首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
苏州市人为源挥发性有机物排放清单及特征   总被引:2,自引:0,他引:2  
华倩雯  冯菁  杨珏  武剑  张园 《环境科学学报》2019,39(8):2690-2698
掌握挥发性有机物(VOCs)排放清单是研究区域大气复合污染和控制策略的基础.本文通过结合国内外学者的源清单研究成果对苏州市人为源VOCs进行系统分类,并根据苏州市相关统计数据和实地调研结果,采用排放因子法建立了苏州市2016年人为源VOCs排放理论值清单.结果表明,2016年苏州市人为源VOCs排放总量约为2.75×10~5 t,其中,生物质燃烧源、化石燃料燃烧源、工业过程源、溶剂使用源、移动源、储存源和生活源分别占排放总量的3.9%、4.3%、22.8%、36.7%、24.0%、6.3%和2.0%.纺织印染、电子设备制造、机械设备制造、橡胶塑料制品生产、基础化学原料制造及建筑装饰、轻型客车制造是苏州市人为源VOCs排放的重点行业(产业),排放量均超过1×10~(4 )t.苏州市各县级市及市辖区中,市辖6区及张家港市的总排放量较高,约占总排放量的60%,张家港市和昆山市的平均排放强度较高,均超过了40 t·km~(-2).  相似文献   

2.
四川省2012年人为源氨排放清单及分布特征   总被引:10,自引:1,他引:9  
根据收集到的各类人为氨源的活动水平数据,采用合理的估算方法和排放因子,建立了四川省2012年人为源氨排放清单,并分析了氨排放的空间分布特征.结果表明:四川省2012年人为源氨排放总量为994.8×103t,排放强度为2.12 t·km-2;畜禽养殖为最主要的排放源,分担率达62.31%,其次为氮肥施用,分担率为23.14%;生猪和牛是畜禽养殖中主要贡献者,共占畜禽排放总量的64%;成都市和达州市为氨排放量较大的城市,均占四川省排放总量的10%;空间分布特征显示排放量较大的网格主要集中在四川省东部,且多来自于城市周边区县.  相似文献   

3.
长株潭地区人为源氨排放清单及分布特征   总被引:12,自引:8,他引:4  
根据收集到的长株潭地区各类人为源氨排放的活动水平数据和排放系数,建立了长株潭地区2013年人为源氨排放清单,并根据空间特征数据进行了3 km×3km的空间网格分配.结果表明,长株潭地区2013年人为源氨排放总量为7.27×10~4t,排放强度为2.59 t·km~(-2);其中,畜禽养殖业和农田生态系统为最主要的氨排放源,氨排放分担率分别达58.60%和29.73%;畜禽养殖业中,肉牛、蛋鸡和肉猪是主要贡献源,分别占畜禽养殖业氨排放总量的26.26%、21.40%和18.43%;宁乡县、湘潭县和浏阳市为氨排放量较大的县市,分别占长株潭地区氨排放总量的17.49%、12.82%和12.02%;石峰区和岳塘区的氨排放强度最大,分别达到了9.14 t·km~(-2)和5.01 t·km~(-2).空间分布特征显示排放量较大的网格主要是大型点源.  相似文献   

4.
浙江省人为源氨排放清单建立及分布特征   总被引:7,自引:6,他引:1  
赵睿东  于兴娜  侯新红  沈丽 《环境科学》2020,41(9):3976-3984
通过收集各类氨排放源的活动水平数据,选取合适的排放因子以及估算方法,建立了2017年浙江省人为源氨排放清单,分析各排放源的排放分摊率以及浙江省各市的排放情况,并利用ArcGIS对浙江省氨排放量和排放强度的空间分布进行分析.结果表明, 2017年浙江省人为源氨排放量为122.00 kt,以农业源排放为主,其中农田生态系统氨排放量最高,达到36.06 kt,并以氮肥施用贡献最大(87.12%);其次是禽畜养殖,占到人为源氨排放总量的29.44%.非农业源中废物处理和人体排放源贡献最大,分别占到非农业源氨排放量的44.07%和28.49%. 2017年杭州市氨排放量最高,占浙江省氨排放总量的17.83%;但嘉兴市的氨排放强度最大,达到3.82 t·km~(-2).从空间分布来看,氨排放量主要集中在浙江省北部和东南部,而浙江省北部和东北部的氨排放强度相对较高.  相似文献   

