首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A laboratory-based atmospheric flow chamber, using realistic presentation rates of SO2, NO and NO2 pollutants directed to various dry and wetted surfaces, has been employed to quantify the effects of the individual pollutants and the role of ozone as an oxidant. For the individual pollutant gases reacting with stone surfaces coming to equilibrium with 84% relative humidity (r.h.), chemical reaction in the presence of a moisture film proceeds and the extent of this reaction is related to pollutant gas solubility in the moisture film, i.e. SO2 > NO2 > NO. After dissolution in the moisture film, the pollutant gases are oxidized in the presence of catalysts associated with the stones. The additional presence of ozone promotes oxidation of the pollutant gases and thus their reaction with the stones. For SO2 pollutant, oxidation in the gas phase is not significant compared with that in the moisture film, with enhanced oxidation in the presence of catalysts. Ozone increases oxidation of NO and NO2 pollutant gases in the gas phase and moisture film; however, the oxidation of SO2 in the moisture film is more significant than that of NO or NO2. Wetting of the stone surfaces, in the absence of ozone, reveals the consistently greatest chemical reaction with SO2 compared with NO and NO2, which is related to SO2 solubility, oxidation in the presence of catalysts and production of sulphuric acid. Generally similar behaviour is evident of NO and NO2, but NO shows a reduced extent of chemical reaction, implying that its oxidation in surface water, in the presence of catalytic species, is slow and hence the reactants are lost in the form of run-off. In the additional presence of ozone, the SO2 pollutant gas gives rise to enhanced chemical reaction, whereas both NO and NO2 show lower extents of chemical reaction than for the dry stones. This arises from the relatively slow conversion of N2O5 in the liquid phase to nitric acid, allowing loss of reactants in run-off.  相似文献   

2.
Fluxes of NO and N2O from sandy loam soils cropped with winter wheat and a clay loam soil under ryegrass, with and without the addition of NH4NO3 fertilizer, were measured using static and dynamic chamber methods. Nitric oxide fluxes ranged from −0.3 (deposition) to 6.9 (emission) ng NO-N m−2 s−1. The corresponding N2O flux ranged from 0 to 91 (emission) ng N2O-N m−2 s−1. The NO flux was temperature dependent. Activation energies ranged from 40 to 81 kJ mol−1. Nitric oxide and N2O fluxes increased linearly with soil available nitrogen (NH4 + NO3). Emissions of NO and N2O were not detectable from unfertilized ryegrass plots. Instead, nitric oxide was absorbed by the soil and vegetation at a maximum rate of 0.31 ng NO-N m−2 s−1. The aeration state of the soil controlled the relative rates of NO and N2O emission. Nitric oxide was the major gas emitted from well aerated soils, conditions that favour nitrification. The NO/N2O emission ratio was >100 for the coarse-textured sandy loam soil and the clay loam soil only during low rainfall periods. Nitrous oxide was the major gas emitted from less aerated soils, conditions that allowed denitrification to occur. The NO/N2O emission ratio was <0.001 for the clay loam soil when rainfall was high and soils were wet. Extrapolation to the U.K. situation showed that agricultural land may account for 2–6% of the total annual NOx emission and for 16–64% of the total annual N2O emission in the U.K.  相似文献   

3.
北京夏季道路环境中NO_x,NMHCs及气象因子对ρ(O_3)的影响   总被引:1,自引:0,他引:1  
通过对北京市2009年夏季3种典型道路(开阔道路、交叉道路、街道峡谷)环境中O3,O3前体物(NO,NMHCs等)及气象因子的监测,分析了北京市典型道路环境中ρ(O3)的变化规律及O3前体物质量浓度与气象因子对ρ(O3)的影响.结果表明:夏季北京市典型道路环境中ρ(O3)呈明显的日间单峰变化规律,这与非道路环境并无不同.不同类型道路环境中ρ(O3)的变幅与峰值出现时间有所不同;3种典型道路环境中ρ(O3)与ρ(NO),ρ(NMHCs)等均呈良好的负相关关系,与ρ(NO2),ρ(NO2)/ρ(NO)呈良好的正相关关系;3种类型道路环境中ρ(O3)均呈现出与紫外强度、温度相同的变化趋势,而与相对湿度的变化趋势相反,ρ(O)高值出现于高温、强紫外线与低湿度的时刻,ρ(O)变化略滞后于紫外强度变化.  相似文献   

