首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimates of external and internal sources of ions in net througfall deposition were derived for a deciduous and coniferous canopy by use of multiple regression. The external source component appears to be dominated by dry deposition of Ca2+, SO2 and NO3 during dormant and growing seasons for the two canopy types. Increases in the leaching rates of K+ and Mg2+ during the growing season reflect the presence of leaves in the deciduous canopy and increased physiological activity in both canopies. Internal leaching rates for SO42− doubled during the growing season presumably caused by increased physiological activity and uptake of SO2 through stomates. Net deposition of SO42− in throughfall during the growing season appears highly dependent on stomatal uptake of SO2. Estimates of SO2 deposition velocities were 0.06 cm s−1 and 0.13 cm s−1 for the deciduous and coniferous canopies, respectively, during the dormant seasons, and 0.30 cm s−1 and 0.43 cm s−1 for the deciduous and coniferous canopies, respectively, during the growing season. For the ions of major interest with respect to ecosystem effects, namely H+, NO3 and SO42−, precipitation inputs generally outweighed estimates of dry deposition input. However, net throughfall deposition of NO3 and SO42− accounted for 20–47 and 34–50 per cent, respectively, of total deposition of those ions. Error estimates of ion sources were at least 50–100 per cent and the method is subject to several assumptions and limitations.  相似文献   

2.
A specially designed recirculating environmental chamber was constructed to study the environmental factors affecting the deposition of pollutant gases to the surface of stone and other building materials. The chamber and sample holder are designed to place samples in an aerodynamically well-defined air flow. The system is designed to permit use of radioactive 35SO2 as a tracer if necessary. A wide range of typical environmental conditions can be continuously maintained in the chamber. Wind speeds in the test section can range up to about 5 ms−1, exposing replicate samples to air flow that is uniform to within approximately 3%. Relative humidity in the chamber can be maintained to within 3%, and SO2, NO2 and O3 concentrations in the chamber air can be maintained to within 4%. Test results indicate SO2 deposition and wind speed in the chamber are closely correlated, allowing for a direct determination of the surface resistance (rc) component of the SO2 deposition velocity to various test materials. Initial studies of SO2 deposition to limestone and marble indicate the rc values are approximately 1.3 s cm−1 for fresh limestone and 34 s cm−1 for fresh marble at 75% relative humidity, 26°C and 50 ppb SO2.  相似文献   

3.
This work demonstrates the existence of a linear relation between the deposition velocity of ammonia and the friction velocity measured above a spruce stand in the western part of Denmark. In order to estimate the ammonia deposition velocity and flux to a Norway spruce forest, concentration gradients of ammonia and several meteorological parameters were measured in a meteorology tower during two periods, 1 week in spring and 1 week in late summer 1991. The estimated deposition velocities lie in the range −0.125 to 0.201 m s−1, with a mean of 0.026 m s−1. The deposition velocity and the flux were generally largest in the afternoon. On the basis of 24-h measurements of ammonia and routine meteorological measurements the relation between deposition velocity and friction velocity is extrapolated to an estimate of the average flux for the growing season May to September 1991. The estimate gave an average flux of 87 μg NH3N m−2 h−1 (=0.02 μg NH3N m−2 s−1). The average deposition velocity for the period was 0.045 m s−1.  相似文献   

4.
An automated system based on the micrometeorological gradient technique has been developed to measure the dry deposition of SO2 on a routine basis. Measurements were made at two locations in the Netherlands. From these results dry deposition fluxes, dry deposition velocities and surface resistances for a heathland and for an agricultural grassland site were estimated using a selected set of data and a calculation procedure based on micrometeorological considerations. An extensive analysis was made to determine uncertainties in the resulting deposition parameters. From this analysis it has been concluded that the uncertainty in these parameters is almost completely determined by the random errors in measured concentrations. The meteorological surface exchange parameters can be estimated sufficiently accurately (<20% uncertainty). At the grassland site, average surface resistances to deposition of 6(±8) and 13(±12) s m−1 were calculated for wet and dry conditions, respectively. At the heathland site, a similar distinct difference between Rc values for wet and dry conditions was found. These values are 20(±21) and 70(±90) s m−1, respectively. The yearly average dry deposition flux for SO2 at the grassland site amounts to 585(±330) mol ha−1 yr−1, while at the heathland site the yearly average flux was 300(±270) mol ha−1 yr−1. The yearly average dry deposition velocity at 4 m height was 1.2(±0.3) cm s−1 at the grassland site and 0.8(±0.4) cm s−1 at the heathland site.  相似文献   

