition to elevated CO2. Elevated CO2 increased seedling stem diameters, with the greatest increase at low O3. Elevated CO2 decreased current year needle % N in the summer. For 1-year-old needles measured in the fall there was a decrease in % N with elevated CO2 at low O3, but an increase in % N with elevated CO2 at elevated O3. Nitrogen fixation (measured by acetylene reduction) was low in ponderosa pine litter and there were no significant CO2 or O3 effects. Neither elevated CO2 nor elevated O3 affected standing root biomass or root length density. Elevated O3 decreased the % N in coarse-fine (1-2 mm diameter) but not in fine (< 1 mm diameter) roots. Both elevated CO2 and elevated O3 tended to increase the number of fungal colony forming units (CFUs) in the AC soil horizon, and elevated O3 tended to decrease bacterial CFUs in the C soil horizon. Thus, after two growing seasons we showed interactive effects of O3 and CO2 in combination, in addition to responses to CO2 or O3 alone for a ponderosa pine plant/litter/soil system.  相似文献   

12.
Only few studies have been conducted as yet which focus on the effects of rising tropospheric ozone levels on semi-natural vegetation under free-air conditions. A new technical approach was used to examine the response of calcareous grassland to ozone employing a chamberless fumigation system. Four different ozone regimes were applied (1-, 1.33-, 1.66- and 2-fold ambient air levels) with five replicates each. Ozone enrichment was carried out on circular plots of 2 m in diameter by a computer controlled exposure system. Transparent windscreens encircling each plot accelerated the mixing of ambient air and ozone released. Thus, the use of blowers could be avoided. The exposure system presented here is regarded as an appropriate technique for free-air trace gas enrichment on short vegetation avoiding microclimatic alterations known to affect plant growth and pollutant uptake. Furthermore, the chosen technical set-up was rather cost-effective. Hence, it enabled the establishment of a larger number of replications providing the basis for results of higher statistical power.  相似文献   

13.
In exposure-response modeling, a major concern is the numerical definition of exposure in relating crop loss to O3, yet few indices have been considered. This paper addresses research in which plant growth was regressed for soybean, wheat, cotton, corn, and sorghum against 613 numerical exposure indices using the Box-Tidwell model. When the minimum sum of squared errors criterion was used, optimum performance was not attained for any single index; however, near optimum performances were achieved by two censored cumulative indices and from a class of indices called the generalized, phenologically weighted, cumulative impact indices (GPWCIs). The top-performing GPWCIs accumulated concentrations, used sigmoid weighting schemes emphasizing O3 concentrations of 0.06 ppm (118 microg m(-3)) or higher, and had phenological weighting schemes with greatest weight occurring 20 to 40 days prior to crop maturity. These findings indicate that (1) peak concentrations are important, but lower concentrations should be included in the calculations, (2) increased plant sensitivity occurs between flowering and maturity, and (3) plants respond to cumulative exposure impact.  相似文献   

14.
An eleven-year foliar sulphur (S) monitoring program was carried out from 1976 to 1986 near a sulphur recovery-gas plant in west-central Alberta, Canada, as part of a case study designed to determine the effects of chronic, low concentration sulphur gas emissions on the forest ecosystem surrounding the gas plant. Measurements of both foliar total sulphur (ST) and foliar inorganic sulphur (SO4-S) concentration in lodgepole x jack pine trees at the end of each of the 11 growing seasons were taken to provide an indication of S loading of the forest from industrial sulphur emissions. To measure the state of the forest ecosystem, foliar ST was separated into foliar accumulated sulphur (inorganic sulphur or SO4-S) and foliar assimilated sulphur (organic sulphur or S0) and the ratio of SO4-S/S0 taken. Foliar S0 was calculated as the difference between foliar ST and foliar SO4-S. The median SO4-S/S0 ratio, with all three years of needles considered, varied from 0.29 at a reference location (AV) to 0.88 at the location with the highest stress (AI). The corresponding mean values ranged from 0.3 at the reference location to 2.2 at the location of highest stress. The mean seasonal photosynthetic rate of current year's foliage of the pine trees and soil pH were reduced at a stressed location (AI) compared to the reference location (AV), between 1976 and 1981. Over this same time period the mean foliar SO4-S/S0 ratio increased from 0.4 +/- 0.1 to 1.0 +/- 0.3 at the stressed location (AI) and remained nearly the same at the reference location (AV) at 0.3 +/- 0.1. This research suggests that the foliar SO4-S/S0 ratio is a useful indicator of the state of forest ecosystems under S air pollution stress. It is concluded that foliar S separated into various fractions has potential as an early warning environmental management tool.  相似文献   