4.
利用介质阻挡放电(DBD)进行模拟烟气脱除NO实验,通过改变乙炔体积分数和烟气水蒸汽含量研究添加乙炔对NO脱除效率的影响.结果表明:烟气中添加乙炔强化了NO氧化作用,随着乙炔体积分数的提高,NO脱除率逐渐增加.在NO/N2/O2/C2H2/H2O体系中,水的电负性和离解反应消耗大量高能电子,降低了活性自由基的生成,NO脱除速率随之减慢;能量密度低于400 J·L-1时,相对湿度(RH)为0的情况下脱出效果最好.但随着能量密度的增加,H2O不会影响最终的NO脱除率;H2O的添加可以产生更多的·OH自由基,促进NO2向HNO3转化,使出口NO2浓度大幅度降低.  相似文献   

5.
This paper describes an evaluation of the performance of a detailed gas-phase reaction mechanism in simulating the results of 561 experiments carried out in four different environmental chambers. The experiments included background air, NOx-air, CONOx-air and aldehyde-air irradiations used for chamber characterization, NOx-air irradiations of single organics as well as simple and complex organic mixtures, and irradiations of auto exhaust. The methods used to represent the major chamber effects and the lighting characteristics in the model simulations of the experiments are described and their associated uncertainties are discussed. Statistical measures of the performance of the mechanism in simulating results of the various types of experiments are summarized and discussed. The mechanism was able to predict maximum ozone yields and rates of NO oxidation to within ±30% for 63% of the experiments modeled, and to within ±50% for 85% of the runs. There is a slight bias (∼15%) towards overprediction of ozone in mixture runs. Although there are cases where the simulations suggest possible problems with the gas-phase mechanism, much of the variability in the goodness of the fits could be attributed to uncertainties in chamber effects. It is concluded that better characterization of chamber conditions are needed if more comprehensive tests of atmospheric photochemical mechanisms are desired.  相似文献   

6.
The detection of NO2 by its chemiluminescent reaction with luminol is a rapid and sensitive means of measuring atmospheric NO2. However, testing and field use of a commercial NO2 monitor employing this detection scheme have shown that several corrections are necessary in order to obtain accurate NO2 data at low concentrations. In use aboard aircraft, the NO2 data must be corrected for zero offset, altitude (i.e. pressure), nonlinearity of response, and interferences from ozone and PAN. Detector response is dependent on the age of luminol reagent solution. This paper describes the tests performed to determine correction factors, the algorithms and order of precedence for applying the corrections, and other observations regarding detector performance.  相似文献   

7.
Wet scrubbing combined with ozone oxidation has become a promising technology for simultaneous removal of SO2 and NOx in exhaust gas. In this paper, a new 20-species, 76-step detailed kinetic mechanism was proposed between O3 and NOx. The concentration of N2O5 was measured using an in-situ IR spectrometer. The numerical evaluation results kept good pace with both the public experiment results and our experiment results. Key reaction parameters for the generation of NO2 and N2O5 during the NO ozonation process were investigated by a numerical simulation method. The effect of temperature on producing NO2 was found to be negligible. To produce NO2, the optimal residence time was 1.25 sec and the molar ratio of O3/NO about 1. For the generation of N2O5, the residence time should be about 8 sec while the temperature of the exhaust gas should be strictly controlled and the molar ratio of O3/NO about 1.75. This study provided detailed investigations on the reaction parameters of ozonation of NOx by a numerical simulation method, and the results obtained should be helpful for the design and optimization of ozone oxidation combined with the wet flue gas desulfurization methods (WFGD) method for the removal of NOx.  相似文献   