5.
Results of modelled and observed deposition velocities (Vd) for O3, SO2 and NO2 for time-averaged diurnal cycles and sometimes for a collection of hourly values taken from different days are discussed for different seasons. From the observations, it was found that the O3Vd values over a deciduous forest had a daytime representative value of 1.0 cm s−1 in the summer and 0.3 cm s−1 in the winter. For SO2 over the same forest and over a carrot field the daytime values ranged from 0.0 to 0.65 cm s−1 in the autumn, and for SO2 over a snow surface the Vd ranged from 0.0 to 0.15 cm s−1. The NO2Vd was mostly negative over the forest and the carrot field in the autumn and had a range of 0.0-0.15 cm s−1 over snow. From the model, it was found that for the three seasons the Vd values over all the land-use types were much larger than the observations. The model could not simulate the observed negative values of the NO2Vd. The impact of the Vd model and its modified version on the concentrations of O3 and SO2 were tested with a comprehensive Eulerian air quality model.  相似文献   

6.
The role of the gaseous pollutants, HCl and SO2, has been investigated in a laboratory-based atmospheric flow rig. Using an HCl level of 25 ppm at a pollutant bulk presentation rate 10 times that found typically outdoors, a degradation acceleration factor of about 20 times was obtained, together with realistic degradation products. HCl was found to be a more reactive gas than SO2, which was also studied at the 25 ppm level. This may be due either to factors involved in the adsorption of the gases on to the stone surfaces, or the extensive solubility of HCl, or the requirement of an extra step in the conversion of SO2 to sulphate, which would limit the overall reaction rate. The soluble degradation product CaCl2 is readily washed off the stone allowing continuous reaction, while the relatively insoluble CaSO4.2H2O can remain on, or in the stone surface regions and may inhibit or affect further reaction with SO2.The reaction of limestone with HCl gas is mass-transport limited and greater material losses arise in locations of higher HCl concentration and deposition velocity, i.e. a close-to-source effect is highlighted due to its high solubility and reactivity, but the HCl concentration is, of course, generally about one-fiftieth of that of SO2 outdoors. For SO2, with lower solubility and a necessary oxidation stage to form SO42−, comparatively high deposition velocities are applicable more widely from the source. The consequences include a widespread formation of relatively insoluble CaSO4.2H2O and consequent crust development.  相似文献   

7.
Atmospheric deposition of SO2, and fine particles of Pb and Cd are calculated over a one-year period in a 66 km2 airshed with a segment-puff model. Emission variations, hourly mixing heights and meteorological values are considered to compute monthly averages of concentrations and deposition. Dry deposition is calculated by means of deposition velocities which are season- and land use-dependent. Wet deposition is determined using a washout coefficient. To assess the simulation performance, calculated SO2 results from the combination between the deposition velocity, the windspeed and direction and the location and type of sources. As annual averages, results for dry plus wet deposition are computed to be 0.84 mg m−2d−1 for sulfur, 4.15 μgm−2d−1 for lead and 0.0013 μgm−2d−1 for cadmium. A variation factor is derived from a sensitivity analysis. This factor amounts to 2.3−2.8 for the concentrations and 2.6−3.1 for the deposition, depending on the pollutant.  相似文献   