15.
Assessing the long-term exchange of trace gases and energy between terrestrial ecosystems and the atmosphere is an important priority of the current climate change research. In this regard, it is particularly significant to provide valid data on simultaneous fluxes of carbon, water vapor and pollutants over representative ecosystems. Eddy covariance measurements and model analyses of such combined fluxes over a subalpine coniferous forest in southern Wyoming (USA) are presented. While the exchange of water vapor and ozone are successfully measured by the eddy covariance system, fluxes of carbon dioxide (CO(2)) are uncertain. This is established by comparing measured fluxes with simulations produced by a detailed biophysical model (FORFLUX). The bias in CO(2) flux measurements is partially attributed to below-canopy advection caused by a complex terrain. We emphasize the difficulty of obtaining continuous long-term flux data in mountainous areas by direct measurements. Instrumental records are combined with simulation models as a feasible approach to assess seasonal and annual ecosystem exchange of carbon, water and ozone in alpine environments. The viability of this approach is demonstrated by: (1) showing the ability of the FORFLUX model to predict observed fluxes over a 9-day period in the summer of 1996; and (2) applying the model to estimate seasonal dynamics and annual totals of ozone deposition and carbon, and water vapor exchange at our study site. Estimated fluxes above this subalpine ecosystem in 1996 are: 195 g C m(-2) year(-1) net ecosystem production, 277 g C m(-2) year(-1) net primary production, 535 mm year(-1) total evapo-transpiration, 174 mm year(-1) canopy transpiration, 2.9 g m(-2) year(-1) total ozone deposition, and 1.72 g O(3) m(-2) year(-1) plant ozone uptake via leaf stomata. Given the large portion of non-stomatal ozone uptake (i.e. 41% of the total annual flux) predicted for this site, we suggest that future research of pollution-vegetation interactions should relate plant response to actively assimilated ozone by foliage rather than to total deposition. In this regard, we propose the Physiological Ozone Uptake Per Unit of Leaf Area (POUPULA) as a practical index for quantifying vegetation vulnerability to ozone damage. We estimate POUPULA to be 0.614 g O(3) m(-2) leaf area year(-1) at our subalpine site in 1996.  相似文献   

16.
We investigated the additive and interactive effects of simulated acid rain and elevated ozone on C and N contents, and the C:N ratio of one-year-old and current-year foliage of field-grown mature trees and their half-sib seedlings of a stress tolerant genotype of ponderosa pine. Acid rain levels (pH 5.1 and 3.0) were applied weekly to foliage only (no soil acidification or N addition), from January to April, 1992. Plants were exposed to two ozone levels (ambient and twice-ambient) during the day from September 1991 to November 1992. The sequential application of acid rain and elevated ozone mimicked the natural conditions. Twice-ambient ozone significantly decreased foliar N content (by 12-14%) and increased the C:N ratio of both one-year-old and current-year foliage of seedlings. Although similar ozone effects were also observed on one-year-old foliage of mature trees, the only statistically significant effect was an increased C:N ratio when twice-ambient ozone combined with pH 3.0 rain (acid rain by ozone interaction). Enhancing the effect of twice-ambient ozone in increasing the C:N ratio of one-year-old foliage of mature trees in June was the only significant effect of acid rain.  相似文献   