8.
大气中丙烷光氧化臭氧生成活性的烟雾箱模拟   总被引:1,自引:1,他引:0  
黄丽华  莫创荣  徐永福  贾龙 《环境科学》2012,33(8):2551-2557
利用自制光化学烟雾箱模拟了丙烷和NOx大气光化学反应,研究了相对湿度以及丙烷与NOx初始浓度比值对臭氧生成的影响.实验表明,臭氧最大值及丙烷的臭氧生成活性最大值(IRmax)都随相对湿度的增大而减小.低相对湿度时,臭氧最大值大约出现在反应的22 h,IRmax变化范围为0.023 1~0.039 1;而高相对湿度时,臭氧最大值大约出现在反应的16 h,IRmax变化范围为0.017 2~0.032 0.在反应的20 h内,前12 h内相对湿度对丙酮的生成量影响不大,12 h后低相对湿度时丙酮生成量更大.在实验的4~20 h内,相对湿度为17%时,丙酮浓度为153×10-9~364×10-9;而相对湿度为62%时,丙酮浓度为167×10-9~302×10-9.臭氧最大值随着丙烷与NOx初始浓度比值增加而减少,在低相对湿度时线性负相关性更好.另外,还利用了MCM丙烷子机制对反应进行了数值模拟,并与实验结果进行比较,发现两者还存在较大的偏差.  相似文献   

9.
烟雾箱与数值模拟研究苯和乙苯的臭氧生成潜势   总被引:1,自引:0,他引:1  
贾龙  徐永福 《环境科学》2014,35(2):495-503
结合光化学烟雾箱实验与数值模拟研究了苯和乙苯在NO x存在条件下的光氧化臭氧生成潜势.重复实验表明,在乙苯-NO x反应体系中,反应物初始浓度、温度、湿度和光照强度接近的条件下,整个反应过程中臭氧的最大偏差仅为4%,证明了烟雾箱的可重复性较高.在烟雾箱实验的基础上,使用MCM(master chemical mechanism)模拟了苯和乙苯的光氧化O3生成,并将其结果与实验数据进行了比对分析.干燥(≤5%)时MCM对苯和乙苯的模拟结果与实验结果较接近,如在苯-NO x反应体系中,MCM模拟的O3峰值比实验值偏大20%;在湿度为5%~70%时,MCM模拟的乙苯光氧化O3峰值与实验值偏高约(10%~25%).用MCM模拟了太阳光照条件下苯和乙苯的臭氧生成等值线,得到在它们浓度为(10~50)×10-9,NO x在(10~100)×10-9时,苯和乙苯的6 h臭氧贡献值分别为(3.1~33)×10-9和(2.6~122)×10-9,臭氧峰值范围分别是(3.5~54)×10-9和(3.8~164)×10-9.此外,模拟得到苯和乙苯的最大增量反应活性(maximum incremental reactivity,MIR)值分别为0.25/C和0.97/C(每单位碳).该结果与Carter通过SAPRC机制得到的MIR值趋势一致.模拟得到苯和乙苯的最大臭氧反应活性(maximum ozone reactivity,MOR)分别为0.73/C和1.03/C.苯的MOR值远高于Carter使用SAPRC得到的结果,说明根据Carter得到的苯MOR会低估苯的O3潜势.  相似文献   

10.
龚巍巍  栾胜基 《环境科学》2012,33(11):4006-4011
气溶胶NH3和气体NOx是大气颗粒物和降水的主要成分,是形成气溶胶的关键物种.田间集约化氮肥施用是气溶胶NH3和气体NOx的一个重要来源,目前该领域的研究鲜有报道.2010年5月~2010年10月,在线监测了稻田施用尿素后气溶胶NH3和气体NOx的排放情况.监测系统的时间分辨率设置为1 h.在4次稻田施肥试验中,施肥后对气溶胶NH3排放和相应的气象因子连续采样20 d.在第4次施肥试验中,施肥后连续采样47 d,进而研究气体NOx的排放规律及其与气象因子的关系.结果表明,气溶胶NH3的排放因子分别为2.6%、5.5%、4.0%和1.6%,相应的排放通量分别为3.97、2.08、1.52和1.22 kg·hm-2.温度(空气温度和土壤温度)是影响稻田施肥气溶胶NH3排放的主要因子,而空气湿度和土壤水分对其排放的影响却不明确.通过分析监测数据可知,稻田施肥后NO2-N排放量与NO-N排放量的比值为9/4,气体NOx的排放因子和排放通量分别为0.14%和0.30 kg·hm-2.气象因子与气体NOx排放通量的关系也进行了初步探讨.  相似文献   