5.
2013~2017年江苏省人为源氨排放清单的建立及特征   总被引:2,自引:7,他引:2       下载免费PDF全文
根据江苏省各类氨排放源活动水平数据,采用合理的清单测算方法和排放因子,建立了2013~2017年江苏省人为源氨排放清单,对其历年来人为源氨排放量的变化趋势进行分析.利用Arc GIS软件对江苏省人为源氨排放量及排放强度的分布特征进行分析.结果表明,江苏省的氨排放量由2013年的624. 84 kt减少至2017年的562. 47 kt,年均下降率约为2. 6%.农业源一直是江苏省最主要的氨排放源,2017年时占江苏省氨排放总量的82. 4%;蛋鸡是畜禽养殖源中最大的氨排放源,占畜禽源氨排放量的49. 3%. 2017年江苏省氨平均排放强度为5. 3 t·km~(-2),其中盐城市和徐州市是江苏省人为源氨排放量和排放强度最大的两个城市,镇江市的氨排放量和排放强度最小.  相似文献   

6.
武汉市秸秆燃烧VOCs排放估算及管理对策   总被引:1,自引:0,他引:1  
黄碧捷 《环境科学》2013,34(12):4543-4551
秸秆燃烧是我国人为源挥发性有机物(volatile organic compounds,VOCs)排放的重要来源之一,其排放对气候变化和人体健康都有很大影响.对该来源VOCs排放量的可靠估算是在区域或城市范围内进行排放效应分析和污染控制的重要前提.根据2005~2011年武汉市农作物的总产量,采用排放因子分析法估算了武汉市及主要6个农作物产区的秸秆燃烧VOCs的排放量,并分别计算其耕地排放强度(I c)和区域排放强度(I r).结果表明,武汉市2005~2011年年均秸秆燃烧VOCs排放量约为(3 163±139)t,I c和I r分别为(1.52±0.06)t·km-2和(0.37±0.02)t·km-2.粮食类和油料类农作物秸秆燃烧是主要的排放源,需优先控制7大类21种VOCs物质.武汉市分区VOCs排放量从大到小排序依次为黄陂区、新洲区、江夏区、蔡甸区、汉南区、东西湖区,前4个区的排放总量占到武汉市的近九成.江夏区、汉南区、黄陂区和新洲区应作为秸秆燃烧VOCs排放的优先控制区,尤其是能作为全国代表性的江夏区,应引起高度重视.在进行区域或城市范围的秸秆燃烧产生污染物质的生态风险评价时,该污染物的I c和I r都是需要考虑的重要基础数据.最后,提出大力发展农村秸秆资源综合循环经济利用是解决区域或城市范围内秸秆燃烧产生环境问题的可行之径.  相似文献   

7.
我国空气污染物人为源排放清单对比   总被引:6,自引:0,他引:6  
空气污染物排放清单是影响数值模式结果准确性的关键因子之一. 定义不同排放清单中同一污染物排放量最大值与最小值之差与平均值的比值为差异度,对比分析了4个国内外广泛应用的人为污染源排放清单(TRACE-P、INTEX-B、REAS1.1和REAS2.0). 结果表明:INTEX-B、REAS1.1和REAS2.0清单中给出的2006—2007年我国(不包括港澳台地区数据)SO2排放量差异度为12%,而在SO2排放量较大的省份(如山东、河北和河南等)差异度达30%以上; NOx和NMVOC(非甲烷挥发性有机物)的排放量差异度分别为51%和30%,在山东、江苏、浙江、北京和上海等经济较发达地区的差异度达到20%~80%. 相对于2000年的排放清单,2006—2007年排放清单各污染物的排放量增长明显,SO2、NOx和NMVOC的排放量在INTEX-B、REAS1.1和REAS2.0清单中的平均值分别为TRACE-P清单的1.6、1.9和1.5倍. 近年来经济的高速发展、能源消耗的增长和空气污染控制技术的应用等都会影响人为活动水平和排放因子的选取,这也是造成排放清单间存在差异的主要原因.   相似文献   