17.
To examine factors influencing long-term ozone (O3) exposures by children living in urban communities, the authors analyzed longitudinal data on personal, indoor, and outdoor O3 concentrations, as well as related housing and other questionnaire information collected in the one-year-long Harvard Southern California Chronic Ozone Exposure Study. Of 224 children contained in the original data set, 160 children were found to have longitudinal measurements of O3 concentrations in at least six months of 12 months of the study period. Data for these children were randomly split into two equal sets: one for model development and the other for model validation. Mixed models with various variance-covariance structures were developed to evaluate statistically important predictors for chronic personal ozone exposures. Model predictions were then validated against the field measurements using an empirical best-linear unbiased prediction technique. The results of model fitting showed that the most important predictors for personal ozone exposure include indoor O3 concentration, central ambient O3 concentration, outdoor O3 concentration, season, gender, outdoor time, house fan usage, and the presence of a gas range in the house. Hierarchical models of personal O3 concentrations indicate the following levels of explanatory power for each of the predictive models: indoor and outdoor O3 concentrations plus questionnaire variables, central and indoor O3 concentrations plus questionnaire variables, indoor O3 concentrations plus questionnaire variables, central O3 concentrations plus questionnaire variables, and questionnaire data alone on time activity and housing characteristics. These results provide important information on key predictors of chronic human exposures to ambient O3 for children and offer insights into how to reliably and cost-effectively predict personal O3 exposures in the future. Furthermore, the techniques and findings derived from this study also have strong implications for selecting the most reliable and cost-effective exposure study design and modeling approaches for other ambient pollutants, such as fine particulate matter and selected urban air toxics.  相似文献   

18.
Numerous ozone exposure statistics were calculated using hourly ozone data from crop yield loss experiments previously conducted for alfalfa, fresh market and processing tomatoes, cotton, and dry beans in an ambient ozone gradient near Los Angeles, California. Exposure statistics examined included peak (maximum daily hourly) and mean concentrations above specific threshold levels, and concentrations during specific time periods of the day. Peak and mean statistics weighted for ozone concentration and time period statistics weighted for hour of the day were also determined. Polynomial regression analysis was used to relate each of 163 ozone statistics to crop yield. Performance of the various statistics was rated by comparing residual mean square (RMS) values. The analyses demonstrated that no single statistic was best for all crop species. Ozone statistics with a threshold level performed well for most crops, but optimum threshold level was dependent upon crop species and varied with the particular statistics calculated. The data indicated that daily hours of exposure above a critical high-concentration threshold related well to crop yield for alfalfa, market tomatoes, and dry beans. The best statistic for cotton yield was an average of all daily peak ozone concentrations. Several different types of ozone statistics performed similarly for processing tomatoes. These analyses suggest that several ozone summary statistics should be examined in assessing the relationship of ambient ozone exposure to crop yield. Where no clear statistical preference is indicated among several statistics, those most biologically relevant should be selected.  相似文献   

19.
Lung function response to inhaled ozone at ambient air pollution levels is known to be a function of ozone concentration, exposure duration, and minute ventilation. Most data-driven exposure-response models address exposures under static condition (i.e., with a constant ozone concentration and exercise pattern). Such models are simplifications, as both ambient ozone concentrations and normal human activity patterns change with time. The purpose of this study was to develop a dynamic model of response with the advantages of a statistical model (a relatively simple structure with few parameters). A previously proposed mechanistic model for changes in specific airways resistance was adapted to describe the percent change in forced expiratory volume in one second (FEV1). This model was then reduced using the fit to three existing exposure-response data sets as criterion. The resulting model consists of a single linear differential equation together with an algebraic logistic equation. Under restricted static conditions the model reduces to a logistic model presented earlier by the authors.  相似文献   

20.
Understanding the human health impacts of ground level ozone requires detailed knowledge of its spatial–temporal distribution beyond that provided by surface monitoring networks. Here, a novel methodology based on unsupervised multivariate statistical techniques has been developed and used to identify the transport and dispersion patterns of tropospheric ozone. The hierarchical clustering method is used to visualize air flow patterns at two time scales relevant for ozone buildup. Sequentially executed statistical methods consider hourly 1-h surface wind field measurements. First, clustering is performed at the hourly time scale to identify 1-h surface flow patterns. Then, sequencing is performed at the daily time scale to identify groups of days sharing similar diurnal cycles for the surface flow. Selection of appropriate numbers of air flow patterns allows inference of regional transport and dispersion patterns for understanding population exposure to ozone. The methods are applied to the Houston, Galveston, and Beaumont-Port Arthur, TX study domain. Representative hourly wind field patterns are determined for the entire 2004 ozone season. Then, sequencing is performed for the 32 days in exceedance of the NAAQS for 8-h ozone. Four diurnal flow patterns capturing different ozone exceedance scenarios are isolated; each scenario is associated with a distinct spatial distribution for atmospheric pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号