11.
杨柳  何晴  盛重义 《环境科学》2021,42(10):4678-4686
燃煤电厂排放的颗粒物可以分为可凝结颗粒物(condensable particle matter,CPM)和可过滤颗粒物(filterable particle matter,FPM).通过分析7个超低排燃煤电厂的湿法脱硫(wet flue gas desulfurization,WFGD)进出口和湿电除尘(wet electrostatic precipitator,WESP)出口烟气中CPM和FPM的SO42-和NO3-浓度,揭示了这2种典型水溶性离子在烟道内的变化规律与转化特征.结果表明在WFGD前后,CPM中的SO42-和NO3-浓度呈降低趋势,其降低率范围分别为43.12%~86.84%和17.99%~91.58%,而FPM中SO42-和NO3-浓度呈增大趋势.在WESP前后,CPM中SO42-和NO3-浓度呈增大趋势,增长率范围分别为21.05%~424.65%和13.51%~298.37%,而FPM中SO42-和NO3-浓度呈减小趋势.在WFGD中,随着烟气温度降低和湿度增加,部分CPM会通过冷凝和团聚作用进一步转化为FPM;在WESP中,由于烟气一直处于低温、高湿的条件,烟气中存在的SO2与NO2会结合水蒸气发生氧化还原反应,进而经过协同作用促进CPM中SO42-和NO3-的生成.  相似文献   

12.
The study shows the variation of surface ozone concentrations for six selected sites between 410 and 3569 m elevation. The annual mean values in 1987 for these sites ranged from 10 to 50 ppb. Mean values of ozone as well as frequency of peak values are clearly dependent on the elevation of the site. Apart from elevation the influences of the specific location and exposure to pollutants such as NO and NO2 are considered. The ratio of the daily means of NO and NO2 is very well suited to indicate local sources. Mean diurnal concentration variations of nitric oxide and ozone on a slope show a significant influence of topography.  相似文献   

13.
Wuhan Tianhe International Airport (WUH) was suspended to contain the spread of COVID-19, while Shanghai Hongqiao International Airport (SHA) saw a tremendous flight reduction. Closure of a major international airport is extremely rare and thus represents a unique opportunity to straightforwardly observe the impact of airport emissions on local air quality. In this study, a series of statistical tools were applied to analyze the variations in air pollutant levels in the vicinity of WUH and SHA. The results of bivariate polar plots show that airport SHA and WUH are a major source of nitrogen oxides. NOx, NO2 and NO diminished by 55.8%, 44.1%, 76.9%, and 40.4%, 33.3% and 59.4% during the COVID-19 lockdown compared to those in the same period of 2018 and 2019, under a reduction in aircraft activities by 58.6% and 61.4%. The concentration of NO2, SO2 and PM2.5 decreased by 77.3%, 8.2%, 29.5%, right after the closure of airport WUH on 23 January 2020. The average concentrations of NO, NO2 and NOx scatter plots at downwind of SHA after the lockdown were 78.0%, 47.9%, 57.4% and 62.3%, 34.8%, 41.8% lower than those during the same period in 2018 and 2019. However, a significant increase in O3 levels by 50.0% and 25.9% at WUH and SHA was observed, respectively. These results evidently show decreased nitrogen oxides concentrations in the airport vicinity due to reduced aircraft activities, while amplified O3 pollution due to a lower titration by NO under strong reduction in NOx emissions.  相似文献   