8.
氯自由基对于臭氧和二次气溶胶的生成贡献不容忽视.夜间颗粒相氯(Cl~-)可以通过与N_2O_5的复杂反应转化生成ClNO_2,其光解产生的氯自由基将显著影响大气污染的形成机制.本文以上海地区为案例,以2017年为基准年,收集了人为源活动水平数据,采用排放系数估算方法,首次建立了上海地区人为源氯化氢(HCl)和颗粒氯(Cl~-)的排放清单;并进一步结合模型计算海盐气溶胶排放的颗粒氯(Cl~-).结果表明,2017年上海市人为源和天然源排放的HCl和Cl~-分别为1207 t和820 t,其中,燃煤、工业、垃圾焚烧和秸秆燃烧产生的HCl排放量分别为327、134、722和24 t.燃煤源中的燃煤电厂和其它行业燃烧约占燃煤源排放的80%;工业源中水泥为HCl的最大排放源,约占工业源排放的51%;垃圾焚烧厂排放约占总HCl排放的60%,为最大的HCl排放源.燃煤、工业源、垃圾焚烧、秸秆焚烧、烹饪源和海盐的颗粒Cl~-排放量分别为82、153、498、47、39和0.6 t,燃煤源中的燃煤电厂占燃煤Cl~-排放的40%,供热、其他行业和家庭燃烧分别占燃煤Cl~-排放的24%、22%和14%;钢铁行业为工业源的主要Cl~-排放源,约占工业源排放的90%,垃圾焚烧厂占全部Cl~-排放的61%,烹饪源中餐饮企业为最主要排放源,占烹饪源的70%;天然源海盐的排放量极少,未占到总排放的1%.从空间分布来看,浦东新区、宝山、普陀、松江和金山排放的HCl和Cl~-占到全市人为源总排放的80%,为主要的HCl和Cl~-排放区域.本文研究建立的上海地区大气中氯化氢和颗粒氯排放源清单,对于深入研究氯化学机制对二次污染的影响提供了重要的数据参考.  相似文献   

9.
西安市人为源大气氨排放清单及特征   总被引:10,自引:7,他引:3  
根据西安市各类氨排放源活动水平数据,采用合理的估算方法和排放因子,建立了2013年西安市人为源大气氨排放清单.结果表明,2013年西安市人为源大气氨排放量为47.17×10~3t,排放强度为4.57 t·km~(-2);畜禽养殖和氮肥施用是排放贡献最大的两个人为源,氨排放量分别为20.55×10~3t和17.51×10~3t,占排放总量的80.68%;畜禽养殖中,牛和猪是最大的排放源,占畜禽养殖排放总量的75.03%;临潼区是排放量最大行政区,排放量为10.73×10~3t,分担率为23.22%;阎良区的排放强度最大,达到14.75 t·km~(-2).  相似文献   

10.
Methane measurements from weekly air samples collected at Tae-ahn Peninsula, Korea (TAP) present new constraints on the regional methane source strength of eastern Asia. Analysis of atmospheric trajectories shows that the lowest methane values observed at Tae-ahn are associated with southeasterly flow off the tropical Pacific Ocean and are similar to those observed at Cape Kumukahi, Hawaii. During June to August, northwesterly flow from the peat-rich wetlands located in the maritime provinces of the Far East former Soviet Union elevates methane at TAP by ∼80 ppb above the annual mean. Analysis of the Tae-ahn observations using a 3-D atmospheric methane model suggests that methane emission rates from the Far East Soviet wetlands may be ∼2 times those of Alaskan wetlands. Also, the relative maximum in May June at Tae-ahn constraints global CH4 emissions from rice cultivation to ∼100 Tg yr−1.  相似文献   