8.
A time series of wet deposition in Arnhem, the Netherlands, was analysed for the period 1984–1991. Precipitation was collected with four samplers on a daily basis. A comparative study by the Dutch National Precipitation Network showed significant biases for the observations of the National Network station due to longer exposure to dry deposition. Simultaneous operation of wet-only and bulk collectors demonstrated a concentration bias of about 10% for daily bulk sampling.Using a cluster analysis of backward trajectories, clear distinctions could be made between precipitation from continental and maritime origin. Event-to-event variations in deposition seemed to be determined largely by meteorological influences. As major anthropogenic source regions, the U.K., France, Belgium and the Netherlands itself were identified. The contribution of Dutch sources to wet acid deposition in Arnhem was estimated at 30–40%.Trends and seasonal variations were analysed with an advanced time-series model based on Kalman filtering. Similar seasonal variations were found for SO42− and NH4+. Also, seasonal variations in the concentrations of H+ and NO3 corresponded. Significant long-term changes in deposition and concentration were found for SO42− (about −3% yr−1) and H+ (about −9% yr−1) only. The analysed trends were decreasing, but decreases were larger in the years 1984–1986 than in the following years. The relative decrease in the wet deposition of SO42− was substantially smaller than decrease in dry-deposited SO2 and SO42−.  相似文献   

9.
Atmospheric dry deposition to branches of Pinus contorta and P. albicaulis was measured during summer 1987 in a sub-alpine zone at Eastern Brook Lake Watershed (EBLW), eastern Sierra Nevada, California. Results are presented as deposition fluxes of NO3, SO42−, PO43−, Cl, F, NH4+, Ca2+, Mg2+, Na+, K+, Zn2+, Fe3+, Mn2+, Pb2+ and H+, and compared with other locations in California and elsewhere. Deposition fluxes of anions and cations to the pine branches were low, several times lower than the values determined near the Emerald Lake Watershed (ELW), another sub-alpine location in the western Sierra Nevada. The sums of deposition fluxes of the measured cations and anions to pine surfaces were similar, in contrast to the ELW location where the sums of cation fluxes were much higher than the sums of anion fluxes. A strong positive correlation between depositions of NO3 and NH4+, as well as SO42− and Ca2+, suggested that large portions of these ions might have originated from particulate NH4NO3 and CaSO4 deposited on pine surfaces. An estimated total N dry deposition (surface deposition of NO3 and NH4+ and internal uptake of NO2 and HNO3) to the forested area of the EBLW was 29.54 eq ha−1 yr (about 414 g H ha−1 yr−1).  相似文献   

10.
The precipitation chemistry of Greater Manchester, a Metropolitan County in the northwest of England, has been examined for small scale spatial variability using a network of 18 bulk precipitation collectors. Significant spatial variability was found for concentrations of non-marine SO42−, NO3, NH4+, Ca2+ and H+ ions. The statistical associations between the data were investigated using correlation, partial correlation and principal components analyses. It was found that zero-order correlation coefficients were inadequate for the interpretation of the data and that the computation of first, and higher order partial correlation coefficients was necessary in order to explain the interrelationships between the data and their spatial variability. The statistical associations between the data suggest relationships between Ca2+ and non-marine SO42−, and NO3+ in precipitation which are discussed in terms of their possible precursor species. Potential source effects were examined in conjunction with atmospheric removal processes. The dry deposition of SO4 particles, rather than the dry deposition of SO2, may explain the spatial variability of non-marine SO42−. The erosion of CaSO4 formed from the reaction of SO2 with CaCO3 on urban surfaces with subsequent resuspension is thought to be the basis of the relationship between Ca2+ and non-marine SO42− concentrations in precipitation. The wet and dry deposition of CaCO3 particles from local sources may be partially responsible for the spatial variability of H+, and dry deposition and scavenging of NH3, in conjunction with the predominant wind direction may explain the spatial variability of NO3 and NH4+ ions. Ammonia is thought to originate from sources both outside the study area and within it.  相似文献   