14.
田间原位开顶式臭氧熏蒸系统研究   总被引:3,自引:2,他引:1  
臭氧污染造成的粮食作物减产及经济损失受到普遍关注,研究植被对臭氧的响应是评估臭氧污染造成影响的重要依据. 针对国内外已有开顶式熏蒸系统的缺点,改进布气管的布气孔大小和形状,以保证气室内布气的均匀性;改进风机的供气方式,采用一供三的方式以提高各平行样间的平行性;通过计算机负反馈控制和采用引流装置,以提高臭氧浓度控制和测定的准确性. 在国内率先尝试在跟随环境臭氧浓度的基础上增加一定浓度的臭氧作为熏蒸气体. 田间实测表明:该装置气室内臭氧浓度与设定浓度一致且分布均匀,平行样的平行性好,气室内外温度、相对湿度及光照强度衰减均达到了国内外同类装置水平,可广泛用于田间原位大气污染物对植被影响的研究.   相似文献   

15.
冬小麦田O3气孔与非气孔沉降及风险评估   总被引:1,自引:1,他引:0  
徐静馨  郑有飞  赵辉  储仲芳  黄积庆  袁月 《环境科学》2017,38(10):4427-4437
为了深入了解农田生态系统的O_3干沉降过程,并基于O_3通量(尤其是气孔O_3累积通量)指标进行风险评估,利用涡度相关系统对冬小麦田的O_3干沉降过程进行了连续动态观测,初步分析O_3浓度和总O_3通量的变化过程,着重探析气孔O_3沉降和非气孔O_3沉降的变化特征及其与主要气象因子的关系,并基于剂量指标(AOT40)和通量指标(DF_s06)分别推算出冬小麦的产量损失率.结果表明,观测期间(自2016年3月16日至5月30日)日平均O_3浓度(cO_3)为32.9 n L·L-1;白天(08:00~18:00)和夜间平均总O_3通量(F_(O3))分别为-7.6 nmol·(m~2·s)~(-1)和-3.1 nmol·(m~2·s)~(-1),日均F_(O3)为-5.1nmol·(m~2·s)~(-1).逐日平均气孔O_3通量(F_s)的变化范围为0~-5.1 nmol·(m~2·s)~(-1),日均F_s为-1.43 nmol·(m~2·s)~(-1).逐日平均非气孔O_3通量(F_(ns))的变化范围为-1.43~-10.31 nmol·(m~2·s)~(-1),日均F_(ns)为-3.66 nmol·(m~2·s)~(-1).较强的太阳辐射(SR)、较高的温度(T)和适度湿润的条件有利于冬小麦气孔沉降;较强的SR、适度的T和湿润条件是有利于冬小麦非气孔沉降.在整个观测期间,总O_3累积吸收通量(DF_(O3))、气孔O_3累积吸收通量(DF_s)和非气孔O_3累积吸收通量(DF_(ns))分别为31.58、9.99和21.59 mmol·m~(-2),总DF_s和总DF_(ns)分别占总DF_(O3)的32%和68%.通过剂量指标AOT40和通量指标DF_s06响应方程计算出的冬小麦产量损失率分别为11.58%~20.37%和20%~23.56%.  相似文献   

16.
As compared to conventional diesel heavy-duty vehicles, natural gas vehicles have been proved to be more eco-friendly due to their lower production of greenhouse gas and pollutant emissions, which are causing enormous adverse effects on global warming and air pollution. However, natural gas vehicles were rarely studied before, especially through on-road measurements. In this study, a portable emission measurement system (PEMS) was employed to investigate the real-world emissions of nitrogen oxides (NOx) (nitrogen monoxide (NO), nitrogen dioxide (NO2)), total hydrocarbons (THC), carbon monoxide (CO), and carbon dioxide (CO2) from two liquified natural gas (LNG) China V heavy-duty cleaning sanitation trucks with different weight. Associated with the more aggressive driving behaviors, the vehicle with lower weight exhibited higher CO2 (3%) but lower NOx (48.3%) (NO2 (78.2%) and NO (29.4%)), CO (44.8%), and THC (3.7%) emission factors. Aggressive driving behaviors were also favorable to the production of THC, especially those in the medium-speed range but significantly negative to the production of CO and NO2, especially those in the low-speed range with high engine load. In particular, the emission rate ratio of NO2/NO decreased with the increase of speed/scaled tractive power in different speed ranges.  相似文献   