11.
河南省2013年大气氨排放清单建立及分布特征   总被引:6,自引:6,他引:0  
根据收集到的城市尺度排放源活动水平数据,采用排放因子法,基于"自上而下"和"自下而上"相结合的方式建立了河南省2013年大气氨排放清单,利用GIS技术进行3 km×3 km空间网格分配.结果表明,河南省2013年大气氨排放总量为1035.3 kt,排放强度为6.4 t ·km-2;畜禽养殖和氮肥施用为主要氨排放源,分别占总排放量的52.71%和31.53%;畜禽养殖中肉牛、蛋禽和山羊为主要贡献源,分别占畜禽养殖排放总量的34.98%、16.63%和14.02%;不同城市排放源构成和排放强度不同;南阳市、周口市、商丘市和驻马店市是排放量较大的地级市,分别占全省总量的11.53%、9.84%、9.62%和9.57%;濮阳市和漯河市排放强度最大,分别达到10.7 t ·km-2和10.2 t ·km-2;空间分布特征显示,中东部地区排放量较高,西部地区相对较低,排放量较大的地区集中在平原地区和人口密集区域.  相似文献   

12.
廊坊市区主要大气污染源排放清单的建立   总被引:4,自引:1,他引:3  
通过调研、统计廊坊市区工业、城中村及机动车等资料,结合以往清单文献研究结果及清单编制指南中的排放因子,计算了廊坊市区主要大气污染物的排放量,得到廊坊市区2014年主要大气污染源排放清单.结果显示,2014年廊坊市区工业源(固定燃烧)NO_x、SO_2、NMVOC、CO、PM_(10)、PM_(2.5)排放总量分别为6.4×10~3、1.2×10~4、31、1.0×10~4、7.3×10~2、4.4×10~2t,其中热电行业排污贡献率最高,分别占NO_x、SO_2、CO、PM_(10)、PM_(2.5)工业源(固定燃烧)年排放总量的55%、48%、67%、63%、69%;安次区工业企业对气态污染物贡献较高,广阳区及开发区工业企业对颗粒物排污贡献较大.低矮面源(城中村)NO_x、SO_2、NMVOC、CO、PM10、PM_(2.5)年排放总量分别为1.8×10~2、3.6×10~3、3.0、4.9×10~3、1.5×10~2、72 t.道路移动源CO、HC、NO_x、PM_(2.5)年排放总量分别为2.4×10~4、1.9×10~3、2.2×10~3、44 t,其中小型客车对HC和CO贡献率较高,分别为53%和61%;NO_x年排放总量中26%由重型货车贡献;PM_(2.5)则主要由轻型货车和重型货车贡献,占比分别为39%和21%.  相似文献   

13.
颗粒物是影响西安市环境空气质量的主要因子.结合《西安统计年鉴2015》《2014年环境统计数据》和现场调查等确定了西安市各类PM2.5排放源的活动水平数据,采用物料衡算法和排放因子法测算了西安市2014年大气中PM2.5的年排放总量,并从行业和区域角度详细分析了PM2.5的排放贡献率.在此基础上,以2014年为基准年,依据西安市地方政策和各行业最新排放标准,对PM2.5的减排潜力进行了预测.结果表明:2014年西安市人为源一次PM2.5排放总量为33 660.1 t,其中,固定燃烧源、工艺过程源、移动源、生物质燃烧源、扬尘源和餐饮源的贡献率分别为27.6%、23.5%、6.8%、10.7%、31.1%和0.3%.道路扬尘、窑炉和发电为西安市PM2.5的重点排放行业,其PM2.5排放量分别占排放总量的21.4%、20.3%和11.0%.各区县中,鄠邑区、灞桥区和未央区的PM2.5排放量较高,其贡献率分别为15.7%、13.7%和12.7%;新城区PM2.5排放量最小,为297.8 t/a.2014年西安市PM2.5平均排放强度为2.07 t/km2,其中,碑林区排放强度(16.80 t/km2)最大,高陵区(0.48 t/km2)最小.按照《西安市2017年"铁腕治霾保卫蓝天"工作实施方案》等新政策的规定,预测在新的排放标准下西安市PM2.5排放量将比2014年削减63.7%.研究显示,固定燃烧源、工艺过程源和生物质燃烧源有较大的减排潜力.   相似文献   