11.
Atmospheric dry deposition of ions to branches of native Pinus contorta and Pinus monticola (natural surfaces), and nylon filters and Whatman paper filters (surrogate surfaces) were measured in the summer of 1987 in the vicinity of Emerald Lake Watershed (ELW) of the Sequoia National Park located on the western slope of the Sierra Nevada in California. Deposition fluxes of airborne NO3, NH+4 and SO2−4 to native pines at the ELW were much higher than in the eastern Sierra Nevada, but several times lower than deposition fluxes to natural and surrogate surfaces at the highly polluted site in the San Gabriel Mountains of southern California. Deposition fluxes of NO3 and NH4+ to the natural and surrogate surfaces at the ELW were much higher than deposition of SO42−, providing the importance of N compounds in atmospheric dry deposition in this part of the western U.S. A deficit of inorganic anions in materials deposited to various surfaces indicated a possibility of substantial participation of organic acids in atmospheric dry deposition processes. Nylon and paper filters proved to be poor surrogate surfaces for the estimation of ionic dry deposition to conifer branches.  相似文献   

12.
The design philosophy, construction and use of two exposure test systems are described, in which the objective is to simulate the degradation of stone samples under, respectively, the ‘dry’ and ‘wet’ deposition of atmospheric pollutants. Some element of realistic acceleration is possible in certain experiments. Particular emphasis is placed upon using known presentation rates of the pollutants, both in respect of typical depositions of pollutants and their oxidation products appropriate for an industrial atmosphere. In the dry deposition rig, SO2, NO2, NO, HCl and the oxidant O3 are presented individually or together at realistic deposition rates. In the wet deposition apparatus, SO2−4, NO3 and Cl at a pH of 3.5, simulating ‘acid rain’ but in a more concentrated form, are deposited. The dry deposition chamber can be operated at constant relative humidity (typically 84%) with pre-dried or precisely wetted stones to simulate episodic rain wetting, or using other methods of wet/dry cycling, which are also a feature of the wet deposition chamber. Heating and cooling of the samples is also possible, as is the use of shaped or coupled stones of different kinds such as are found in a building facade. The results are illustrated in terms of data on the weight change, the anion content of stone and run-off, the pH change of run-off and the total calcium reacted, using Portland stone, as a prelude to later papers in which behaviour of a whole matrix of stone types and environments is presented and discussed. Such an approach permits the eventual production of ‘pollutant-material response’ relationships and damage functions for comparison with and prediction of external exposure results.  相似文献   

13.
The theoretical analysis for measurement of building-damage parameters by RF-GC technique is applied to the action of SO2 and NO2 on marble. The experiments with SO2 were performed with five different geometric forms of single pieces of marble at 373.2 K and were repeated after washing these pieces 8 times with three-distilled water. All six physicochemical parameters determined show negligible variations for the same solid form at the same temperature, but they are different for the various geometrical forms. The mass transfer coefficients Kg and Ks and their ratio K seem to be the most invariant parameters with respect to the form. After washing with water, some of the parameters change considerably.The action of NO2 was studied on a sphere only, but at five different temperatures. The physicochemical parameters for the action of this gas are three orders of magnitude smaller than those of SO2 (except K), leading to 3700 times bigger resistance of marble to mass transfer of NO2 than of SO2. From the variation of the parameters with temperature, it is concluded that both mass transfer coefficients, Kg and Ks, pertain to activated processes with activation energies 39 and 27 kJ mol−1, respectively. The reaction of the adsorbed gas with the solid is less activated, whereas the adsorption equilibrium constant K does not change with temperature.  相似文献   