17.
The uptake of NO, NO2 and O3 by sunflowers (Helianthus annuus L. var. giganteus) and tobacco plants (Nicotiana tabacum L. var. Bel W3), using concentrations representative for moderately polluted air, has been determined by gas exchange experiments. Conductivities for these trace gases were measured at different light fluxes ranging from 820 μEm−2s−1 to darkness. The conductivities to water vapor and the trace gases are highly correlated. It is concluded that the uptake of NO, NO2 and O3 by sunflowers and tobacco plants is linearly dependent on stomatal opening. While the uptake of NO is limited by the mesophyll resistance, the uptake of NO2 is only by diffusion through the stomata. Loss processes by deposition to the leaf surfaces are more pronounced for O3 than for NO and NO2.  相似文献   

18.
The iron and steel industry is not only an important foundation of the national economy, but also the largest source of industrial air pollution. Due to the current status of emissions in the iron and steel industry, ultra-low pollutant emission control technology has been researched and developed. Liquid-phase proportion control technology has been developed for magnesian fluxed pellets, and a blast furnace smelting demonstration project has been established to use a high proportion of fluxed pellets (80%) for the first time in China to realize source emission reduction of SO2 and NOx. Based on the characteristics of high NOx concentrations and the coexistence of multiple pollutants in coke oven flue gas, low-NOx combustion coupled with multi-pollutant cooperative control technology with activated carbon was developed to achieve efficient removal of multiple pollutants and resource utilization of sulfur. Based on the characteristics of co-existing multiple pollutants in pellet flue gas, selective non-catalytic reduction (SNCR) coupled with ozone oxidation and spray drying adsorption (SDA) was developed, which significantly reduces the operating cost of the system. In the light of the high humidity and high alkalinity in flue gas, filter materials with high humidity resistance and corrosion resistance were manufactured, and an integrated pre-charged bag dust collector device was developed, which realized ultra-low emission of fine particles and reduced filtration resistance and energy consumption in the system. Through source emission reduction, process control and end-treatment technologies, five demonstration projects were built, providing a full set of technical solutions for ultra-low emissions of dust, SO2, NOx, SO3, mercury and other pollutants, and offering technical support for the green development of the iron and steel industry.  相似文献   

19.
疏水型H-ZSM-5分子筛上NO氧化反应的研究   总被引:5,自引:2,他引:3       下载免费PDF全文
针对NO低温氧化催化剂的抗水汽性差的问题,以疏水型高硅H-ZSM-5分子筛为NO氧化催化剂,在温度为10~90℃、NO进口浓度为0.05%~0.08%,及相对湿度为0~100%条件下,考察了NO的氧化反应.结果表明,H-ZSM-5分子筛的硅铝比由50提高至300时,湿气条件(水汽含量1.18%)下,NO氧化率由20%升高至56%;干气下,低温有利于NO氧化;湿气下(水汽含量1.18%),NO氧化率随着温度的升高先增加后减少,最佳反应温度为20℃,与NOx工业废气的排放温度相近.200h的稳定性试验结果显示,在30℃、NO进口浓度0.08%、空时0.5s、保持相对湿度为50%或100%时,NO氧化率可维持在60%和50%,催化剂具有良好的稳定性.  相似文献   

20.
A novel ferruginous active absorbent, prepared by fly ash, industrial lime and the additive Fe(VI), was introduced for synchronous abatement of binary mixtures of SO2–NOx from simulated coal-fired flue gas. The synergistic action of various factors on the absorption of SO2 and NOx was investigated. The results show that a strong synergistic effect exists between Fe(VI) dose and reaction temperature for the desulfurization. It was observed that in the denitration process, the synergy of Fe(VI) dose and Ca/(S + N) had the most significant impact on the removal of NO, followed by the synergy of Fe(VI) and reaction temperature, and then the synergy of reaction temperature and flue gas humidity. A scanning electron microscope(SEM) and an accessory X-ray energy spectrometer(EDS)were used to observe the surface characteristics of the raw and spent absorbent as well as fly ash. A reaction mechanism was proposed based on chemical analysis of sulfur and nitrogen species concentrations in the spent absorbent. The Gibbs free energy, equilibrium constants and partial pressures of the SO2–NOx binary system were determined by thermodynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号