14.
辽宁省2000~2030年机动车排放清单及情景分析   总被引:2,自引:2,他引:0  
机动车排放已经成为城市地区大气污染的主要来源.基于COPERT模型和ArcGIS技术,建立了2000~2030年辽宁省机动车排放清单,分析6类污染物(CO、NMVOC、NOx、PM10、SO2和CO2)排放的总体趋势与空间演变特征,同时以2016年为基准年,基于情景分析法设置8类控制措施情景并评估不同控制措施对污染物的减排效果.结果表明2000~2016年,机动车的CO、NMVOC、NOx和PM10排放量呈现先增后降的趋势,SO2排放量呈现波动变化,而CO2排放量则呈现持续增长态势.轻型载客车和摩托车是CO和NMVOC排放的主要贡献车型,重型载客车和重型载货车是NOx和PM10的主要排放源,SO2和CO2则主要是由轻型载客车排放.辽宁省中部及南部机动车排放量明显高于辽东和辽西.从城市层面来看,排放主要集中在沈阳市和大连市.情景分析表明,实施更加严格的排放标准可以增强减排效果,且升级排放标准的时间越提前减排效果越好.综合情景将实现减排最大化,强化综合情景对CO、NMVOC、NOx、PM10、CO2和SO2的削减率达到了30.7%、14.3%、81.7%、29.4%、12.3%和12.1%.  相似文献   

15.
方利江  杨一群  叶观琼 《环境科学》2022,43(10):4380-4391
以浙江省为研究区域,通过收集11个地级市各类氨排放的活动水平数据,采用排放因子法建立了2008~2018年浙江省人为源氨排放清单,并利用ArcGIS进行1 km×1 km空间网格分配.结果表明,2008~2018年浙江省人为源氨排放量总体呈现下降趋势,年均下降率约3.97%;2018年浙江省氨排放量为108.52 kt,其中农业源为90.02 kt,非农业源为18.50 kt,排放强度为1.03 t ·km-2;杭州市、嘉兴市和温州市的氨排放量高于其他城市,分别占全省总量的14.72%、11.86%和11.80%;空间分布特征显示,氨排放主要分布在浙江省北部区域,呈现出"北高南低"的排放趋势;不确定性分析表明,氨排放量模拟平均值为108.37 kt,在95%置信区间的不确定度范围为-5.40%~5.60%.  相似文献   

16.
江苏省人为源挥发性有机物排放清单   总被引:1,自引:0,他引:1       下载免费PDF全文
掌握VOCs排放特征是研究区域大气复合污染特征和控制策略的前提. 对江苏省VOCs人为源进行系统分类,收集活动水平数据,应用国内外排放因子研究成果及江苏省行业调研结果,采用排放因子法建立了江苏省2010年分行业、分城市的人为源VOCs排放清单. 结果表明:江苏省人为源VOCs排放总量约为179.20×104t,其中化石燃料燃烧源、生物质燃烧源、工业过程源、溶剂使用源、移动源、油品储运源的排放量分别占排放总量的24.1%、3.3%、22.3%、25.3%、18.4%和6.6%,工业过程源中石油炼制、有机化工、医药制造是重点行业,溶剂使用源中机械装备制造、电子设备制造是重点行业. 南京、苏州、无锡、常州、南通5个苏南城市VOCs排放量明显高于苏北和苏中地区,占全省总排放量的60.0%,苏州、南京、无锡排放量居前3位. 各城市化石燃料燃烧源和移动源排放所占比例均超过10.0%,其他重点行业差异显著,其中南京市为石油炼制、有机化工,苏州市为有机化工、机械涂装,无锡市为有机化工、电子设备制造.   相似文献   

17.
嘉兴市2015年人为源VOCs排放清单   总被引:2,自引:2,他引:0  
郝欢  万梅  戎宇  兰亚琼  熊传芳  晁娜 《环境科学》2018,39(11):4892-4900
根据收集的嘉兴市人为源活动水平数据,采用科学合理的估算方法和排放因子,建立了该地区2015年人为源挥发性有机物(VOCs)排放清单.结果表明,嘉兴市2015年VOCs排放总量为10.21×104 t,其中工业源、移动源、生活源、储运源、废弃物处理源、农业源的排放量分别占排放总量的78.15%、12.08%、5.83%、3.24%、0.26%和0.44%.工业源中包装印刷、表面喷涂、纺织印染、化学原料制造、石化是重点排放行业.海宁市、桐乡市和平湖市VOCs排放量位居前三,约占嘉兴市总排放量的50%,经开区、海宁市、南湖区VOCs平均排放强度均超过30 t·km-2.  相似文献   