14.
One of the goals of NAPAP-sponsored research on the effects of acidic deposition on carbonate stone has been to quantify the incremental effects of wet and dry deposition of hydrogen ion, sulfur dioxide and nitrogen oxides on stone erosion. Test briquettes and slabs of freshly quarried Indiana limestone and Vermont marble have been exposed to ambient environmental conditions in a long-term exposure program. Physical measurements of the recession of test stones exposed to ambient conditions at an angle of 30° to horizontal at the five NAPAP materials exposure sites range from ∼ 15 to ∼ 30 μm yr−1 for marble, and from ∼ 25 to ∼ 45 μm yr−1 for limestone, and are approximately double the recession estimates based on the observed calcium content of run-off solutions from test slabs. The difference between the physical and chemical recession measurements is attributed to the loss of mineral grains from the stone surfaces that are not measured in the run-off experiments. The erosion due to grain loss does not appear to be influenced by rainfall acidity, however, preliminary evidence suggests that grain loss may be influenced by dry deposition of sulfur dioxide between rainfall events. Chemical analyses of the run-off solutions and associated rainfall blanks suggest that ∼ 30% of erosion by dissolution can be attributed to the wet deposition of hydrogen ion and the dry deposition of sulfur dioxide and nitric acid between rain events. The remaining ∼ 70% of erosion by dissolution is accounted for by the solubility of carbonate stone in rain that is in equilibrium with atmospheric carbon dioxide (“clean rain”). These results are for marble and limestone slabs exposed at an angle of 30° from horizontal. The relative contribution of sulfur dioxide to chemical erosion is significantly enhanced for stone slabs having an inclination of 60° or 85°. The dry deposition of alkaline particulate material has a mitigating effect at the two urban field exposure sites at Washington, DC, and Steubenville, OH.  相似文献   

15.
Chemical composition of precipitation in Albany, NY from July 1986 to December 1988 has been studied. Mean volume-weighted concentrations (μeqℓ−1) were: acidity, 104.0; alkalinity, −63.7; SO42−, 52.8; NO3, 29.8; Cl, 5.6; F, 0.50; NH4+, 19.3; Ca2+, 6.5; Mg2+, 2.8; Na+, 3.5; and K+, 1.4. Mean pH was 4.2 . Seasonal patterns were pronounced for most species. Concentrations of H+, SO42−, NO3, NH4+ and Ca2+ peaked in the summer and spring. Deposition was related to rainfall amount by a power law relationship in which the exponent of the equation was ∮.6. Wet SO42− deposition was 2.35 keq ha−1 over a 30-month period. The SO42− and NO3 deposition rates observed at Albany indicate that transport from midwestern sources have a major influence at this site. On the average, free H+ ion concentrations determined from pH measurements accounted for 51% of the measured total acidity. There were unknown species, most likely organic acids, that could contribute to the acidity. Correlation and regression analyses indicated that major anions, SO42− and NO3, were closely associated with H+ and NH4+ ions. Factor analysis revealed four common factors which are related to fossil-fuel combustion, sea spray, cement factory and biomass burning.  相似文献   

16.
Assessment of the effect of reduction in emissions of primary sources on eventual levels of pollutants, pH of precipitation and total wet deposition is crucial in designing acid-rain control strategies. The STEM-II/ASM model is used to investigate the effect of reduction in emissions on the ultimate deposition patterns and amounts of major acidic pollutants in a mesoscale region. This work also investigates the effect of background levels of primary pollutant species on the eventual levels and deposition amounts of SO4= and NO3. A series of mesoscale simulations were conducted in which emissions of primary sources of NOx and SO2 were reduced and/or background concentrations of certain key species were changed. The results indicate that the dominant effect on the eventual deposition amounts of SO4= and NO3 is due to background concentrations of key precursor species such as SOx and NOx. With relatively high background concentrations, reducing SO2 emissions by 50% and NOx emissions by 40% resulted in reductions of 2–3% for SO4= wet deposition aand about 15% for NO3 wet deposition. However, reducing the background concentrations of SO2 and SO4= by 50% and NO, NO2 and HNO3 by 40% resulted in substantial reductions in wet deposition; SO4= deposition was reduced by 40–50% and NO3 deposition was reduced by approximately 35%.  相似文献   

17.
Wet precipitation-only samplers were used to collect wet deposition at two sites in the Athens basin, Greece for the period March 1986–February 1987.Concentrations of major cations (H+, NH+4, Na+, K+, Ca2+ and Mg2+) and major anions (Cl, NO3 and SO2−4) were determined for the first time in rainwater samples in Greece. Bicarbonate concentrations were calculated. The relative importance of natural and anthropogenic sources were estimated by a chemical balance. The majority of rain collected has a neutral or alkaline character. Acidity was due to the presence of H2SO4 and HNO3. The statistical analysis of the correlation between the concentration of chemical species confirm the influence of natural and anthropogenic sources. In all samples, SO2−4 concentrations exceed NO3 concentrations despite the dominance of low S oil burning in the region. The wet flux of S was calculatd to be 0.34 gm−2a−1.  相似文献   

18.
The formation of H2O2 in the reactions of ozone with alkenes, isoprene and some terpenes has been studied with tunable diode laser absorption spectroscopy. The measured yields of H2O2 were found to be considerably enhanced in the presence of water vapour. H2O2 is thought to be formed in the ozonolysis of the alkene with O3 by direct reaction of an intermediate with water vapour. The yield of H2O2 relative to the reacted alkene in the ozonolysis of trans-2-butene in the presence of water vapour was also studied with long path FTIR spectroscopy. Irrespective of the analytical methods and reaction conditions applied, the H2O2 yields in the reaction of O3 with the different alkenes in the presence of water vapour were found to be in the range of a few per cent or less. Under the assumption that the reactive species forming H2O2 in the ozonolysis is the Criegee biradical, the overall rate constants for the reactions of some biradicals with water vapour were measured relative to the rate constant of the biradical with SO2. For the H2COO biradical a rate constant of (5.8 ± 2.5) × 10−17 cm3 s−1 was determined and for the (CH3)2COO biradical (2.9 ± 1.5) × 10−17 cm3 s−1; in the latter case with the assumption that (CH3)2COO reacts with SO2 as fast as CH2COO.  相似文献   

19.
Wet deposition measurements of H+, SO42− and NO3 from 29 monitoring sites located in (16) and around (13) Pennsylvania, U.S., were analyzed to quantify errors associated with extrapolating point estimates of deposition using five surface-fitting algorithms. The influence of site density on estimation errors associated with each surfacing algorithm was also investigated. The five surfacing differed little in their abilities to predict the concentration or deposition of individual ions found in precipitation in Pennsylvania. However, the size of estimation errors for all parameters, even those based on the densest network, were quite high relative to the variation observed among monitoring sites in Pennsylvania. All monitoring site observations were within 22.8, 17.6 and 23.1 per cent of the median concentration and 33.9, 35.3 and 36.7 per cent of the median deposition for H+, NO3 and SO42−, respectively. Maximum per cent errors indicate that estimation errors may severely obscure actual surface features in at least some portions of the estimated concentration and deposition grids in Pennsylvania. Deposition and concentration estimates based on higher density networks were generally more accurate; however, the improvements afforded by the additional sites were quite modest. Based on the magnitude of estimation errors, kriging produced the most accurate estimates, although no single algorithm consistently yielded the most accurate estimates for all parameters.  相似文献   

20.
A controlled field study was conducted at Research Triangle Park, NC, to determine how shape, size and orientation of galvanized steel structures affect (1) dry deposition of SOx and NOx compounds and (2) dissolution of Zn corrosion products resulting from such deposition. Thirteen structures of various shapes, sizes and orientations were exposed to dry deposition only for 100 weeks, during which they were rinsed with deionized water every 2 weeks and the rinses were analysed for Zn, Ca, and their ionic contents. The rinse data are consistent with size, orientation and exposure history affecting dry deposition of SO2−4 precursors such as SO2. Dry deposition of precursors of surface NO3, including HNO3, is affected by structure size. A model regression equation is presented that shows that Zn dissolution can be explained in terms of the SO−24 and NO3 rinse concentrations. The experimental results suggest that there is likely to be some error associated with extrapolating galvanized steel test panel results to actual structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号