18.
We have developed two global inventories for black carbon (BC) emissions using two distinct methods. The first method uses measured ambient concentration ratios of BC and SO2 at locations throughout the world. We demonstrate that BC to SO2 ratios are well correlated at most sites and that distinct ratios of BC to SO2 apply to source areas from economically distinct regions. However, within any one economic region, the ratio of BC to SO2 appears to be relatively constant. These facts are used to construct a global inventory of BC emissions by using previously published inventories for the emissions of sulfur. The derived inventory totals nearly 24 Tg C yr−1. The second method uses estimated emission factors and published fuel production and use statistics for wood and bagasse burning, diesel fuel, and domestic and commercial coal use. The combined global emissions using the second method total 12.6 Tg C yr−1. A comparison of the two inventories shows that the estimated emissions from the ratio method are within a factor of two of those derived from emission factors in regions where the data appear to be reliable. The BC inventory from the ratio method is used in the Lawrence Livermore National Laboratory global chemistry/climate model to simulate the world wide distribution of BC. The predicted concentrations are compared with available measurements from throughout the world. This comparison also supports the magnitude of the inventory which we derived from the ratio method to within about a factor of two.  相似文献   

19.
During a joint U.S./U.S.S.R. research cruise from 3 May to 27 July 1987 both total and fine (< 2 μm) particulate material was sampled. This cruise started in the Hawaiian Islands and then proceeded to the Kamchatka peninsula, south to Wellington, New Zealand, south of Australia into the Indian Ocean, to Singapore and then returned to the Hawaiian Islands by sailing just north of the Equator. Particulate samples, collected on quartz fiber and Teflon filters, were analysed for organic and elemental carbon by transmission thermo-optical carbon analysis and for trace elements by energy dispersive X-ray fluorescence.In the Northern Hemisphere the total particulate, organic carbon and elemental carbon concentration ranges were, respectively, 10–25, 0.5–2.5 and 0–0.3 μg m−3. In the Southern Hemisphere they were, respectively, 5–10, <0.6 and <0.02 μg m−3. In the Northern Hemisphere the fine particulate concentration range was 2–15 μg m−3 and the fine fraction varied from 20 to 80% of total aerosol loading. In the Southern Hemisphere the fine particulate loading was 1.2–1.7 μg m−3 and was usually less than 20% of the total particulate mass.Chemical mass balance (CMB) modeling was used to determine possible anthropogenic particulate contributions to the ocean aerosol. Readily available source profiles were used for CMB modeling. Sea-salt aerosol was represented by either the conventional EPA marine source profile or by the average of ambient ocean aerosols sampled in very clean mid-ocean regions. Usually 60–90% of ambient particulate mass was “explained” by the CMB model. Sources such as soil, catalytic auto emissions and wood-burning emissions were found to be possible contributors to the ocean aerosol, especially in the Northern Hemisphere. Anthropogenic contributions were estimated to contribute from 10 to 30% of oceanic aerosol mass. Emissions from a hugh forest fire that burned in northern China during the spring of 1987 were possibly detected, but the CMB model cannot distinguish this source from emissions from heating and cooking with wood.Since anthropogenic emissions are mainly combustion emissions which usually contain a large carbon component, carbon data is essential to CMB modeling. The relatively good CMB results obtained in this study suggest that it might be useful to develop source profiles for major emission sources in those countries which contribute most directly to oceanic aerosols. Perhaps characteristic national or regional source profiles could be developed.  相似文献   

20.
Natural hydrocarbon emissions from both forests and agricultural lands have been estimated on a regional basis for the U.K. The results of this study suggest total emissions are significantly higher than is currently accepted, with the major forested areas of Scotland, Wales and the north of England dominating the area contributions. Non-methane hydrocarbons (NMHC) emitted from natural sources are estimated at 211 × 103 tC yr−1 which represents 13% of the total NMHC emissions in the U.K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号